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Abstract

This article deals with the numerical resolution of Markovian backward stochastic differential
equations (BSDEs) with drivers of quadratic growth with respect toz and bounded terminal con-
ditions. We first show some bound estimates on the processZ and we specify the Zhang’s path
regularity theorem. Then we give a new time discretization scheme with a non uniform time net for
such BSDEs and we obtain an explicit convergence rate for this scheme.

1 Introduction

Since the early nineties, there has been an increasing interest for backward stochastic differential equa-
tions (BSDEs for short). These equations have a wide range ofapplications in stochastic control, in
finance or in partial differential equation theory. A particular class of BSDE is studied since few years:
BSDEs with drivers of quadratic growth with respect to the variablez. This class arises, for example, in
the context of utility optimization problems with exponential utility functions, or alternatively in ques-
tions related to risk minimization for the entropic risk measure (see e.g. [13]). Many papers deal with
existence and uniqueness of solution for such BSDEs: we refer the reader to [17, 18] when the terminal
condition is bounded and [3, 4, 9] for the unbounded case. Ourconcern is rather related to the simulation
of BSDEs and more precisely time discretization of BSDEs coupled with a forward stochastic differen-
tial equation (SDE for short). Actually, the design of efficient algorithms which are able to solve BSDEs
in any reasonable dimension has been intensively studied since the first work of Chevance [6], see for
instance [19, 1, 11]. But in all these works, the driver of theBSDE is a Lipschitz function with respect to
z and this assumption plays a key role in theirs proofs. In a recent paper, Cheridito and Stadje [5] stud-
ied approximation of BSDEs by backward stochastic difference equations which are based on random
walks instead of Brownian motions. They obtain a convergence result when the driver has a subquadratic
growth with respect toz and they give an example where this approximation does not converge when the
driver has a quadratic growth. To the best of our knowledge, the only work where the time approxima-
tion of a BSDE with a quadratic growth with respect toz is studied is the one of Imkeller and Reis [14].
Let notice that, when the driver has a specific form1, it is possible to get around the problem by using
an exponential transformation method (see [15]) or by usingresults on fully coupled forward-backward
differential equations (see [7]).

1Roughly speaking, the driver is a sum of a quadratic termz 7→ C |z|2 and a function that has a linear growth with respect
to z.
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To explain ideas of this paper, let us introduce(X,Y,Z) the solution to the forward backward system

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s)dWs,

Yt = g(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds −

∫ T

t
ZsdWs,

whereg is bounded,f is locally Lipschitz and has a quadratic growth with respectto z. A well-known
result is that wheng is a Lipschitz function with Lipschitz constantKg, then the processZ is bounded
by C(Kg + 1) (see Theorem 3.1). So, in this case, the driver of the BSDE is aLipschitz function with
respect toz. Thereby, a simple idea is to do an approximation of(Y,Z) by the solution(Y N , ZN ) to the
BSDE

Y N
t = gN (XT ) +

∫ T

t
f(s,Xs, Y

N
s , ZN

s )ds −
∫ T

t
ZN
s dWs,

wheregN is a Lipschitz approximation ofg. Thanks to bounded mean oscillation martingale (BMO
martingale in the sequel) tools, we have an error estimate for this approximation: see e.g. [14, 2] or

Proposition 4.2. For example, ifg isα-Hölder, we are able to obtain the error boundCK
−α
1−α
gN (see Propo-

sition 4.10). Moreover, we can have an error estimate for thetime discretization of the approximated
BSDE thanks to any numerical scheme for BSDEs with Lipschitzdriver. But, this error estimate de-

pends onKgN : roughly speaking, this error isCeCK2
gN n−1 with n the number of discretization times.

The exponential term results from the use of Gronwall’s inequality. Finally, wheng is α-Hölder and
KgN = N , the global error bound is

C

(

1

N
α

1−α

+
eCN2

n

)

. (1.1)

So, whenN increases,n−1 will have to become small very quickly and the speed of convergence turns

out to be bad: if we takeN =
(

C
ε log n

)1/2
with 0 < ε < 1, then the global error bound becomes

Cε (log n)
−α

2(1−α) . The same drawback appears in the work of Imkeller and Reis [14]. Indeed, their idea
is to do an approximation of(Y,Z) by the solution(Y N , ZN ) to the truncated BSDE

Y N
t = g(XT ) +

∫ T

t
f(s,Xs, Y

N
s , hN (ZN

s ))ds −
∫ T

t
ZN
s dWs,

wherehN : R1×d → R1×d is a smooth modification of the projection on the open Euclidean ball of
radiusN about0. Thanks to several statements concerning the path regularity and stochastic smoothness
of the solution processes, the authors show that for anyβ > 1, the approximation error is lower than
CβN

−β. So, they obtain the global error bound

Cβ

(

1

Nβ
+

eCN2

n

)

, (1.2)

and, consequently, the speed of convergence also turns out to be bad: if we takeN =
(

C
ε log n

)1/2
with

0 < ε < 1, then the global error bound becomesCβ,ε (log n)
−β/2.

Another idea is to use an estimate ofZ that does not depends onKg. So, we extend a result of [8]
which shows

|Zt| 6 M1 +
M2

(T − t)1/2
, 0 6 t < T. (1.3)
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Let us notice that this type of estimation is well known in thecase of drivers with linear growth as a
consequence of the Bismut-Elworthy formula: see e.g. [10].But in our case, we do not need to suppose
thatσ is invertible. Then, thanks to this estimation, we know that, whent < T , f(t, ., ., .) is a Lipschitz
function with respect toz and the Lipschitz constant depends ont. So we are able to modify the classical
uniform time net to obtain a convergence speed for a modified time discretization scheme for our BSDE:
the idea is to put more discretization points near the final timeT than near0. The same idea is used
by Gobet and Makhlouf in [12] for BSDEs with drivers of lineargrowth and a terminal functiong not
Lipschitz. But due to technical reasons we need to apply thismodified time discretization scheme to the
approximated BSDE:

Y N,ε
t = gN (XT ) +

∫ T

t
f ε(s,Xs, Y

N,ε
s , ZN,ε

s )ds −
∫ T

t
ZN,ε
s dWs,

with
f ε(s, x, y, z) := 1s<T−εf(s, x, y, z) + 1s>T−εf(s, x, y, 0).

Thanks to the estimate (1.3), we obtain a speed convergence for the time discretization scheme of this
approximated BSDE (see Theorem 4.8). Moreover, BMO tools give us again an estimate of the approx-
imation error (see Proposition 4.2). Finally, if we supposethat g is α-Hölder, we prove that we can

choose properlyN andε to obtain the global error estimateCn
− 2α

(2−α)(2+K)−2+2α (see Theorem 4.13)
whereK > 0 depends on constantM2 defined in equation (1.3) and constants related tof . Let us notice
that such a speed of convergence where constants related tof , g, b andσ appear in the power ofn is un-
usual. Even if we have an error far better than (1.1) or (1.2),this result is not very interesting in practice
because the speed of convergence strongly depends onK. But, whenb is bounded, we prove that we can
takeM2 as small as we want in (1.3). Finally, we obtain a global errorestimate lower thanCηn

−(α−η),
for all η > 0 (see Theorem 4.16).

The paper is organized as follows. In the introductory Section 2 we recall some of the well known
results concerning SDEs and BSDEs. In Section 3 we establishsome estimates concerning the process
Z: we show a first uniform bound forZ, then a time dependent bound and finally we specify the classical
path regularity theorem. In Section 4 we define a modified timediscretization scheme for BSDEs with a
non uniform time net and we obtain an explicit error bound.

2 Preliminaries

2.1 Notations

Throughout this paper,(Wt)t>0 will denote ad-dimensional Brownian motion, defined on a probability
space(Ω,F ,P). For t > 0, let Ft denote theσ-algebraσ(Ws; 0 6 s 6 t), augmented with theP-null
sets ofF . The Euclidian norm onRd will be denoted by|.|. The operator norm induced by|.| on the
space of linear operator is also denoted by|.|. Forp > 2, m ∈ N, we denote further

• Sp(Rm), or Sp when no confusion is possible, the space of all adapted processes(Yt)t∈[0,T ] with
values inRm normed by‖Y ‖Sp = E[(supt∈[0,T ] |Yt|)p]1/p; S∞(Rm), orS∞, the space of bounded
measurable processes;

• Mp(Rm), or Mp, the space of all progressively measurable processes(Zt)t∈[0,T ] with values in

Rm normed by‖Z‖Mp = E[(
∫ T
0 |Zs|2 ds)p/2]1/p.

In the following, we keep the same notationC for all finite, nonnegative constants that appear in our
computations: they may depend on known parameters derivingfrom assumptions and onT , but not on
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any of the approximation and discretization parameters. Inthe same spirit, we keep the same notationη
for all finite, positive constants that we can take as small aswe want independently of the approximation
and discretization parameters.

2.2 Some results on BMO martingales

In our work, the space of BMO martingales play a key role for the a priori estimates needed in our
analysis of BSDEs. We refer the reader to [16] for the theory of BMO martingales and we just recall
the properties that we will use in the sequel. LetΦt =

∫ t
0 φsdWs, t ∈ [0, T ] be a real square integrable

martingale with respect to the Brownian filtration. ThenΦ is a BMO martingale if

‖Φ‖BMO = sup
τ∈[0,T ]

E [〈Φ〉T − 〈Φ〉τ |Fτ ]
1/2 = sup

τ∈[0,T ]
E

[∫ T

τ
φ2
sds|Fτ

]1/2

< +∞,

where the supremum is taken over all stopping times in[0, T ]; 〈Φ〉 denotes the quadratic variation ofΦ.
In our case, the very important feature of BMO martingales isthe following lemma:

Lemma 2.1. LetΦ be a BMO martingale. Then we have:

1. The stochastic exponential

E(Φ)t = Et = exp

(∫ t

0
φsdWs −

1

2

∫ t

0
|φs|2 ds

)

, 0 6 t 6 T,

is a uniformly integrable martingale.

2. Thanks to the reverse Hölder inequality, there existsp > 1 such thatET ∈ Lp. The maximalp with
this property can be expressed in terms of the BMO norm ofΦ.

3. ∀n ∈ N∗, E
[(

∫ T
0 |φs|2 ds

)n]

6 n! ‖Φ‖2nBMO.

2.3 The backward-forward system

Given functionsb, σ, g andf , for x ∈ Rd we will deal with the solution(X,Y,Z) to the following
system of (decoupled) backward-forward stochastic differential equations: fort ∈ [0, T ],

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s)dWs, (2.1)

Yt = g(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds −

∫ T

t
ZsdWs. (2.2)

For the functions that appear in the above system of equations we give some general assumptions.

(HX0). b : [0, T ] × Rd → Rd, σ : [0, T ] → Rd×d are measurable functions. There exist four positive
constantsMb, Kb, Mσ andKσ such that∀t, t′ ∈ [0, T ], ∀x, x′ ∈ Rd,

|b(t, x)| 6 Mb(1 + |x|),
∣

∣b(t, x) − b(t′, x′)
∣

∣ 6 Kb(
∣

∣x− x′
∣

∣+
∣

∣t− t′
∣

∣

1/2
),

|σ(t)| 6 Mσ,
∣

∣σ(t)− σ(t′)
∣

∣ 6 Kσ

∣

∣t− t′
∣

∣ .
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(HY0). f : [0, T ] × Rd × R × R1×d → R, g : Rd → R are measurable functions. There exist
five positive constantsMf , Kf,x, Kf,y, Kf,z andMg such that∀t ∈ [0, T ], ∀x, x′ ∈ Rd, ∀y, y′ ∈ R,
∀z, z′ ∈ R1×d,

|f(t, x, y, z)| 6 Mf (1 + |y|+ |z|2),
∣

∣f(t, x, y, z)− f(t, x′, y′, z′)
∣

∣ 6 Kf,x

∣

∣x− x′
∣

∣+Kf,y

∣

∣y − y′
∣

∣+ (Kf,z + Lf,z(|z|+
∣

∣z′
∣

∣))
∣

∣z − z′
∣

∣ ,

|g(x)| 6 Mg.

We next recall some results on BSDEs with quadratic growth. For their original version and their proof
we refer to [17], [2] and [14].

Theorem 2.2.Under (HX0), (HY0), the system (2.1)-(2.2) has a unique solution (X,Y,Z) ∈ S2×S∞×
M2. The martingaleZ ∗W belongs to the space of BMO martingales and‖Z ∗W‖BMO only depends
onT , Mg andMf . Moreover, there existsr > 1 such thatE(Z ∗W ) ∈ Lr.

3 Some useful estimates ofZ

3.1 A first bound for Z

Theorem 3.1. Suppose that (HX0), (HY0) hold and thatg is Lipschitz with Lipschitz constantKg. Then,
there exists a version ofZ such that,∀t ∈ [0, T ],

|Zt| 6 e(2Kb+Kf,y)TMσ(Kg + TKf,x).

Proof. Firstly, we suppose thatb, g andf are differentiable with respect tox, y andz. Then(X,Y,Z)
is differentiable with respect tox and(∇X,∇Y,∇Z) is solution of

∇Xt = Id +

∫ t

0
∇b(s,Xs)∇Xsds, (3.1)

∇Yt = ∇g(XT )∇XT −
∫ T

t
∇ZsdWs (3.2)

+

∫ T

t
∇xf(s,Xs, Ys, Zs)∇Xs +∇yf(s,Xs, Ys, Zs)∇Ys +∇zf(s,Xs, Ys, Zs)∇Zsds,

where∇Xt = (∂Xi
t/∂x

j)16i,j6d, ∇Yt =
t
(∂Yt/∂x

j)16j6d ∈ R1×d, ∇Zt = (∂Zi
t/∂x

j)16i,j6d and
∫ T
t ∇ZsdWs means

∑

16i6d

∫ T

t
(∇Zs)

idW i
s

with (∇Z)i denoting thei-th line of thed × d matrix process∇Z. Thanks to usual transformations on
the BSDE we obtain

e
∫ t
0 ∇yf(s,Xs,Ys,Zs)ds∇Yt = e

∫ T
0 ∇yf(s,Xs,Ys,Zs)ds∇g(XT )∇XT −

∫ T

t
e
∫ s
0 ∇yf(u,Xu,Yu,Zu)du∇ZsdW̃s

+

∫ T

t
e
∫ s
0
∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds,
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with dW̃s = dWs −∇zf(s,Xs, Ys, Zs)ds. We have

∥

∥

∥

∥

∫ .

0
∇zf(s,Xs, Ys, Zs)dWs

∥

∥

∥

∥

2

BMO

= sup
τ∈[0,T ]

E

[∫ T

τ
|∇zf(s,Xs, Ys, Zs)|2 ds

∣

∣

∣
Fτ

]

6 C

(

1 + sup
τ∈[0,T ]

E

[
∫ T

τ
|Zs|2 ds

∣

∣

∣Fτ

]

)

= C
(

1 + ‖Z ∗W‖2BMO

)

.

SinceZ ∗ W belongs to the space of BMO martingales,
∥

∥

∫ .
0 ∇zf(s,Xs, Ys, Zs)dWs

∥

∥

BMO
< +∞.

Lemma 2.1 gives us thatE(
∫ .
0 ∇zf(s,Xs, Ys, Zs)dWs)t is a uniformly integrable martingale, so we are

able to apply Girsanov’s theorem: there exists a probability Q under which(W̃ )t∈[0,T ] is a Brownian
motion. Then,

e
∫ t
0 ∇yf(s,Xs,Ys,Zs)ds∇Yt = EQ

[

e
∫ T
0 ∇yf(s,Xs,Ys,Zs)ds∇g(XT )∇XT

+

∫ T

t
e
∫ s
0
∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds

∣

∣

∣Ft

]

,

and
|∇Yt| 6 e(Kb+Kf,y)T (Kg + TKf,x), (3.3)

because|∇Xt| 6 eKbT . Moreover, thanks to the Malliavin calculus, it is classical to show that a version
of (Zt)t∈[0,T ] is given by(∇Yt(∇Xt)

−1σ(t))t∈[0,T ]. So we obtain

|Zt| 6 eKbTMσ |∇Yt| 6 e(2Kb+Kf,y)TMσ(Kg + TKf,x), a.s.,

because
∣

∣∇X−1
t

∣

∣ 6 eKbT .
Whenb, g andf are not differentiable, we can also prove the result by a standard approximation and

stability results for BSDEs with linear growth. ⊓⊔

3.2 A time dependent estimate ofZ

We will introduce two alternative assumptions.

(HX1). b is differentiable with respect tox andσ is differentiable with respect tot. There exists
λ ∈ R+ such that∀η ∈ Rd

∣

∣

∣

tησ(s)[tσ(s)t∇b(s, x)− t
σ′(s)]η

∣

∣

∣
6 λ

∣

∣

tησ(s)
∣

∣

2
. (3.4)

(HX1’). σ is invertible and∀t ∈ [0, T ],
∣

∣σ(t)−1
∣

∣ 6 Mσ−1 .

Example. Assumption (HX1) is verified when,∀s ∈ [0, T ], ∇b(s, .) commutes withσ(s) and∃A :
[0, T ] → Rd×d bounded such thatσ′(t) = σ(t)A(t).

Theorem 3.2. Suppose that (HX0), (HY0) hold and that (HX1) or (HX1’) holds. Moreover, suppose that
g is lower (or upper) semi-continuous. Then there exists a version ofZ and there exist two constants
C,C ′ ∈ R+ that depend only inT , Mg, Mf , Kf,x, Kf,y, Kf,z andLf,z such that,∀t ∈ [0, T [,

|Zt| 6 C + C ′(T − t)−1/2.
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Proof. In a first time, we will suppose that (HX1) holds and thatf , g are differentiable with respect to
x, y andz. Then(Y,Z) is differentiable with respect tox and(∇Y,∇Z) is the solution of the BSDE

∇Yt = ∇g(XT )∇XT −
∫ T

t
∇ZsdWs

+

∫ T

t
∇xf(s,Xs, Ys, Zs)∇Xs +∇yf(s,Xs, Ys, Zs)∇Ys +∇zf(s,Xs, Ys, Zs)∇Zsds.

Thanks to usual transformations we obtain

e
∫ t
0 ∇yf(s,Xs,Ys,Zs)ds∇Yt +

∫ t

0
e
∫ s
0 ∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds =

e
∫ T
0

∇yf(s,Xs,Ys,Zs)ds∇g(XT )∇XT +

∫ T

0
e
∫ s
0
∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds

−
∫ T

t
e
∫ s
0 ∇yf(u,Xu,Yu,Zu)du∇ZsdW̃s,

with dW̃s = dWs −∇zf(s,Xs, Ys, Zs)ds. We can rewrite it as

Ft = FT −
∫ T

t
e
∫ s
0 ∇yf(u,Xu,Yu,Zu)du∇ZsdW̃s (3.5)

with

Ft := e
∫ t
0 ∇yf(s,Xs,Ys,Zs)ds∇Yt +

∫ t

0
e
∫ s
0 ∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds.

Z ∗W belongs to the space of BMO martingales so we are able to applyGirsanov’s theorem: there exists
a probabilityQ under which(W̃ )t∈[0,T ] is a Brownian motion. Thanks to the Malliavin calculus, it is
possible to show that(∇Yt(∇Xt)

−1σ(t))t∈[0,T ] is a version ofZ. Now we define:

αt :=

∫ t

0
e
∫ s
0 ∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds(∇Xt)

−1σ(t),

Z̃t := Ft(∇Xt)
−1σ(t) = e

∫ t
0 ∇yf(s,Xs,Ys,Zs)dsZt + αt, a.s.,

F̃t := eλtFt(∇Xt)
−1.

Sinced∇Xt = ∇b(t,Xt)∇Xtdt, thend(∇Xt)
−1 = −(∇Xt)

−1∇b(t,Xt)dt and thanks to Itô’s for-
mula,

dZ̃t = dFt(∇Xt)
−1σ(t)− Ft(∇Xt)

−1∇b(t,Xt)σ(t)dt+ Ft(∇Xt)
−1σ′(t)dt,

and
d(eλtZ̃t) = F̃t(λId−∇b(t,Xt))σ(t)dt + F̃tσ

′(t)dt+ eλtdFt(∇Xt)
−1σ(t).

Finally,

d
∣

∣

∣eλtZ̃t

∣

∣

∣

2
= d〈M〉t + 2

[

λ
∣

∣

∣F̃tσ(t)
∣

∣

∣

2
− F̃tσ(t)[

tσ(t)t∇b(t,Xt)− t
σ′(t)]

t

F̃t

]

dt+ dM∗
t ,

with Mt :=
∫ t
0 e

λsdFs(∇Xs)
−1σ(s) andM∗

t aQ-martingale. Thanks to the assumption (HX1) we are

able to conclude that
∣

∣

∣
eλtZ̃t

∣

∣

∣

2
is aQ-submartingale. Hence,

EQ

[
∫ T

t
e2λs

∣

∣

∣
Z̃s

∣

∣

∣

2
ds
∣

∣

∣
Ft

]

> e2λt
∣

∣

∣
Z̃t

∣

∣

∣

2
(T − t)

> e2λt
∣

∣

∣
e
∫ t
0
∇yf(s,Xs,Ys,Zs)dsZt + αt

∣

∣

∣

2
(T − t) a.s.,
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which implies

|Zt|2 (T − t) = e−2λte−2
∫ t
0 ∇yf(s,Xs,Ys,Zs)dse2λt

∣

∣

∣
e
∫ t
0 ∇yf(s,Xs,Ys,Zs)dsZt + αt − αt

∣

∣

∣

2
(T − t)

6 C

(

e2λt
∣

∣

∣
e
∫ t
0 ∇yf(s,Xs,Ys,Zs)dsZt + αt

∣

∣

∣

2
+ 1

)

(T − t)

6 C

(

EQ

[
∫ T

t
e2λs

∣

∣

∣Z̃s

∣

∣

∣

2
ds
∣

∣

∣Ft

]

+ (T − t)

)

a.s.,

with C a constant that only depends onT , Kb, Mσ, Kf,x, Kf,y andλ. Moreover, we have, a.s.,

EQ

[∫ T

t
e2λs

∣

∣

∣
Z̃s

∣

∣

∣

2
ds
∣

∣

∣
Ft

]

6 CEQ

[∫ T

t
|Zs|2 + |αs|2 ds

∣

∣

∣
Ft

]

6 C
(

‖Z‖2BMO(Q) + (T − t)
)

.

But ‖Z‖BMO(Q) does not depend onKg because(Y,Z) is a solution of the following quadratic BSDE:

Yt = g(XT ) +

∫ T

t
(f(s,Xs, Ys, Zs)− Zs∇zf(s,Xs, Ys, Zs)) ds−

∫ T

t
ZsdW̃s. (3.6)

Finally |Zt| 6 C
(

1 + (T − t)−1/2
)

a.s..
Whenσ is invertible, the inequality (3.4) is verified withλ := Mσ−1(MσKb + Kσ). Since this

λ does not depend on∇b andσ′, we can prove the result whenb(t, .) andσ are not differentiable by a
standard approximation and stability results for BSDEs with linear growth. So, we are allowed to replace
assumption (HX1) by (HX1’).

Whenf is not differentiable andg is only Lipschitz we can prove the result by a standard approxi-
mation and stability results for linear BSDEs. But we noticethat our estimation onZ does not depend on
Kg. This allows us to weaken the hypothesis ong further: wheng is only lower or upper semi-continuous
the result stays true. The proof is the same as the proof of Proposition 4.3 in [8]. ⊓⊔
Remark 3.3. The previous proof gives us a more precise estimation for a version ofZ whenf is differ-
entiable with respect toz: ∀t ∈ [0, T ],

|Zt| 6 C + C ′EQ

[
∫ T

t
|Zs|2 ds

∣

∣

∣
Ft

]1/2

(T − t)−1/2.

Remark 3.4. When assumptions (HX1) or (HX1’) are not verified, the processZ may blow up beforeT .
Zhang gives an example of such a phenomenon in dimension 1: werefer the reader to example 1 in [20].

3.3 Zhang’s path regularity Theorem

Let 0 = t0 < t1 < . . . < tn = T be any given partition of[0, T ], and denoteδn the mesh size of this
partition. We define a set of random variables

Z̄ti =
1

ti+1 − ti
E

[∫ ti+1

ti

Zsds
∣

∣

∣Fti

]

, ∀i ∈ {0, . . . , n − 1} .

Then we are able to precise Theorem 3.4.3 in [21]:

Theorem 3.5. Suppose that (HX0), (HY0) hold andg is a Lipschitz function, with Lipschitz constantKg.
Then we have

n−1
∑

i=0

E

[∫ ti+1

ti

∣

∣Zt − Z̄ti

∣

∣

2
dt

]

6 C(1 +K2
g )δn,

where C is a positive constant independent ofδn andKg.
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Proof. We will follow the proof of Theorem 5.6., in [14]: we just needto specify how the estimate
depends onKg. Firstly, it is not difficult to show that̄Zti is the bestFti -measurable approximation ofZ
in M2([ti, ti+1]), i.e.

E

[∫ ti+1

ti

∣

∣Zt − Z̄ti

∣

∣

2
dt

]

= inf
Zi∈L2(Ω,Fti )

E

[∫ ti+1

ti

|Zt − Zi|2 dt
]

.

In particular,

E

[∫ ti+1

ti

∣

∣Zt − Z̄ti

∣

∣

2
dt

]

6 E

[∫ ti+1

ti

|Zt − Zti |2 dt
]

.

In the same spirit as previous proofs, we suppose in a first time thatb, g andf are differentiable with
respect tox, y andz. So,

Zt − Zti = ∇Yt(∇Xt)
−1σ(t)−∇Yti(∇Xti)

−1σ(ti) = I1 + I2 + I3, a.s.,

with I1 = ∇Yt(∇Xt)
−1(σ(t) − σ(ti)), I2 = ∇Yt((∇Xt)

−1 − (∇Xti)
−1)σ(ti) and I3 = ∇(Yt −

Yti)(∇Xti)
−1σ(ti). Firstly, thanks to the estimation (3.3) we have

|I1|2 6 |∇Yt|2 e2KbTK2
σ |ti+1 − ti|2 6 C(1 +K2

g )δ
2
n.

We obtain the same estimation for|I2| because

∣

∣(∇Xt)
−1 − (∇Xti)

−1
∣

∣ 6

∣

∣

∣

∣

∫ t

ti

(∇Xs)
−1∇b(s,Xs)ds

∣

∣

∣

∣

6 Kbe
KbT |t− ti| .

Lastly, |I3| 6 Mσe
KbT |∇Yt −∇Yti |. So,

n−1
∑

i=0

E

[∫ ti+1

ti

|I3|2 dt
]

6 Cδn

n−1
∑

i=0

E

[

ess sup
t∈[ti,ti+1]

|∇Yt −∇Yti |2
]

.

By using the BSDE (3.2), (HY0), the estimate on∇Xs and the estimate (3.3), we have

|∇Yt −∇Yti |2

6 C

(
∫ t

ti

(C(1 +Kg) + |∇zf(s,Xs, Ys, Zs)| |∇Zs|) ds
)2

+ C

(
∫ t

ti

∇ZsdWs

)2

.

The inequalities of Hölder and Burkholder-Davis-Gundy give us

n−1
∑

i=0

E

[

ess sup
t∈[ti,ti+1]

|∇Yt −∇Yti |2
]

6 C(1 +K2
g ) + C

n−1
∑

i=0

E

(∫ ti+1

ti

|∇zf(s,Xs, Ys, Zs)| |∇Zs| ds
)2

+ CE

(∫ ti+1

ti

|∇Zs|2 ds
)

6 C(1 +K2
g ) + CE

[

(
∫ T

0
|∇zf(s,Xs, Ys, Zs)| |∇Zs| ds

)2

+

∫ T

0
|∇Zs|2 ds

]

6 C(1 +K2
g ) + CE

[(
∫ T

0
(1 + |Zs|2)ds

)(
∫ T

0
|∇Zs|2 ds

)

+

∫ T

0
|∇Zs|2 ds

]

6 C(1 +K2
g ) + C



1 + E

[

(
∫ T

0
|Zs|2 ds

)p
]1/p



E

[

(
∫ T

0
|∇Zs|2 ds

)q
]1/q

,
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for all p > 1 andq > 1 such that1/p + 1/q = 1. But, (∇Y,∇Z) is solution of BSDE (3.2), so, from
Corollary 9 in [2], there existsq that only depends on‖Z ∗W‖BMO such that

E

[

(∫ T

0
|∇Zs|2 ds

)q
]1/q

6 C(1 +K2
g ).

Moreover, we can apply Lemma 2.1 to obtain the estimate

E

[

(
∫ T

0
|Zs|2 ds

)p
]1/p

6 C ‖Z‖2BMO 6 C.

Finally,
n−1
∑

i=0

E

[∫ ti+1

ti

|I3|2 dt
]

6 C(1 +K2
g )δn

and

n−1
∑

i=0

E

[∫ ti+1

ti

∣

∣Zt − Z̄ti

∣

∣

2
dt

]

6

n−1
∑

i=0

E

[∫ ti+1

ti

(

|I1|2 + |I2|2 + |I3|2
)

dt

]

6 C(1 +K2
g )δn.

⊓⊔

4 Convergence of a modified time discretization scheme for the BSDE

4.1 An approximation of the quadratic BSDE

In a first time we will approximate our quadratic BSDE (2.2) byanother one. We setε ∈]0, T [ and
N ∈ N. Let (Y N,ε

t , ZN,ε
t ) the solution of the BSDE

Y N,ε
t = gN (XT ) +

∫ T

t
f ε(s,Xs, Y

N,ε
s , ZN,ε

s )ds −
∫ T

t
ZN,ε
s dWs, (4.1)

with
f ε(s, x, y, z) := 1s6T−εf(s, x, y, z) + 1s>T−εf(s, x, y, 0),

andgN a Lipschitz approximation ofg with Lipschitz constantN . f ε verifies assumption (HY0) with the
same constants asf . SincegN is a Lipschitz function,ZN,ε has a bounded version and the BSDE (4.1)
is a BSDE with a linear growth. Moreover, we can apply Theorem3.2 to obtain:

Proposition 4.1. Let us assume that (HX0), (HY0) and (HX1) or (HX1’) hold. There exists a version of
ZN,ε and there exist three constantsMz,1,Mz,2,Mz,3 ∈ R+ that do not depend onN andε such that,
∀s ∈ [0, T ],

∣

∣ZN,ε
s

∣

∣ 6

(

Mz,1 +
Mz,2

(T − s)1/2

)

∧ (Mz,3(N + 1)).

Thanks to BMO tools we have a stability result for quadratic BSDEs (see [2] and [14]):
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Proposition 4.2. Let us assume that (HX0) and (HY0) hold. There exists a constant C that does not
depend onN andε such that

E

[

sup
t∈[0,T ]

∣

∣

∣Y
N,ε
t − Yt

∣

∣

∣

2
]

+ E

[∫ T

0

∣

∣

∣Z
N,ε
t − Zt

∣

∣

∣

2
dt

]

6 C(e1(N) + e2(N, ε))

with

e1(N) := E

[

|gN (XT )− g(XT )|2q
]1/q

, 2

e2(N, ε) := E

[

(
∫ T

T−ε

∣

∣

∣
f(t,Xt, Y

N,ε
t , ZN,ε

t )− f(t,Xt, Y
N,ε
t , 0)

∣

∣

∣
dt

)2q
]1/q

,

andq defined in Theorem 2.2.

Then, in a second time, we will approximate our modified backward-forward system by a discrete-
time one. We will slightly modify the classical discretization by using a non equidistant net with2n+ 1
discretization times. We define then+ 1 first discretization times on[0, T − ε] by

tk = T

(

1−
( ε

T

)k/n
)

,

and we use an equidistant net on[T − ε, T ] for the lastn discretization times:

tk = T −
(

2n− k

n

)

ε, n 6 k 6 2n.

We denote the time step by(hk := tk+1 − tk)06k62n−1. We consider(Xn
tk
)06k62n the classical Euler

scheme forX given by

Xn
0 = x

Xn
tk+1

= Xn
tk
+ hkb(tk,X

n
tk
) + σ(tk)(Wtk+1

−Wtk), 0 6 k 6 2n− 1. (4.2)

We denoteρs : R1×d → R1×d the projection on the ball

B

(

0,Mz,1 +
Mz,2

(T − s)1/2

)

with Mz,1 andMz,2 given by Proposition 4.1. Finally we denote(Y N,ε,n, ZN,ε,n) our time approx-
imation of (Y N,ε, ZN,ε). This couple is obtained by a slight modification of the classical dynamic
programming equation:

Y N,ε,n
t2n = gN (Xn

t2n )

ZN,ε,n
tk

= ρtk+1

(

1

hk
Etk [Y

N,ε,n
tk+1

(Wtk+1
−Wtk)]

)

, 0 6 k 6 2n− 1, (4.3)

Y N,ε,n
tk

= Etk [Y
N,ε,n
tk+1

] + hkEtk [f
ε(tk,X

n
tk
, Y N,ε,n

tk+1
, ZN,ε,n

tk
)], 0 6 k 6 2n− 1, (4.4)

2The authors of [14] obtain this result withq2 instead ofq. Nevertheless, we are able to obtain the good result by applying
the estimates of [2].
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whereEtk stands for the conditional expectation givenFtk . Let us notice that the classical dynamic
programming equation do not use a projection in (4.3): it is the only difference with our time approx-
imation, see e.g. [11] for the classical case. This projection comes directly from the estimate ofZ in
Proposition 4.1. The aim of our work is to study the error of discretization

e(N, ε, n) := sup
06k62n

E

[

∣

∣

∣
Y N,ε,n
tk

− Ytk

∣

∣

∣

2
]

+
2n−1
∑

k=0

E

[∫ tk+1

tk

∣

∣

∣
ZN,ε,n
tk

− Zt

∣

∣

∣

2
dt

]

.

It is easy to see that
e(N, ε, n) 6 C(e1(N) + e2(N, ε) + e3(N, ε, n)),

with e1(N) ande2(N, ε) defined in Proposition 4.2, and

e3(N, ε, n) := sup
06k62n

E

[

∣

∣

∣Y
N,ε,n
tk

− Y N,ε
tk

∣

∣

∣

2
]

+

2n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣Z
N,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

.

4.2 Study of the time approximation error e3(N, ε, n)

We need an extra assumption.

(HY1). There exists a positive constantKf,t such that∀t, t′ ∈ [0, T ], ∀x ∈ Rd, ∀y ∈ R, ∀z ∈ R1×d,

∣

∣f(t, x, y, z) − f(t′, x, y, z)
∣

∣ 6 Kf,t

∣

∣t− t′
∣

∣

1/2
.

Moreover, we setε = Tn−a andN = nb, with a, b ∈ R+,∗ two parameters. Before giving our error
estimates, we recall two technical lemmas that we will provein the appendix.

Lemma 4.3. For all constantM > 0 there exists a constantC that depends only onT , M anda, such
that

2n−1
∏

i=0

(1 +Mhi) 6 C, ∀n ∈ N∗.

Lemma 4.4. For all constantsM1 > 0 andM2 > 0 there exists a constantC that depends only onT ,
M1, M2 anda, such that

n−1
∏

i=0

(

1 +M1hi +M2
hi

T − ti+1

)

6 CnaM2 .

Firstly, we give a convergence result for the Euler scheme.

Proposition 4.5. Assume (HX0) holds. Then there exists a constantC that does not depend onn, such
that

sup
06k62n

E

[

∣

∣Xtk −Xn
tk

∣

∣

2
]

6 C
lnn

n
.
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Proof. We just have to copy the classical proof to obtain, thanks to Lemma 4.3,

sup
06k62n

E

[

∣

∣Xtk −Xn
tk

∣

∣

2
]

6 C sup
06i62n−1

hi = Ch0.

But

h0 = T (1− n−a/n) 6 C
lnn

n
,

because(1− n−a/n) ∼ aT lnn
n whenn → +∞, so the proof is ended. ⊓⊔

Now, let us treat the BSDE approximation. In a first time we will study the time approximation error
on [T − ε, T ].

Proposition 4.6. Assume that (HX0), (HY0) and (HY1) hold. Then there exists a constantC that does
not depend onn and such that

sup
n6k62n

E

[

∣

∣

∣
Y N,ε,n
tk

− Y N,ε
tk

∣

∣

∣

2
]

+

2n−1
∑

k=n

E

[∫ tk+1

tk

∣

∣

∣
ZN,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6
C lnn

n1−2b
.

Proof. The BSDE (4.1) has a linear growth with respect toz on [T − ε, T ] so we are allowed to apply
classical results which give us that

sup
n6k62n

E

[

∣

∣

∣
Y N,ε,n
tk

− Y N,ε
tk

∣

∣

∣

2
]

+
2n−1
∑

k=n

E

[
∫ tk+1

tk

∣

∣

∣
ZN,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6 C
(

E

[

|gN (XT )− gN (Xn
T )|2

]

+
ε

n

)

6 C

(

lnn

n1−2b
+

ε

n

)

,

by using the fact thatgN is N -Lipschitz and by applying Proposition 4.5. ⊓⊔

Remark 4.7.

• Whena > 1 − 2b, thenε = Tn−a = o(n2b−1 lnn). So we do not need to have a discretization
grid on [T − ε, T ]: n+ 2 points of discretization are sufficient on[0, T ].

• Whena < 1 − 2b, then is is possible to take only⌈nc⌉ discretization points on[T − ε, T ] with
a+ c = 1− 2b. In this case the error bound becomes

sup
n6k62n

E

[

∣

∣

∣
Y N,ε,n
tk

− Y N,ε
tk

∣

∣

∣

2
]

+
2n−1
∑

k=n

E

[
∫ tk+1

tk

∣

∣

∣
ZN,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6 C

(

lnn

n1−2b
+

1

na+c

)

,

and the Proposition 4.6 stay true.

Now, let us see what happens on[0, T − ε].

Theorem 4.8. Assume that (HX0), (HY0), (HY1) and (HX1) or (HX1’) hold. Then for all η > 0, there
exists a constantC that does not depend onN , ε andn, such that

sup
06k62n

E

[

∣

∣

∣
Y N,ε,n
tk

− Y N,ε
tk

∣

∣

∣

2
]

+
2n−1
∑

k=0

E

[∫ tk+1

tk

∣

∣

∣
ZN,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6
C

n1−2b−Ka
,

withK = 4(1 + η)L2
f,zM

2
z,2.
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Proof. Firstly, we will study the error onY . From (4.1) and (4.4) we get

Y N,ε
tk

−Y N,ε,n
tk

= Etk

[

Y N,ε
tk+1

− Y N,ε,n
tk+1

]

+Etk

∫ tk+1

tk

(

f(s,Xs, Y
N,ε
s , ZN,ε

s )− f(tk,X
n
tk
, Y N,ε,n

tk+1
, ZN,ε,n

tk
)
)

ds.

We introduce a parameterγk > 0 that will be chosen later. Thanks to Proposition 4.1 and assumption
(HY0), f is Lipschitz on[tk, tk+1] with a Lipschitz constantKk := K1 + K2

(T−tk+1)1/2
whereK2 =

2Lf,zMz,2. A combination of Young’s inequality(a+b)2 6 (1+γkhk)a
2+(1+ 1

γkhk
)b2 and properties

of f gives

E

∣

∣

∣
Y N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2

6 (1 + γkhk)E
∣

∣

∣Etk

[

Y N,ε
tk+1

− Y N,ε,n
tk+1

]∣

∣

∣

2
+ (1 + η)1/3K2

k(hk +
1

γk
)E

∫ tk+1

tk

∣

∣

∣ZN,ε
s − ZN,ε,n

tk

∣

∣

∣

2
ds

+C(hk +
1

γk
)

(

h2k +

∫ tk+1

tk

E
∣

∣Xs −Xn
tk

∣

∣

2
ds+

∫ tk+1

tk

E

∣

∣

∣
Y N,ε
s − Y N,ε,n

tk+1

∣

∣

∣

2
ds

)

. (4.5)

We define

Z̃N,ε,n
tk

:=
1

hk
Etk [Y

N,ε,n
tk+1

(Wtk+1
−Wtk)].

So,ZN,ε,n
tk

= ρtk+1
(Z̃N,ε,n

tk
). Moreover, Proposition 4.1 implies thatZN,ε

s = ρtk+1
(ZN,ε

s ), and, since
ρtk+1

is 1-Lipschitz, we have

∣

∣

∣
ZN,ε
s − ZN,ε,n

tk

∣

∣

∣

2
=
∣

∣

∣
ρtk+1

(ZN,ε
s )− ρtk+1

(Z̃N,ε,n
tk

)
∣

∣

∣

2
6

∣

∣

∣
ZN,ε
s − Z̃N,ε,n

tk

∣

∣

∣

2
. (4.6)

As in Theorem 3.5, we definēZN,ε
tk

by

hkZ̄
N,ε
tk

:= Etk

∫ tk+1

tk

ZN,ε
s ds = Etk

(

(Y N,ε
tk+1

+

∫ tk+1

tk

f(s,Xs, Y
N,ε
s , ZN,ε

s )ds)t(Wtk+1
−Wtk)

)

.

Clearly,

E

∫ tk+1

tk

∣

∣

∣
ZN,ε
s − Z̃N,ε,n

tk

∣

∣

∣

2
ds = E

∫ tk+1

tk

∣

∣

∣
ZN,ε
s − Z̄N,ε

tk

∣

∣

∣

2
ds+ hkE

∣

∣

∣
Z̄N,ε
tk

− Z̃N,ε,n
tk

∣

∣

∣

2
. (4.7)

The Cauchy-Schwartz inequality yields

∣

∣

∣Etk

(

(Y N,ε
tk+1

− Y N,ε,n
tk+1

)t(Wtk+1
−Wtk)

)∣

∣

∣

2
6 hk{Etk(

∣

∣

∣Y
N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)−

∣

∣

∣Etk(Y
N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
},

and consequently

hkE
∣

∣

∣
Z̄N,ε
tk

− Z̃N,ε,n
tk

∣

∣

∣

2
6 (1 + η)1/3E

[

Etk(
∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)−

∣

∣

∣
Etk(Y

N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

+ChkE

∫ tk+1

tk

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds. (4.8)
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Plugging (4.7) and (4.8) into (4.5), we get:

E

∣

∣

∣
Y N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
6 (1 + γkhk)E

∣

∣

∣
Etk

[

Y N,ε
tk+1

− Y N,ε,n
tk+1

]∣

∣

∣

2

+(1 + η)K2
k(hk +

1

γk
)E

∫ tk+1

tk

∣

∣

∣ZN,ε
s − Z̄N,ε

tk

∣

∣

∣

2
ds

+C(hk +
1

γk
)

(

h2k +

∫ tk+1

tk

E
∣

∣Xs −Xn
tk

∣

∣

2
ds+

∫ tk+1

tk

E

∣

∣

∣
Y N,ε
s − Y N,ε,n

tk+1

∣

∣

∣

2
ds

)

+(1 + η)2/3K2
k(hk +

1

γk
)E

[

Etk(
∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)−

∣

∣

∣
Etk(Y

N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

+CK2
k(hk +

1

γk
)hkE

∫ tk+1

tk

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds.

Now write

E

∣

∣

∣
Y N,ε
s − Y N,ε,n

tk+1

∣

∣

∣

2
6 2E

∣

∣

∣
Y N,ε
s − Y N,ε

tk+1

∣

∣

∣

2
+ 2E

∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
, (4.9)

E
∣

∣Xs −Xn
tk

∣

∣

2
6 2E |Xs −Xtk |2 + 2E

∣

∣Xtk −Xn
tk

∣

∣

2
, (4.10)

we obtain

E

∣

∣

∣Y
N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
6 (1 + γkhk)E

∣

∣

∣Etk

[

Y N,ε
tk+1

− Y N,ε,n
tk+1

]∣

∣

∣

2

+(1 + η)K2
k(hk +

1

γk
)E

∫ tk+1

tk

∣

∣

∣
ZN,ε
s − Z̄N,ε

tk

∣

∣

∣

2
ds

+C(hk +
1

γk
)

(

h2k +

∫ tk+1

tk

E |Xs −Xtk |2 ds + hkE
∣

∣Xtk −Xn
tk

∣

∣

2
)

+C(hk +
1

γk
)

(
∫ tk+1

tk

E

∣

∣

∣Y N,ε
s − Y N,ε

tk+1

∣

∣

∣

2
ds+ hkE

∣

∣

∣Y
N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)

+(1 + η)2/3K2
k(hk +

1

γk
)E

[

Etk(
∣

∣

∣Y
N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)−

∣

∣

∣Etk(Y
N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

+CK2
k(hk +

1

γk
)hkE

∫ tk+1

tk

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds.

Takingγk = (1 + η)2/3K2
k : for hk small enough, it gives

E

∣

∣

∣Y
N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
6 (1 + Chk + (1 + η)2/3K2

khk)E
∣

∣

∣Y
N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
+ Ch2k +Chk max

06k6n
E
∣

∣Xtk −Xn
tk

∣

∣

2

+CE

∫ tk+1

tk

∣

∣

∣
ZN,ε
s − Z̄N,ε

tk

∣

∣

∣

2
ds+ C

∫ tk+1

tk

E |Xs −Xtk |2 ds

+C

∫ tk+1

tk

E

∣

∣

∣
Y N,ε
s − Y N,ε

tk+1

∣

∣

∣

2
ds+ ChkE

∫ tk+1

tk

f(s,Xs, Y
N,ε
s , ZN,ε

s )2ds,
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becauseK2
khk 6 C(h0 + hk(T − tk+1)

−1) 6 C lnn
n . The Gronwall’s lemma gives us

E

∣

∣

∣
Y N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
6 C

n−1
∑

j=0

[

j−1
∏

i=0

(1 + Chi + (1 + η)2/3K2
i hi)

]

[

h2j + hj max
06l6n

E
∣

∣Xtl −Xn
tl

∣

∣

2

+E

∫ tj+1

tj

(

∣

∣

∣ZN,ε
s − Z̄N,ε

tj

∣

∣

∣

2
+
∣

∣Xs −Xtj

∣

∣

2
+
∣

∣

∣Y N,ε
s − Y N,ε

tj+1

∣

∣

∣

2
)

ds

+hjE

∫ tj+1

tj

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds

]

+

[

n−1
∏

i=0

(1 + Chi + (1 + η)2/3K2
i hi)

]

E

∣

∣

∣Y
N,ε
tn − Y N,ε,n

tn

∣

∣

∣

2
.

Then, we apply Lemma 4.4:

E

∣

∣

∣Y
N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
6 Cn(1+η)(K2)2a

[

h0 + max
06l6n

E
∣

∣Xtl −Xn
tl

∣

∣

2

+

n
∑

j=0

E

(

∫ tj+1

tj

∣

∣

∣ZN,ε
s − Z̄N,ε

tj

∣

∣

∣

2
+
∣

∣Xs −Xtj

∣

∣

2
+
∣

∣

∣Y N,ε
s − Y N,ε

tj+1

∣

∣

∣

2
ds

)

+h0E

∫ tn

0

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds+ E

∣

∣

∣
Y N,ε
tn − Y N,ε,n

tn

∣

∣

∣

2
]

.

A classical estimation gives usE
[

∣

∣Xs −Xtj

∣

∣

2
]

6 |s− tj |. Moreover, sinceZN,ε is bounded,

E

∫ tn

0

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds 6 CT (1 +

∣

∣Y N,ε
∣

∣

∞
) + CE

[
∫ tn

0

∣

∣ZN,ε
s

∣

∣

4
ds

]

6 CT (1 +
∣

∣Y N,ε
∣

∣

∞
) + Cn2bE

[∫ T

0

∣

∣ZN,ε
s

∣

∣

2
ds

]

.

But we have an a priori estimate forE

[

∫ T
0

∣

∣

∣Z
N,ε
s

∣

∣

∣

2
ds

]

that does not depend onN andε. So

E

∫ tn

0

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds 6 Cn2b. (4.11)

With the same type of argument we also have

E

∣

∣

∣Y N,ε
s − Y N,ε

tj+1

∣

∣

∣

2
6 Chjn

2b. (4.12)

If we add Zhang’s path regularity theorem 3.5, Proposition 4.5 and Proposition 4.6, we finally obtain

E

∣

∣

∣Y
N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
6 Cn(1+η)(K2)2an

2b lnn

n
= C

lnn

n1−2b−(1+η)(K2)2a
. (4.13)

Now, let us deal with the error onZ. First of all, (4.6) gives us

n−1
∑

k=0

E

[∫ tk+1

tk

∣

∣

∣Z
N,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6

n−1
∑

k=0

E

[∫ tk+1

tk

∣

∣

∣Z̃
N,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

.
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For0 6 k 6 n− 1, we can use (4.7) and (4.8) to obtain

E

[∫ tk+1

tk

∣

∣

∣Z̃
N,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6 E

[∫ tk+1

tk

∣

∣

∣Z̄
N,ε
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

+(1 + η)2/3E

[

Etk(
∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)−

∣

∣

∣
Etk(Y

N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

+ChkE

[∫ tk+1

tk

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds

]

.

Inequality (4.11) and estimates forZ give us

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣Z
N,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6

n−1
∑

k=0

E

[∫ tk+1

tk

∣

∣

∣Z̄
N,ε
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

(4.14)

+(1 + η)2/3
n−1
∑

k=0

E

[

Etk(
∣

∣

∣Y
N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
)−

∣

∣

∣Etk(Y
N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

+Ch0E

[
∫ T

0

∣

∣f(s,Xs, Y
N,ε
s , ZN,ε

s )
∣

∣

2
ds

]

6

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣
Z̄N,ε
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

+(1 + η)2/3
n−1
∑

k=0

E

[

Etk(
∣

∣

∣
Y N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
)−

∣

∣

∣
Etk(Y

N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

+CE

[

∣

∣

∣Y
N,ε
tn − Y N,ε,n

tn

∣

∣

∣

2
]

+ Ch0n
2b, (4.15)

with an index change in the penultimate line. Then, by using (4.5) we get

(1 + η)2/3E

[

Etk(
∣

∣

∣Y
N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
)−

∣

∣

∣Etk(Y
N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

6 CγkhkE
∣

∣

∣
Etk

[

Y N,ε
tk+1

− Y N,ε,n
tk+1

]∣

∣

∣

2
+ (1 + η)K2

k(hk +
1

γk
)E

∫ tk+1

tk

∣

∣

∣
ZN,ε
s − ZN,ε,n

tk

∣

∣

∣

2
ds

+C(hk +
1

γk
)hk

(

hk + sup
s∈[tk,tk+1]

E

[

∣

∣Xs −Xn
tk

∣

∣

2
+
∣

∣

∣Y N,ε
s − Y N,ε,n

tk+1

∣

∣

∣

2
]

)

. (4.16)

Thanks to (4.9), (4.10), (4.12) and a classical estimation onE

[

|Xs −Xtk |2
]

we have

sup
s∈[tk,tk+1]

E

[

∣

∣Xs −Xn
tk

∣

∣

2
+
∣

∣

∣
Y N,ε
s − Y N,ε,n

tk+1

∣

∣

∣

2
]

6 C

(

hkn
2b + E

[

∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
])

.
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Let us setγk = 3(1 + η)K2
k . We recall thathkK2

k 6
C lnn

n → 0 whenn → 0. So, forn big enough,
(4.16) becomes

(1 + η)2/3E

[

Etk(
∣

∣

∣
Y N,ε
tk

− Y N,ε,n
tk

∣

∣

∣

2
)−

∣

∣

∣
Etk(Y

N,ε
tk+1

− Y N,ε,n
tk+1

)
∣

∣

∣

2
]

6
C lnn

n
E

[

∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
]

+
1

2
E

∫ tk+1

tk

∣

∣

∣
ZN,ε
s − ZN,ε,n

tk

∣

∣

∣

2
ds

+Ch0hkn
2b.

If we inject this last estimate in (4.15) and we use Theorem 3.5, we obtain

1

2

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣
ZN,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6 Ch0n
2b + C lnn sup

06k6n−1
E

[

∣

∣

∣
Y N,ε
tk+1

− Y N,ε,n
tk+1

∣

∣

∣

2
]

.

By using (4.13) and Proposition 4.6, we finally have

sup
06k62n

E

[

∣

∣

∣Y
N,ε,n
tk

− Y N,ε
tk

∣

∣

∣

2
]

+

2n−1
∑

k=0

E

[∫ tk+1

tk

∣

∣

∣Z
N,ε,n
tk

− ZN,ε
t

∣

∣

∣

2
dt

]

6 C
(lnn)2

n1−2b−Ka
,

with K = 4(1 + η)L2
f,zM

2
z,2. Since this estimate is true for everyη > 0, we have proved the result.⊓⊔

4.3 Study of the global errore(N, ε, n)

Let us study errorse1(N) ande2(N, ε).

Proposition 4.9. Let us assume that (HX0) and (HY0) hold. There exists a constant C > 0 such that

e2(N, ε) 6
C

n2a−4b
.

Proof. We just have to notice that
∣

∣

∣
f(t,Xt, Y

N,ε
t , ZN,ε

t )− f(t,Xt, Y
N,ε
t , 0)

∣

∣

∣
6 C

∣

∣

∣
ZN,ε
t

∣

∣

∣

2
and

∣

∣

∣
ZN,ε
t

∣

∣

∣

is bounded byCnb. ⊓⊔
ForgN we use the classical Lipschitz approximation

gN (x) = inf
{

g(u) +N |x− u| |u ∈ Rd
}

.

Proposition 4.10. We assume that (HX0) holds andg is α-Hölder. Then, there exists a constantC such
that

e1(N) 6
C

n
2bα
1−α

.

Proof. gN is aN -Lipschitz function andgN → g whenN → +∞ uniformly onRd. More precisely,
we have

|g − gN |∞ 6
C

N
α

1−α

.

⊓⊔
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Remark 4.11. For some explicit examples, it is possible to have a better convergence speed. For exam-
ple, let us takeg(x) = (|x|α 1x>0) ∧ C and assume thatσ is invertible. Then, we can use the fact that
this function is not Lipschitz only in0, and obtain

e1(N) 6
C

n
2αb
1−α

P

(

XT ∈
[

0, N
−1
1−α

])1/q
6

C

n
b

1−α

(

2α+ 1
q

)

.

Remark 4.12. It is also possible to obtain convergence speed wheng is notα-Hölder. For example, we
assume thatσ is invertible and we setg(x) =

∏d
i=1 1xi>0(x). Then

e1(N) 6 C

[

d
∑

i=1

P((XT )i ∈ [0, 1/N ])

]1/q

6
C

N1/q
=

C

nb/q
.

Now we are able to gather all these errors.

Theorem 4.13. We assume that (HX0), (HY0), (HY1), and (HX1) or (HX1’) hold.We assume also that
g is α-Hölder. Then for allη > 0, there exists a constantC > 0 that does not depend onn such that

e(n) := e(N, ε, n) 6
C

n
2α

(2−α)(2+K)−2+2α

,

withK = 4(1 + η)L2
f,zM

2
z,2.

Proof. Thanks to Theorem 4.8, Proposition 4.9 and Proposition 4.10we have

e(n) 6
C

n1−2b−Ka
+

C

n2a−4b
+

C

n
2αb
1−α

.

Then we only need to seta := 1+2b
2+K andb := 1−α

(2−α)(2+K)−2+2α to obtain the result. ⊓⊔
Corollary 4.14. We assume that assumptions of Theorem 4.13 hold. Moreover weassume thatf has a
sub-quadratic growth with respect toz: there exists0 < β < 1 such that, for allt ∈ [0, T ], x ∈ Rd,
y ∈ R, z, z′ ∈ R1×d,

∣

∣f(t, x, y, z)− f(t, x, y, z′)
∣

∣ 6 (Kf,z + Lf,z(|z|β +
∣

∣z′
∣

∣

β
))
∣

∣z − z′
∣

∣ .

Then we are allowed to takeK as small as we want. So, for allη > 0, there exists a constantC > 0 that
does not depend onn such that

e(n) 6
C

nα−η
.

Remark 4.15. We are able to specify Remark 4.7 in our case, whena = 1+2b
2+K andb = 1−α

(2−α)(2+K)−2+2α .

• WhenK 6
2−3α
2−α , that is to say, whenα < 2/3 andK is sufficiently small, then we do not need to

have a discretization grid on[T − ε, T ].

• WhenK > 2−3α
2−α , then it is possible to take only⌈nc⌉ discretization points on[T − ε, T ] with

c = 1 +
3α− 4

(2− α)(2 +K)− 2 + 2α
.

Theorem 4.13 is not interesting in practice because the speed of convergence depends strongly onK.
But, we just see that the global error becomese(n) 6 C

nα−η when we are allowed to chooseK as small
as we want. Under extra assumption we can show that we are allowed to take the constantMz,2 as small
as we want.
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(HX2). b is bounded on[0, T ] × Rd by a constantMb.

Theorem 4.16.We assume that (HX0), (HY0), (HY1), (HX2) and (HX1) or (HX1’)hold. We assume also
thatg isα-Hölder. Then for allη > 0, there exists a constantC > 0 that does not depend onn such that

e(n) 6
C

nα−η
.

Remark 4.17. With the assumptions of the previous theorem, it is also possible to have an estimate of
the global error for examples given in Remarks 4.11 and 4.12.Wheng(x) = (|x|α 1x>0) ∧C, we have

e(n) 6
C

n
α+ 1−α

1+2q
−η

,

and wheng(x) =
∏d

i=1 1xi>0(x), we have

e(n) 6
C

n
1

1+2q
−η

.

Proof. Firstly, we suppose thatf is differentiable with respect toz. Thanks to Remark 3.3 we see that
it is sufficient to show that

EQN,ε

[
∫ T

t

∣

∣ZN,ε
s

∣

∣

2
ds
∣

∣

∣
Ft

]

is small uniformly inω, N andε whent is close toT .We will obtain an estimation for this quantity by
applying the same computation as [2] for the BMO norm estimate ofZ page 831. Thus we have

EQN,ε

[
∫ T

t

∣

∣ZN,ε
s

∣

∣

2
ds
∣

∣

∣Ft

]

6 EQN,ε
[∣

∣

∣ϕ(Y
N,ε
T )− ϕ(Y N,ε

t )
∣

∣

∣

∣

∣

∣Ft

]

+ C(T − t),

withϕ(x) = (e2c(x+m)−2c(x+m)−1)/(2c2),m = |Y |∞ andc that depends on constants in assumption
(HY0) but does not depend on∇zf . Let us notice thatm, c and soϕ do not depend onN andε. Since
Y is bounded,ϕ is a Lipschitz function, so

EQN,ε

[∫ T

t

∣

∣ZN,ε
s

∣

∣

2
ds
∣

∣

∣Ft

]

6 CEQN,ε
[∣

∣

∣Y
N,ε
T − Y N,ε

t

∣

∣

∣

∣

∣

∣Ft

]

+ C(T − t).

We denote by(Y N,ε,t,x, ZN,ε,t,x) the solution of BSDE (4.1) whenXt,x
t = x. As usual, we setXt,x

s = x

andZN,ε,t,x
s = 0 for s 6 t and we defineuN,ε(t, x) := Y N,ε,t,x

t . Then we give a proposition that we will
prove in the appendix.

Proposition 4.18. We assume that (HX0), (HY0), (HY1), (HX2) and (HX1) or (HX1’)hold. We assume
also thatg is uniformly continuous onRd. ThenuN,ε is uniformly continuous on[0, T ] × Rd and there
existsω a concave modulus of continuity for all functions in

{

uN,ε|N ∈ N, ε > 0
}

: i.e. ω does not
depend onN andε.

Then

EQN,ε
[∣

∣

∣Y
N,ε
T − Y N,ε

t

∣

∣

∣

∣

∣

∣Ft

]

= EQN,ε
[

∣

∣uN,ε(T,XT )− uN,ε(t,Xt)
∣

∣

∣

∣

∣Ft

]

6 EQN,ε
[1|∫ T

t
σ(s)dW̃s|6ν

∣

∣uN,ε(T,XT )− uN,ε(t,Xt)
∣

∣

+2
∣

∣Y N,ε
∣

∣

∞
1|∫ T

t σ(s)dW̃s|>ν

∣

∣

∣Ft

]

6 EQN,ε
[

ω
(

|T − t|+ 1|∫ T
t σ(s)dW̃s|6ν

|XT −Xt|
)

+2
∣

∣Y N,ε
∣

∣

∞
1|∫ T

t
σ(s)dW̃s|>ν

∣

∣

∣Ft

]

,
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with dW̃s = dWs −∇zf
ε(s,Xs, Y

N,ε
s , ZN,ε

s )ds. But,1|∫ T
t

σ(s)dW̃s|6ν
|XT −Xt|

= 1|∫ T
t

σ(s)dW̃s|6ν

∣

∣

∣

∣

∫ T

t
b(s,Xs)ds +

∫ T

t
∇zf

ε(s,Xs, Y
N,ε
s , ZN,ε

s )ds+

∫ T

t
σ(s)dW̃s

∣

∣

∣

∣

6 Mb(T − t) + ν + C

∫ T

t
(1 +

∣

∣ZN,ε
s

∣

∣)ds

6 C(T − t) + ν + C(T − t)1/2
(∫ T

t

∣

∣ZN,ε
s

∣

∣

2
ds

)1/2

.

Sinceω is concave, we have by Jensen’s inequality

EQN,ε
[

ω
(

|T − t|+ 1|∫ T
t

σ(s)dW̃s|6ν
|XT −Xt|

) ∣

∣

∣
Ft

]

6 ω

(

C |T − t|+ ν + C(T − t)1/2EQN,ε

[

(
∫ T

t

∣

∣ZN,ε
s

∣

∣

2
ds

)1/2
∣

∣

∣Ft

])

6 ω

(

C |T − t|+ ν + C(T − t)1/2EQN,ε

[∫ T

t

∣

∣ZN,ε
s

∣

∣

2
ds
∣

∣

∣Ft

]1/2
)

6 ω
(

C |T − t|+ ν +C(T − t)1/2
∥

∥ZN,ε
∥

∥

BMO(Q)

)

.

But,
∥

∥ZN,ε
∥

∥

BMO(Q)
only depends on constants in assumption (HY0), so it is bounded uniformly inN

andε. Moreover,
∣

∣

∣

∫ T
t σ(s)dW̃s

∣

∣

∣ is independent ofFt so we have by the Markov inequality

EQN,ε
[1|∫ T

t σ(s)dW̃s|>ν

∣

∣

∣
Ft

]

= QN,ε

(∣

∣

∣

∣

∫ T

t
σ(s)dW̃s

∣

∣

∣

∣

> ν

)

6
C(T − t)1/2

ν
.

Finally, we have

EQN,ε
[∣

∣

∣Y
N,ε
T − Y N,ε

t

∣

∣

∣

∣

∣

∣Ft

]

6 ω
(

C |T − t|1/2 + ν
)

+ C
(T − t)1/2

ν

6 ω
(

C |T − t|1/2 + |T − t|1/4
)

+ C |T − t|1/4 ,

by settingν = |T − t|1/4, andEQN,ε
[∣

∣

∣
Y N,ε
T − Y N,ε

t

∣

∣

∣

∣

∣

∣
Ft

]

→ 0 uniformly in ω, N andε whent → T .

Whenf is not differentiable with respect toz but is only locally Lipschitz then we can prove the result
by a standard approximation. ⊓⊔

5 Some additional results on the time dependent estimate ofZ.

5.1 What happens ifσ does not depend on time ?

We have seen that the key point of our approximation results is the time dependent estimate ofZ in
Theorem 3.2. This estimate needs the technical assumption (HX1). Whenσ does not depend on time,
this assumption becomes



5 SOME ADDITIONAL RESULTS ON THE TIME DEPENDENT ESTIMATE OFZ. 22

(HX1). b is differentiable with respect tox and there existsλ ∈ R+ such that for allη ∈ Rd

∣

∣

tησtσt∇b(s, x)η
∣

∣ 6 λ
∣

∣

tησ
∣

∣

2
. (5.1)

It is possible to obtain some equivalent assumptions.

Proposition 5.1. Let us assume that (HX0) hold,b is differentiable with respect tox and σ does not
depend on time. Then, following assertions are equivalent:

(i) ∀x ∈ Rd, ∀s ∈ [0, T ], Im∇b(s, x)σ ⊂ Imσ,

(ii) ∀x ∈ Rd, ∀s ∈ [0, T ], ker tσ ⊂ ker tσt∇b(s, x),

(iii) ∃f : [0, T ]× Rd → Rd×d bounded such that∀x ∈ Rd, ∀s ∈ [0, T ], ∇b(s, x)σ = σf(s, x),

(iv) there existA : [0, T ] × Rd → Rd×d andB : [0, T ] → Rd×d such thatA is differentiable with
respect tox, ∇A is bounded and∀x ∈ Rd, ∀s ∈ [0, T ], b(s, x)σ = σA(s, x) +B(s),

(v) there existsλ ∈ R+ such that∀η ∈ Rd

∣

∣

tησtσt∇b(s, x)η
∣

∣ 6 λ
∣

∣

tησ
∣

∣

2
. (5.2)

Proof.

(iii) ⇒ (i), (iii) ⇒ (ii), (iii) ⇒ (v) and (iii) ⇔ (iv): Trivial.

(i) ⇒ (iii): There exists̃σ such thatσσ̃| Im σ = Id| Im σ. SinceIm∇b(s, x)σ ⊂ Imσ then∇b(s, x)σ =
σσ̃∇b(s, x)σ := σf(s, x). ∇b is bounded sof is also bounded.

(ii) ⇒ (iii): The proof is the same when we notice that there existsσ̃ such thatσ̃σ|M = Id|M with
M ⊕ ker σ = Rd.

(v) ⇒ (ii): Let S+
d (R) denote the space of non negative symmetric matrix. Sinceσtσ ∈ S+

d (R), there
existss ∈ S+

d (R) such thatσtσ = s2. It is easy to show thatker s = ker tσ andker st∇b(s, x) =

ker tσt∇b(s, x). Moreover,∀η ∈ Rd and
∣

∣
tησ
∣

∣

2
=
∣

∣
tηs
∣

∣

2
, so we are allowed to assume that

σ ∈ S+
d (R).

If σ is invertible orσ = 0, the result is proved. Otherwise, let us considerη1 andη2 two eigenvec-
tors ofσ linked with eigenvaluesλ1 6= 0 andλ2 = 0. (v) gives us, for allα ∈ R,

∣

∣

t(η1 + αη2)σ
2t∇b(s, x)(η1 + αη2)

∣

∣ =
∣

∣λ2
1
tη1

t∇b(s, x)η1 + αλ2
1
tη1

t∇b(s, x)η2
∣

∣

6 λλ2
1 |η1|2 .

∣

∣

t(η1 + αη2)σ
2t∇b(s, x)(η1 + αη2)

∣

∣ is bounded with respect toα, implying tη1
t∇b(s, x)η2 = 0.

Sinceσ ∈ S+
d (R), we havekerσ

⊥
⊕ Imσ. So, for allη2 ∈ ker σ, we have shownt∇b(s, x)η2 ∈

(Imσ)⊥ = ker σ, that is to say,σt∇b(s, x)η2 = 0. This last equality allow us to conclude that
kerσ ⊂ kerσt∇b(s, x). ⊓⊔

The assertion (v) allows us to reduce assumptions on the regularity of b. Indeed, whenA is only a
Lipschitz function with respect tox with a Lipschitz constantKA, then it is possible to do a classical
approximation ofA by a sequence of differentiable functions(An)n∈N such that|∇An(s, x)| 6 KA.
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(HX1”). σ does not depend on time. There existA : [0, T ] × Rd → Rd×d andB : [0, T ] → Rd×d

such that∀x ∈ Rd, ∀s ∈ [0, T ], b(s, x)σ = σA(s, x) +B(s).

Then we obtain a new version of Theorem 3.2.

Theorem 5.2. Suppose that (HX0), (HY0) and (HX1”) hold. Moreover, suppose that g is lower (or
upper) semi-continuous. Then there exists a version ofZ and there exist two constantsC,C ′ ∈ R+ that
depend only inT , Mg, Mf , Kf,x, Kf,y, Kf,z andLf,z such that,∀t ∈ [0, T [,

|Zt| 6 C + C ′(T − t)−1/2.

5.2 Some examples and counterexamples.

As we already explain in the introduction, Theorem 3.2 is also interesting for BSDEs with a linear growth
with respect toz. Indeed, such an estimation has been already proved whenσ is invertible by using the
Bismut-Elworthy formula, see e.g. [10], while in our case wedo not need to assume the invertibility ofσ.
Nevertheless, technical assumptions (HX1) or (HX1”) appear. Let us see what could happen when these
assumptions do not hold. The most simple counterexample is given by Zhang in [20]. Let us consider
our SDE in dimension1. We take:

• T = 2,

• b = 0,

• ∀t ∈ [0, 2], σ(t) = (1 − t)1t<1,

• f = 0,

• ∀x ∈ R, g(x) = arctan
(

x

|x|3/4

)

.

Proposition 5.3. ∀M > 0, ∃0 6 t1 < t2 < 1, P(
∣

∣Z|[t1,t2]

∣

∣ > M) > 0.

Proof. Let us denoteu(t, x) := Y t,x
t with (Y t,x

t , Zt,x
t ) the solution of the BSDE (2.2) whereX verifies

Xt = x. Fort ∈ [1, 2], obviouslyu(t, x) = g(x) andZt,x
t = 0. Fort ∈ [0, 1[, we have

u(t, x) = E

[

g

(

x+

∫ 1

t
(1− s)dWs

)]

=
1√
2πσt

∫

R

g(y) exp

(

−(y − x)2

2σ2
t

)

dy,

with σ2
t =

∫ 1
t (1− s)2ds = 1

3(1− t)3. Moreover,

∇u(t, x) =
1√
2πσt

∫

R

g(y)
(y − x)

σ2
t

exp

(

−(y − x)2

2σ2
t

)

dy. (5.3)

By using the substitutiony = σtz, we get

∇u(t, 0) =
1√
2πσt

∫

R

g(σtz)z exp

(

−z2

2

)

dz

=
σ
1/4
t√
2πσt

∫

R

1

σ
1/4
t

arctan

(

σ
1/4
t

z

|z|3/4

)

z exp

(

−z2

2

)

dy.
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By dominated convergence theorem we have

∫

R

1

σ
1/4
t

arctan

(

σ
1/4
t

z

|z|3/4

)

z exp

(

−z2

2

)

dy
t→1−−→

∫

R

|z|2−3/4 exp

(

−z2

2

)

dy > 0.

So,

∇u(t, 0)σ(t)
t→1−∼ C(1− t)

σ
3/4
t

=
C

(1− t)1/8
t→1−−→ +∞.

Moreover, the equation (5.3) allows us to show that(t, x) 7→ ∇u(t, x) is continuous on[0, 1[×R. So,
for all M > 0, ∃[t1, t2] ⊂ [0, 1[ with t1 < t2, ∃ε > 0, such that∀x ∈ [−ε, ε], ∀t ∈ [t1, t2] we have

|∇u(t, x)σ(t)| > M . SinceZt = Z
t,Xx

t
t = ∇u(t,Xx

t )σ(t), then

P(
∣

∣Z|[t1,t2]

∣

∣ > M) > P(
∣

∣

∣Xx
[t1,t2]

∣

∣

∣ 6 ε) > 0.

⊓⊔

To construct this example, the idea is to stop the noise afterthe timet = 1 to obtain no random
evolution in the time interval[1, 2]. In this example we need to have a functionσ that depends on time.
Let us see if it is possible to construct a counterexample when we are not in this situation. If we suppose
that (HX0) holds, then the assumption (HX1”) is always true in dimension1. So we will taked = 2 and

• T = 2,

• ∀t ∈ [0, 2], ∀x = (x1, x2) ∈ R2, b(t, x) =

(

0
h(t)x1

)

,

• ∀t ∈ [0, 2], σ(t) =

(

1 0
0 0

)

,

• f = 0

With these functions, (HX1) does not hold whenh 6= 0. The solution of the SDE is

X1
t = x1 +W 1

t

X2
t = x2 + x1

∫ t

0
h(s)ds +

∫ t

0
h(s)W 1

s ds.

As we try to obtain an explosion at timet = 1, we will take for h a continuous function such that
h|[0,1[ > 0 and h|[1,2] = 0. Moreover, we assume that∀x = (x1, x2) ∈ R2, g(x) = g̃(x2) with

g̃ : R → R a bounded lower (or upper) semi-continuous function. As before, we denoteu(t, x) := Y t,x
t

with (Y t,x
t , Zt,x

t ) the solution of the BSDE (2.2) whereX verifiesXt = x. For t ∈ [1, 2], obviously
u(t, x) = g(x) = g̃(x2) andZt,x

t = 0. Fort ∈ [0, 1[, we have

u(t, x) = E

[

g̃

(

x2 + x1
∫ 1

t
h(s)ds+

∫ 1

t
h(s)W 1

s ds

)]

.

Let us denoteH a primitive ofh. Then,
∫ 1

t
h(s)W 1

s ds = H(1)W 1
1 −H(t)W 1

t −
∫ 1

t
H(s)dW 1

s

= [H(1) −H(t)]W 1
t +

∫ 1

t
[H(1)−H(s)]dW 1

s .
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So,

u(t, x) =
1√
2πσt

∫

R

g̃(y) exp

(

−(y − x2 − atx
1)2

2σ2
t

)

dy,

with σ2
t = [H(1)−H(t)]2t+

∫ 1
t [H(1) −H(s)]2ds andat = [H(1) −H(t)]. Moreover,

Zt = ∇u(t,Xt)σ =
∂u

∂x1
(t,Xt),

and

∂u

∂x1
(t, x) =

at√
2πσt

∫

R

g̃(y)
(y − x2 − atx

1)

σ2
t

exp

(

−(y − x2 − atx
1)2

2σ2
t

)

dy.

So, By using the substitutiony − x2 − atx
1 = σtz, we get

∂u

∂x1
(t, x) =

at√
2πσt

∫

R

g̃(σtz + x2 + atx
1)z exp

(

−z2

2

)

dz,

and
∣

∣

∣

∣

∂u

∂x1
(t, x)

∣

∣

∣

∣

6 C
|at|
σt

∫

R

|z| exp
(

−z2

2

)

dz 6 C

because|at| 6 σt. Finally, we obtain thatZ is bounded on the interval[0, 2] even if we it is possible to

show that ∂u
∂x2 (t, 0)

t→1−−→ +∞ for well-chosen functions̃g andh3. This example proves that (HX1”) is a
not necessary but sufficient assumption. To be more precise,whenσ does not depend on time we do not
succeed to find an example of BSDE such that we have not the estimate

Zt 6 C + C ′(T − t)−1/2.

So, the assumption (HX1”) seems to be artificially restrictive and unnecessary. But this question remains
open.

6 Appendix

6.1 Proof of Lemma 4.3.

We have,
2n−1
∏

i=0

(1 +Mhi) =

(

n−1
∏

i=0

(1 +Mhi)

)(

2n−1
∏

i=n

(1 +Mhi)

)

.

Firstly,
2n−1
∏

i=n

(1 +Mhi) 6

(

1 +M
T

n

)n

6 C.

Moreover, for0 6 i 6 n− 1,

hi = ti+1 − ti = Tn−ai/n(1− e−
a lnn

n ) 6 Tn−ai/na
lnn

n
,

3Take for exampleh(s) = (1− s)1s<1 andg̃(x) = arctan
(

x

|x|1/2

)

.
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thanks to the convexity of the exponential function. So

n−1
∏

i=0

(1 +Mhi) 6

n−1
∏

i=0

(

1 +MTan−ai/n lnn

n

)

= exp

(

n−1
∑

i=0

ln

(

1 +MTan−ai/n lnn

n

)

)

6 exp

(

n−1
∑

i=0

MTa(n−a/n)i
lnn

n

)

6 exp

(

MTa
lnn

n

(

1− (1/na)

1− (1/n(a/n))

))

6 exp

(

MTa
lnn

n

na/n

na/n − 1

)

.

But,
lnn

n

na/n

na/n − 1
∼ lnn

n

1

a lnn
n

∼ 1

a
,

whenn → +∞. Thus, we have shown the result. ⊓⊔

6.2 Proof of Lemma 4.4.

Thanks to Lemma 4.3, we have

∏n−1
i=0

(

1 +M1hi +M2
hi

T−ti+1

)

∏n−1
i=0

(

1 +M2
hi

T−ti+1

) =
n−1
∏

i=0

(

1 +
M1

1 +M2
hi

T−ti+1

hi

)

6

n−1
∏

i=0

(1 +M1hi) 6 C.

So, we just have to show that

n−1
∏

i=0

(

1 +M2
hi

T − ti+1

)

6 CnaM2 .

But,

1 +M2
hi

T − ti+1
= 1 +M2(n

a/n − 1).

So,

n−1
∏

i=0

(

1 +M2
hi

T − ti+1

)

=
(

1 +M2(n
a/n − 1)

)n

= exp

(

n ln

(

1 + aM2
lnn

n
+O

(

ln2 n

n2

)))

= exp

(

aM2 lnn+O

(

ln2 n

n

))

∼ naM2 ,

whenn → +∞. Thus, we have shown the result. ⊓⊔
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6.3 Proof of Proposition 4.18.

We will prove this proposition as the authors of [9] do for their Proposition 4.2. In all the proof we omit
the superscriptN, ε for u, Y andZ to be more readable. Letx0, x′0 ∈ Rd andt0, t′0 ∈ [0, T ]. By an
argument of symmetry we are allowed to suppose thatt0 6 t′0. We have

∣

∣u(t0, x0)− u(t′0, x
′
0)
∣

∣ 6
∣

∣u(t0, x0)− u(t0, x
′
0)
∣

∣+
∣

∣u(t0, x
′
0)− u(t′0, x

′
0)
∣

∣ .

Let us begin with the first term. We will use a classical argument of linearization:

Y t0,x0
t − Y

t0,x′
0

t = gN (Xt0,x0

T )− gN (X
t0,x′

0
T ) +

∫ T

t
αs

(

Xt0,x0
s −X

t0,x′
0

s

)

+ βs

(

Y t0,x0
s − Y

t0,x′
0

s

)

ds

−
∫ T

t

(

Zt0,x0
s − Z

t0,x′
0

s

)

dW̃s,

with

αs =











f ε(s,Xt0,x0
s , Y

t0,x′
0

s , Z
t0,x′

0
s )− f ε(s,X

t0,x′
0

s , Y
t0,x′

0
s , Z

t0,x′
0

s )

Xt0,x0
s −X

t0,x′
0

s

if Xt0,x0
s −X

t0,x′
0

s 6= 0,

0 elsewhere,

βs =











f ε(s,Xt0,x0
s , Y t0,x0

s , Z
t0,x′

0
s )− f ε(s,Xt0,x0

s , Y
t0,x′

0
s , Z

t0,x′
0

s )

Y t0,x0
s − Y

t0,x′
0

s

if Y t0,x0
s − Y

t0,x′
0

s 6= 0,

0 elsewhere,

γs =















f ε(s,Xt0,x0
s , Y t0,x0

s , Zt0,x0
s )− f ε(s,Xt0,x0

s , Y t0,x0
s , Z

t0,x′
0

s )
∣

∣

∣
Zt0,x0
s − Z

t0,x′
0

s

∣

∣

∣

2

t

(Zt0,x0
s − Z

t0,x′
0

s ) if Zt0,x0
s − Z

t0,x′
0

s 6= 0,

0 elsewhere,

anddW̃s := dWs − γsds. By a BMO argument, there exists a probabilityQ under whichW̃ is a
Brownian motion. Then we apply a classical transformation to obtain

EQ
[

e
∫ t
t0

βsds
(

Y t0,x0
t − Y

t0,x′
0

t

)]

= EQ

[

e
∫ T
t0

βsds
(

gN (Xt0,x0

T )− gN (X
t0,x′

0
T )

)

+

∫ T

t0

αse
∫ s
t0

βudu
(

Xt0,x0
s −X

t0,x′
0

s

)

ds

]

,

and

∣

∣u(t0, x0)− u(t0, x
′
0)
∣

∣ 6 C

(

EQ
[

ω
(∣

∣

∣X
t0,x0

T −X
t0,x′

0
T

∣

∣

∣

)]

+

∫ T

t0

EQ
[∣

∣

∣Xt0,x0
s −X

t0,x′
0

s

∣

∣

∣

]

ds

)

,

with ω a modulus of continuity ofg that is also a modulus of continuity forgN . We are allowed to
suppose thatω is concave4, so Jensen’s inequality gives us

∣

∣u(t0, x0)− u(t0, x
′
0)
∣

∣ 6 C

(

ω
(

EQ
[∣

∣

∣
Xt0,x0

T −X
t0,x′

0
T

∣

∣

∣

])

+

∫ T

t0

EQ
[∣

∣

∣
Xt0,x0

s −X
t0,x′

0
s

∣

∣

∣

]

ds

)

.

By using the fact thatb is bounded we can prove the following proposition exactly asauthors of [9] do
for their Proposition 4.7:

4There exist two positive constantsa andb such thatω(x) 6 ax+b. Then the concave hull ofx 7→ ω(x)∨(1x>1(ax+ b))
is a also a modulus of continuity ofg.
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Proposition 6.1. ∃C > 0 that does not depend onN and ε such that∀t, t′ ∈ [0, T ], ∀x, x′ ∈ Rd,
∀s ∈ [0, T ],

EQ
[∣

∣

∣
Xt,x

s −Xt′,x′

s

∣

∣

∣

]

6 C
(

∣

∣x− x′
∣

∣+
∣

∣t− t′
∣

∣

1/2
)

.

Then,

∣

∣u(t0, x0)− u(t0, x
′
0)
∣

∣ 6 C
(

ω
(∣

∣x0 − x′0
∣

∣

)

+
∣

∣x0 − x′0
∣

∣

)

.

Now we will study the second term:

∣

∣u(t0, x
′
0)− u(t′0, x

′
0)
∣

∣ =
∣

∣

∣
Y

t0,x′
0

t0 − Y
t′0,x

′
0

t′0

∣

∣

∣
6

∣

∣

∣
Y

t0,x′
0

t0 − Y
t′0,x

′
0

t0

∣

∣

∣
+
∣

∣

∣
Y

t′0,x
′
0

t0 − Y
t′0,x

′
0

t′0

∣

∣

∣
.

Firstly,
∣

∣

∣Y
t′0,x

′
0

t0 − Y
t′0,x

′
0

t′0

∣

∣

∣ 6

∣

∣

∣

∣

∣

∫ t′0

t0

f(s, x′0, Y
t′0,x

′
0

s , 0)ds

∣

∣

∣

∣

∣

6 C
∣

∣t0 − t′0
∣

∣ .

Moreover, as for the first term we have

EQ
[

e
∫ t
t0

βsds
(

Y
t0,x′

0
t − Y

t′0,x
′
0

t

)]

= EQ

[

e
∫ T
t0

βsds
(

gN (X
t0,x′

0
T )− gN (X

t′0,x
′
0

T )
)

+

∫ T

t0

αse
∫ s
t0

βudu
(

X
t0,x′

0
s −X

t′0,x
′
0

s

)

ds

]

,

and
∣

∣

∣
Y

t0,x′
0

t0 − Y
t′0,x

′
0

t′0

∣

∣

∣
6 C

(

ω
(

∣

∣t0 − t′0
∣

∣

1/2
)

+
∣

∣t0 − t′0
∣

∣

1/2
)

.

Finally,
∣

∣u(t0, x
′
0)− u(t′0, x

′
0)
∣

∣ 6 C
(

ω
(

∣

∣t0 − t′0
∣

∣

1/2
)

+
∣

∣t0 − t′0
∣

∣

1/2
)

,

and

∣

∣u(t0, x0)− u(t′0, x
′
0)
∣

∣ 6 C
(

ω
(∣

∣x0 − x′0
∣

∣

)

+ ω
(

∣

∣t0 − t′0
∣

∣

1/2
)

+
∣

∣x0 − x′0
∣

∣+
∣

∣t0 − t′0
∣

∣

1/2
)

.

Sou is uniformly continuous on[0, T ]× Rd and this function has a modulus of continuity that does not
depend onN andε. Moreover, we are allowed to suppose that this modulus of continuity is concave. ⊓⊔
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