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Abstract

This article deals with the numerical resolution of Marlkavibackward stochastic differential
equations (BSDEs) with drivers of quadratic growth withpest toz and bounded terminal con-
ditions. We first show some bound estimates on the proZeard we specify the Zhang’s path
regularity theorem. Then we give a new time discretizatidmesne with a non uniform time net for
such BSDEs and we obtain an explicit convergence rate feisttieme.

1 Introduction

Since the early nineties, there has been an increasing$ttienr backward stochastic differential equa-
tions (BSDEs for short). These equations have a wide ranggplfcations in stochastic control, in
finance or in partial differential equation theory. A pautar class of BSDE is studied since few years:
BSDEs with drivers of quadratic growth with respect to thaalale z. This class arises, for example, in
the context of utility optimization problems with exponiahtutility functions, or alternatively in ques-
tions related to risk minimization for the entropic risk reeee (see e.g[[L3]). Many papers deal with
existence and uniqueness of solution for such BSDESs: we tteéereader tg[17, 18] when the terminal
condition is bounded anf] [B, @, 9] for the unbounded case c@uzern is rather related to the simulation
of BSDEs and more precisely time discretization of BSDEgtedi with a forward stochastic differen-
tial equation (SDE for short). Actually, the design of effici algorithms which are able to solve BSDEs
in any reasonable dimension has been intensively studiee she first work of Chevanc§ [6], see for
instance [49[]1] 31]. But in all these works, the driver of B&DE is a Lipschitz function with respect to
z and this assumption plays a key role in theirs proofs. In errepaper, Cheridito and Stadjg [5] stud-
ied approximation of BSDEs by backward stochastic diffeeeaquations which are based on random
walks instead of Brownian motions. They obtain a convergeesult when the driver has a subquadratic
growth with respect ta and they give an example where this approximation does mviecge when the
driver has a quadratic growth. To the best of our knowledge only work where the time approxima-
tion of a BSDE with a quadratic growth with respect:t@ studied is the one of Imkeller and Rdis][14].
Let notice that, when the driver has a specific fiirihis possible to get around the problem by using
an exponential transformation method (Je¢ [15]) or by usasglts on fully coupled forward-backward
differential equations (sef][7]).

'Roughly speaking, the driver is a sum of a quadratic term C'|z|® and a function that has a linear growth with respect
to z.
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To explain ideas of this paper, let us introdycé Y, Z) the solution to the forward backward system

t t
X = :U—|—/ b(s,Xs)ds—i—/ o(s)dWs,
0 0

T T
Yo — g(Xr)+ / F(5, Xo, Yo, Zo)ds — / ZodW,,
t t

whereg is bounded,f is locally Lipschitz and has a quadratic growth with resgect. A well-known
result is that whem is a Lipschitz function with Lipschitz constaii{,, then the procesg is bounded
by C(K, + 1) (see Theorerp 3.1). So, in this case, the driver of the BSDH.ipschitz function with
respect tez. Thereby, a simple idea is to do an approximatiof¥afZ) by the solution YV, ZV) to the
BSDE

T T
}/;N - gN(XT) +/ f(S7X87 YSN7 Zév)ds - / ZéVdW&
t t

wheregy is a Lipschitz approximation of. Thanks to bounded mean oscillation martingale (BMO
martingale in the sequel) tools, we have an error estimatéhfe approximation: see e. g[[lﬂ 2] or

Proposition[4]2. For example, if is a-Holder, we are able to obtain the error bouﬁd(glN“ (see
Propositior] 4]9). Moreover, we can have an error estimatiéotime discretization of the approximated
BSDE thanks to any numerical scheme for BSDEs with Lipsathitzer. But, this error estimate depends

on K, : roughly speaking, this error i§e“/ox =1 with n the number of discretization times. The
exponential term results from the use of Gronwall’s inefjyiaFinally, wheng is a-Holder andk;,, =

N, the global error bound is
1 GCN2
C N + — |- (1.2)
l—«

So, whenN increasesp ! will have to become small very quickly and the speed of caysece turns
out to be bad: if we takév = (g log n)l/2 with 0 < € < 1, then the global error bound becomes

C: (log n)2<:¥a> . The same drawback appears in the work of Imkeller and IRdis [ideed, their idea
is to do an approximation df, Z) by the solutionY ", ZV) to the truncated BSDE

T T
YYo= g(Xr) + / o, X, YN e (Z)))ds — / ZY AW,
t t
wherehy : R4 — R*4 js a smooth modification of the projection on the open Euelidball of
radiusN about0. Thanks to several statements concerning the path reiyuaud stochastic smoothness
of the solution processes, the authors show that for@any 1, the approximation error is lower than
CsN~P. So, they obtain the global error bound

1 eCN2
Co |5 +— | (1.2)

and, consequently, the speed of convergence also turne battiad: if we takeV = (% log n)l/ ? with

0 < & < 1, then the global error bound becon@s. (logn) */2.
Another idea is to use an estimatefthat does not depends dty,. So, we extend a result df[8]

which shows M
|Zt| <M1+m, 0<t<T. (1.3)
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Let us notice that this type of estimation is well known in ttese of drivers with linear growth as a
consequence of the Bismut-Elworthy formula: see ¢.d. [BO.in our case, we do not need to suppose
thato is invertible. Then, thanks to this estimation, we know thadtent < T', f(¢,.,.,.) is a Lipschitz
function with respect ta and the Lipschitz constant dependstoSo we are able to modify the classical
uniform time net to obtain a convergence speed for a modifilee discretization scheme for our BSDE:
the idea is to put more discretization points near the fimaéfi" than neat0). The same idea is used
by Gobet and Makhlouf in[[12] for BSDEs with drivers of linegmowth and a terminal function not
Lipschitz. But due to technical reasons we need to applyntiudified time discretization scheme to the
approximated BSDE:

T T
YVE = gn(X7) + / fe(s, X, YN ZN5Yds — / zNeaw,,
t t
with
fg(sa T,Y, Z) = ]-S<Tf€f(5> x, Y, Z) + 13>Tf€f(5> x, Y, 0)

Thanks to the estimatg (1..3), we obtain a speed convergendbef time discretization scheme of this
approximated BSDE (see Theor¢m 4.7). Moreover, BMO toals gs again an estimate of the approx-
imation error (see Propositiqn }4.2). Finally, if we suppdsat g is a- HoIder we prove that we can

choose properlyV ande to obtain the global error estimatén (e S (see Theorenp 4.112)
whereK > 0 depends on constait, defined in equatior] (1.3) and constants relatefl. toet us notice
that such a speed of convergence where constants relafeg,tb ando appear in the power of is un-
usual. Even if we have an error far better thlan](1.1] of (1t23,result is not very interesting in practice
because the speed of convergence strongly depenfs &ut, whenb is bounded, we prove that we can
take M, as small as we want irf (J.3). Finally, we obtain a global eesimate lower thal‘i’nn*(a*"),
for all > 0 (see Theorerp 4.1L5).

The paper is organized as follows. In the introductory $ecl we recall some of the well known
results concerning SDEs and BSDESs. In Section 3 we estadiiste estimates concerning the process
7 we show a first uniform bound faf, then atime dependent bound and finally we specify the clalssi
path regularity theorem. In Section 4 we define a modified tilseretization scheme for BSDEs with a
non uniform time net and we obtain an explicit error bound.

2 Preliminaries

2.1 Notations

Throughout this papefW;):>o will denote ad-dimensional Brownian motion, defined on a probability
space(Q2, F,P). Fort > 0, let 7, denote ther-algebras(Ws; 0 < s < t), augmented with th&-null
sets of . The Euclidian norm oR? will be denoted byl.|. The operator norm induced by on the
space of linear operator is also denoted.hyForp > 2, m € N, we denote further

e SP(R™), or S” when no confusion is possible, the space of all adapted gsesgy;)c(o, 7| With
values inR™ normed by||Y(| 5, = E[(supycjo, 1 Y;])P]H/P; S (R™), or S, the space of bounded
measurable processes;

e MP(R™), or MP, the space of all progressively measurable proceSsgs- (o 7 with values in
R™ normed byi| Z | v = E[(fi |Zs|* ds)?/?)V/7.

In the following, we keep the same notatiéhfor all finite, nonnegative constants that appear in our
computations: they may depend on known parameters deffixdng assumptions and df, but not on
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any of the approximation and discretization parameterghdrsame spirit, we keep the same notatjon
for all finite, positive constants that we can take as smal@svant independently of the approximation
and discretization parameters.

2.2 Some results on BMO martingales

In our work, the space of BMO martingales play a key role far ¢ghpriori estimates needed in our
analysis of BSDEs. We refer the reader [to] [16] for the thedrBMO martingales and we just recall
the properties that we will use in the sequel. bgt= fg psdWs, t € [0,T] be a real square integrable
martingale with respect to the Brownian filtration. This a BMO martingale if

T 1/2
1] gpr0 = sup E[(®)r — (@), F]Y? = sup EU qﬁ?ds\}}} < 400,
7€[0,T) T7€[0,T T

where the supremum is taken over all stopping timé$,ii’]; (®) denotes the quadratic variation ®f
In our case, the very important feature of BMO martingaldhésfollowing lemma:

Lemma 2.1. Let® be a BMO martingale. Then we have:

1. The stochastic exponential

t 1 t
5(¢’)t:5t:e><p</ ¢des_§/ \¢812ds>, 0<t<T,
0 0

is a uniformly integrable martingale.

2. Thanks to the reverse Holder inequality, there exists 1 such that, € LP. The maximap with
this property can be expressed in terms of the BMO nor. of

3.Yne N E [(fOT |¢s|2ds)"} <nl @2 0.

2.3 The backward-forward system

Given functionsb, o, g and f, for z € R% we will deal with the solution X, Y, Z) to the following
system of (decoupled) backward-forward stochastic difiéal equations: fot € [0, 77,

t t
X = :U—|—/ b(s,Xs)ds+/ o(s)dWs, (2.1)
0 0
T T
Yo = g+ [ 16XV z)ds— [ Zaw., 2.2)
t t
For the functions that appear in the above system of equati@give some general assumptions.

(HX0). b:[0,T] x R — R?, 5 : [0,T] — R¥*? are measurable functions. There exist four positive
constants\f,, K, M, and K, such that/t, ¢’ € [0, T, Vz, 2’ € RY,

bt,2)| < Mp(1+ |z]),
b(t,2) —b(t,2')| < Ky(je—a|+ [t =],
o(t)] < M,
lo(t) —o(t)] < Kq|t—1t|.
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(HY0). f :[0,7] x R x R x R = R, g : R — R are measurable functions. There exist
five positive constantd/s, Ky, Ky,, Ky, and M, such thatvt € [0,7], Vz,2’ € R% Vy,y' € R,
Vz, 2 € R1x4,

ey o) < ML+ lyl+ =),
(e 2) — f(4a' g )| < Kpalo—a'| + Koy ly— o) + (Kpe+ Lpa(12] + |Z]) |2 = #].
9@ < M

g-
We next recall some results on BSDEs with quadratic growdr.tlkeir original version and their proof

we refer to [IJ7], [R] and[[4].

Theorem 2.2. Under (HX0), (HYO0), the systein (R.1)-{2.2) has a uniquetignli X, Y, Z) € 8% x S x
M?. The martingaleZ = W belongs to the space of BMO martingales &« W | 5,,, only depends
onT, M, and M. Moreover, there exists > 1 such that€(Z « W) € L".

3 Some useful estimates of

3.1 Afirst bound for Z

Theorem 3.1. Suppose that (HXO0), (HYO) hold and thgis Lipschitz with Lipschitz constarif,. Then,
there exists a version ¢ such thatyt € [0, 77,

| Z| < ePEeAErIT N (K, + TK ).

Proof.  Firstly, we suppose that g and f are differentiable with respect tq y andz. Then(X,Y, Z)
is differentiable with respect to and(V X, VY, VZ) is solution of

t
VX, = I;+ / Vb(s, X,)VX,ds, (3.1)
0
T
VY, = Vg(X7)VXr— / YV ZdW, (3.2)
t
T
+/ Vaof(s, Xs,Ys, Zs)VXs + Vyf(s,Xs,Ys, Zs)VYs + V. f (5, X5, Y, Z5)V Zsds,
t

WhereVXt = (8X§/6xj)1<i,j<d, VYZ = t(@n/axj)lgjgd S Rle, VZt = (822/8:Cj)1<i7]<d and
ftT V Z,dWs means
T
> / (VZs) dW!
1<i<d”’?

with (VZ)" denoting the-th line of thed x d matrix proces$vZ. Thanks to usual transformations on
the BSDE we obtain

T
ef(f Vyf(s,)(s,YS,ZS)CLSV}/;f _ efOT Vyf(S’XS’YS’ZS)dSVg(XT)VXT _ / efOS Vyf(u,Xu,Yu,Zu)duvzsdws
t

T
+ / elo Vol wXuYuZudug (s XV, Z)V Xds,
t
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with dW, = dW, — V. f(s, X,, Ys, Zs)ds. We have

2

]

/ V(5. X, Y, Z0)dW,
0

T
= sup E |:/ |vzf(5>Xs>Y:9>ZS)|2 ds
] T

BMO T€[0,T
;TD

T
< Cl1+ sup E [/ | Z|? ds
T7€[0,T] T
Since Z = W belongs to the space of BMO martingaldisly V. f (s, X, Ys, Zo)dWs|| 51,0 < +00.
Lemma[2.]1 gives us that( [; V. f(s, Xs, Ys, Zs)dWs), is a uniformly integrable martingale, so we are

able to apply Girsanov's theorem: there exists a probgidilitunder which(W)c(o 7 is @ Brownian
motion. Then,

= C(1+1Z+ Wi

efg Vil (s.Xs Yo Zo)dsgy, — RO |:ef0T Vyf(s,Xs,YS,ZS)dsvg(XT)VXT

T
_|_/ €f0 Vyf(u’Xu’Yu’Zu)duvxf(S,XS,Y;,ZS)VXst ]:t:| ’
t

and
VY| < Bt KT (K, 4+ TK; ), (3.3)

becauseV X;| < T Moreover, thanks to the Malliavin calculus, it is classtcashow that a version
of (Zy)iejo, is given by(VYi(VX,) "o (t))iejo,r)- SO we obtain

1Zi| < T M, VY| < P ErIT N (K, + TK; L), as.,
becauseV X, | < efoT.

Whenb, g and f are not differentiable, we can also prove the result by adstahapproximation and
stability results for BSDESs with linear growth. U

3.2 Atime dependent estimate of/

We will introduce two alternative assumptions.

(HX1). b is differentiable with respect te ando is differentiable with respect t6. There exists
A € R* such thatn € R¢

‘o (s)['o() V(s 2) = o’ ()| < A['mo(s)]”. (3.4)
(HX1).  oisinvertible andvt € (0,77, [o(t) '] < M,-1.
Example.  Assumption (HX1) is verified wherys € [0,T], Vb(s,.) commutes withr(s) and3A :

[0, T] — R4 pbounded such that' (t) = o(t)A(t).

Theorem 3.2. Suppose that (HX0), (HYO0) hold and that (HX1) or (HX1") holdoreover, suppose that
g is lower (or upper) semi-continuous. Then there exists gigarof Z and there exist two constants
C,C’ € R thatdepend only if’, My, My, K¢, Ky, K¢, and Ly, such thatyt € (0,77,

1Z,| < C+ (T — )71/,
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Proof. In afirst time, we will suppose that (HX1) holds and tlfay are differentiable with respect to
z,y andz. Then(Y, Z) is differentiable with respect te and(VY, VZ) is the solution of the BSDE

T
VY, = Vg(X7)VX7— / Y Z,dW,
t

T
+/ Vaf(s, Xe, Y, Z)V X+ Vyf(5, X6, Y5, Zs)VYs + V. f(5, X, Yy, Zs )V Zyds.
t
Thanks to usual transformations we obtain

t
efot Vyf(&XsJ/s7Zs)dsv§/;t + / eJo Vyf(%Xu7Yu72u)dquf(S,XS,YS, Z)VXds =
0

T
efoT vyf(S’XS7YSvZS)dSVg(XT)VXT _|_/ eJo Vyf(“’XWY“’Z“)duvggf(s,XS,YS, Z )V Xds
0

T
. / ef(f Vyf(u,Xu,Yu,Zu)dUVZSdWS7
t

with dW, = dW, — V. f(s, X,, Ys, Zs)ds. We can rewrite it as
T
F,=Fr— / eJo Vul(wXu Yo, Zu)dug 7 g1, (3.5)
t
with

t
F = efgvyf(s,xs,ys,zs)dsvn_i_/ eJo Vol XuYuZu)dug t(s X, Y, Z)V X,ds.
0

Z W belongs to the space of BMO martingales so we are able to &ignov’s theorem: there exists

a probabilityQ under which(WW),c(o,7) is @ Brownian motion. Thanks to the Malliavin calculus, it is
possible to show thatVY;(VX;) "o (t))ep,r) is a version ofZ. Now we define:

t

- / elo Vul X YoZdug p(s XY, 7V X ds(VX,) Vo (t),
0

Zt = Ft(VXt)_la(t) = ef(f vyf(stS7YS7ZS)dSZt + o, a.s.,

Ft = BAtFt(VXt)il.

SincedV X, = Vb(t, X;)VX,dt, thend(VX;)~! = —(VX;)"1Vb(t, X;)dt and thanks to Itd’s for-
mula,
dZ; = dF;(VXy) to(t) — B (VX)) 7IVb(t, Xy)o(t)dt + Fy(VXy) "o (t)dt,

and
d(eMZy) = Fy(Md — Vb(t, X;))o(t)dt + Fyo' (t)dt + eMdF, (VX)) Lo(t).

Finally,
~ 12 - 2 - ~
d‘e’\tZt‘ — (M), +2 {)\‘Fta(t)‘ — Fo®)['ot)'Vb(t, X;) — Lo’ (0] | dt + M,

with M; := fg eMdF,(VX,s) lo(s) and M; aQ-martingale. Thanks to the assumption (HX1) we are
able to conclude th%te“Zt

T
EQ |:/ 62)\8
t

2
is aQ-submartingale. Hence,

~ |2 -2
zf afm| = |zl @

‘ 2
> 62>\t‘6f0 Vyf(s:Xa Yo Za)ds 7 4 o (T —1t) a.s.,
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which implies

2
TP (T =) = e M2l Vol (X XaZ)ds gt |ofy Vol XaoZ)ds 7, 4 oy — | (T — 1)

2
< C <62>\t ‘ef()t Vyf(SvXSvYSvZS)dSZt _|_ Oét‘ —|— 1) (T - t)

T
< C(EQ {/ s
t

with C a constant that only depends OnKy, M,, K¢ ,, K, and\. Moreover, we have, a.s.,

T
EQ |:/ 62)\3
t
< C (HZH%MO(Q) + (T - t)) :

But(|Z|| 5ps0(q) does not depend ofi; becauseY’, Z) is a solution of the following quadratic BSDE:

2
Z ds‘ft]+(T—t)> a.s.,

Zs

9 7 T
ds‘]—"t < CEQ U \Z,)* + \a5\2ds‘}}}
i t

T T
Y, = g(Xr) + / (F(5, X, Yor Z5) — 2oV o f (5, X, Yo, Z,)) ds — / 24, (3.6)
t t

Finally |Z,| < C (1 + (T —t)~'/?) as..

Wheno is invertible, the inequality[(3.4) is verified with := M_ -1 (M, K, + K,). Since this
A does not depend oWb andc’, we can prove the result whext, .) ando are not differentiable by a
standard approximation and stability results for BSDE#Visitear growth. So, we are allowed to replace
assumption (HX1) by (HX1").

When f is not differentiable ang is only Lipschitz we can prove the result by a standard approx
mation and stability results for linear BSDESs. But we notltat our estimation o does not depend on
K. This allows us to weaken the hypothesisgdarther: whery is only lower or upper semi-continuous
the result stays true. The proof is the same as the proof @ioBition 4.3 in [B]. u

Remark 3.3. The previous proof gives us a more precise estimation forgioreof Z wheny is differ-
entiable with respect te: V¢ € [0, 7],

T 1/2
|Z,| < C + C'EQ U | Z,|? ds ft} (T —t)~1/2.
t

Remark 3.4. When assumptions (HX1) or (HX1’) are not verified, the precesay blow up beford".
Zhang gives an example of such a phenomenon in dimensionréfevehe reader to example 1 i J20].

3.3 Zhang's path regularity Theorem
Let0 =ty < t; < ... < t, = T be any given partition of0, 7], and denote,, the mesh size of this
partition. We define a set of random variables
_ 1 tit1
Zti:7E|:/ sts‘}"ti}, Vie{0,...,n—1}.
tiv1 — t; t
Then we are able to precise Theorem 3.4.37h [21]:

Theorem 3.5. Suppose that (HX0), (HYO0) hold apds a Lipschitz function, with Lipschitz constai,.
Then we have

n—1 tiv1 .
ZE[/ |Zt—Zti‘ dt] <C(1+K§)5n,
i=0 ti

where C is a positive constant independend,pénd K ,.
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Proof.  We will follow the proof of Theorem 5.6., if[14]: we just neéul specify how the estimate
depends ork,. Firstly, it is not difficult to show tha¥,, is the bestF;,-measurable approximation &f
in MQ([ZL/Z‘, ti+1]), i.e.

tit1 _ 9 tit1 9
EU |Ze — Zy,| dt] = inf E[/ |Zs — Zi] dt]
ti ZieL2(Q7-Fti) ti

tit1 _ 9 tit1 9
E[/ |Zt—Zti| dt]gﬂ«:[/ | Zy — Zy,| dt]
t; ti

1

In the same spirit as previous proofs, we suppose in a firg timatb, ¢ and f are differentiable with
respect tar, y andz. So,

In particular,

Zy — 7y, = VY (VX)) lo(t) = VY, (VX)) lo(t) =L + I + I3,  a.s.,

with I; = VY(VX,) Y ot) — o(t), o = VYi((VXy)™! — (VX)) Ho(t;) and I3 = V(Y; —
Y:,)(VXy,)"to(t;). Firstly, thanks to the estimatiop (B.3) we have

L2 <[V e OT K2 [t — i < C(1+ K7)on.

We obtain the same estimation fds| because

t
(VX)) = (VX)) < /(VXS)_1Vb(s,XS)ds < KT |t — ).

t;

Lastly, |Is] < M,eKiT [VY; — VY, |. So,

n—1 tiv1 n—1
» [ / |Ig|2dt] <05, Y E | ess suplvy; - v,
i=0 ti i=0 telt,tiv1]

By using the BSDE[(3]2), (HYO0), the estimate ¥, and the estimatd (3.3), we have

t 2
+C </ VZSdWS> .
t;

VY, — VY,
t 2
<C (/ (CO+K,)+ V. f(s, Xo Yoo Z,)| [V Z4)) ds)
t

The inequalities of Holder and Burkholder-Davis-Gundyegiis

n—1
E | ess sup|VY; — VY;,|?
i=0 te[ti7ti+1]
n—1 tit1 2 ti1
<CA+K})+CY E (/ V. f(s, X5, Ys, Z5)| |V Zs| ds> +CE (/ |V Z,|* ds)
ti t;

=0
2

<C(l+K])+CE

T T
(/ |sz(s,Xs,Y;,Zs)||VZs|ds> +/ |V Z,|* ds
0 0

<C(1+K])+CE [(/OT(l—i— \Zﬁ)@) (/OT\VZS\%&S) +/OT]VZSIst}

1/q

(/OT \25\2d3>p] Up) E [(/OT ]V28]2d3>q] ,

<C(1+K§)+C(1+E
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forall p > 1 andg > 1 such thatl /p + 1/q = 1. But, (VY, VZ) is solution of BSDE[(3]2), so, from
Corollary 9 in [2], there existg that only depends of\Z « W || 5,0 such that

T q)Va
E[(/ |vzs|2ds>] <O+ KD,
0

Moreover, we can apply LemnjaP.1 to obtain the estimate

1/p

T p
E [(/ rzﬁds) ] < O 220 < C.
0

Finally,
n—1 tiv1
Y E U \[3]2dt} < C(1+ K)oy,
=0 ti
and
= bit1 = 12 = B+t 2 2 2
ZE[/ 12 — Z4,| dt} < E[/ (ym + |Io|° + | I] >dt}
i=0 ti i= ti

4 Convergence of a modified time discretization scheme for h\BSDE

4.1 An approximation of the quadratic BSDE

In a first time we will approximate our quadratic BSDE |2.2) dnyother one. We set €0, 7'[ and
N e N. Let(;""%, Z)*) the solution of the BSDE

T T
Y = gn(Xr) + / F2(s, X, YVE, 29 ds — / ZNeaW., (4.1)
t t

with
fg(sa €, Y, Z) = 18<T*€f(57 z,Y, Z) + 13>Tf€f(5, z,Y, 0)7

andgy a Lipschitz approximation qf with Lipschitz constanfV. f¢ verifies assumption (HYO0) with the

same constants gs Sincegy is a Lipschitz functionZ"¢ has a bounded version and the BSIPE](4.1)

is a BSDE with a linear growth. Moreover, we can apply Theogeinto obtain:

Proposition 4.1. Let us assume that (HX0), (HY0) and (HX1) or (HX1") hold. Ehexists a version of
ZN< and there exist three constant$, 1, M. 2, M, 3 € R that do not depend oV ande such that,
Vs € (0,77,

M
N,e 2,2
|Zs ‘ < <Mz,1 + (T _ 8)1/2> A (MZ,3(N + 1))

Thanks to BMO tools we have a stability result for quadrat®Es (see[]2] and [1L4]):
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Proposition 4.2. Let us assume that (HX0) and (HYO) hold. There exists a conétdhat does not
depend onV ande such that

2
: |

+E [/j(zﬁ“e —thdt] < Cler(N) + es(N,2))

sup V¥,
t€[0,T]

with 1
(V) = E [lgn(Xr) — g(xr)| " B

T 2q7 /4
e2(N, e) =E[< / f(t,Xt,YtN’s,ZtN’E)—f(t,XtaYtN’e,O)‘dt> ] :

T—e

andq defined in Theorefn 2.2.

Then, in a second time, we will approximate our modified baakisforward system by a discrete-
time one. We will slightly modify the classical discretiwat by using a non equidistant net with + 1
discretization times. We define thet 1 first discretization times off), ' — ¢] by

wr (- G)")

and we use an equidistant net[@h— ¢, T'] for the lastn discretization times:

m — k
tk:T—<n )s, n <k < 2n.
n

We denote the time step ¥ := t11 — tx)o<k<2n—1. We considen X;, Jo<k<2n the classical Euler
scheme forX given by

Xy = =
Xge+1 = ch + hkb(tk,X;;) + U(tk)(Wtk+1 - Wtk,)7 0<k<2n—1. 4.2)

We denotep, : R1*¢ — R1*4 the projection on the ball

Mz,2
B (0, Mz,l + (T _ 8)1/2>

with M, ; and M, » given by Propositiod 4]1. Finally we denot& "=, Z:") our time approx-
imation of (Y€, ZN-€), This couple is obtained by a slight modification of the dlzasdynamic
programming equation:

N,
Yo" = gn(X3)

N,e,n 1 N,e,n
ZNen = h_kEtk, Vo (W, = W)l ). 0<k<2n—1, (4.3)
YOS = By [V o+ b [f (b, XY S 2005, 0< k< 2n — 1, (4.4)

The authors of|EI4] obtain this result witfi instead ofy. Nevertheless, we are able to obtain the good result by ayply
the estimates oﬂZ].
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whereE,, stands for the conditional expectation givép. . Let us notice that the classical dynamic
programming equation do not use a projection[in](4.3): ih&s anly difference with our time approx-
imation, see e.g.[T11] for the classical case. This prajectiomes directly from the estimate &fin
Propositior[4]1. The aim of our work is to study the error sicdétization

2n—1

Jezell”

0

tg

e(N,e,n) ;== sup “YN”L Yy,

0<k<2n

2
zen _ Zt‘ dt} .

It is easy to see that
e(N,e,n) < C(e1(N) +ea(N,e) + e3(N,e,n)),

with e (N) andey (N, ¢) defined in Propositiof 4.2, and

2n—1

2} N ZO - |:/t:k+1

k=

es(N,e,n) == sup E “thjf” — Y zlen — z)Ne

0<k<2n

2
i
4.2 Study of the time approximation error e3(N, e, n)

We need an extra assumption.
(HY1). There exists a positive constafity ; such thatvt, ¢’ € [0, 7], Vz € R%, Vy € R, Vz € R1X4,

f(t 2y, 2) — F(E 2y, 2)| < Kp |t — ']

Moreover, we set = Tn~* and N = n’, with a,b € R™* two parameters. Before giving our error
estimates, we recall two technical lemmas that we will prioviae appendix.

Lemma 4.3. For all constantM > 0 there exists a constaidt that depends only off, M anda, such

that
2n—1

[[a+Mmn)<c, vneN-

i=0
Lemma 4.4. For all constantsM; > 0 and M, > 0 there exists a constaidt that depends only offi,
My, M5 anda, such that

h;
H<1+M1h + My

' ) < COn*M2,
T—tHl) =

Firstly, we give a convergence result for the Euler scheme.

Proposition 4.5. Assume (HXO0) holds. Then there exists a constatitat does not depend on such

that
Inn

sup E [‘th, - Xy 2} C—

0<k<2n
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Proof. We just have to copy the classical proof to obtain, thanksaimina[4]3,

sup E [‘th — X&ﬂ <C sup h; =Chy.

0<k<2n 0<i<2n—1
But |
ho =T(1 —n~9") < C—2,
n
becausél — n~%") ~ aT!2 whenn — +oo, so the proof is ended. a

Now, let us treat the BSDE approximation. In a first time wd stilildy the time approximation error
on[T —¢,T].

Proposition 4.6. Assume that (HX0), (HYO) and (HY1) hold. Then there existanatantC' that does
not depend om and such that

1

N vel?] | R bt N N
sup E “y}k emn Y, £ ] + Z E {/t Ztk787n — 7, F
k=n k

n<k<2n

2 Clnn

Proof. The BSDE [[4.]) has a linear growth with respect ton [T — ¢, 7] so we are allowed to apply
classical results which give us that

1

n— tet1
E [ /
=n tk

9 2
[
k
Sincegy is N-Lipschitz, we obtain the result by applying Proposit[oB.4. (]
Now, let us see what happens 7" — ¢|.

N,en N,e N,en N,e
sup E “Y;k =Y, Zy =2y

n<k<2n

th] <C <E DQN(XT) - gN(X?)ﬂ + %) :

Theorem 4.7. Assume that (HXO0), (HY0), (HY1) and (HX1) or (HX1") hold. ier all > 0, there
exists a constanf’ that does not depend oM, ¢ andn, such that

2n—1

2} N kz E |:/t:k+1

0

N,e,n N,e N,e,n N,e
sup E “Y;ek - Y Zy, " 4

0<k<2n

2 C
dt) < nl-2b-Ka’

with K = 4(1 +n) L3 M?Z,.

Proof.  Firstly, we will study the error o”. From (4.]1) and[(4}4) we get

tet1
N7 N77 N7 N77 N, N7 N77 N77
Y, T, =By, Y;k-j - Y;fk+€1 "} HEx /t <f(s7X8’Ys REZ A f(tk,X;;,Y;ij I/ ”)) ds.
k
We introduce a parametey, > 0 that will be chosen later. Thanks to Proposit@ 4.1 andragsion

(HYO), f is Lipschitz onl[t;, t;41] with a Lipschitz constanf;, := K! + MW where K2 =

2Ly .M. ». A combination of Young's inequalitya +b)* < (1+73hi)a” + (14 =7-)b* and properties
of f gives
2
N7 N7 K
E ‘}/jtk € _ Y eg,n

tg

2 1 tet1 2
< (1+hi)E ‘Etk [YN*f - YN@”} (14 ) BK2(hy, + —)E/ ds
2%

N,E _ N787n
tet1 tht1 ZS Z

tk

Yk

YN7€ o YN,{;‘,n
s tet1

1 5 tet1 9 trt1
+C(hk+7—)<hk+/ E|X, — X} ds+/ E
k

tk tg

’ ds> . (4.5)
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We define .
~N7 ) -—_ N
Ztk = h_Etk[ tkjn(WtkH Wtk)]
Nien ~>N.,en
S0,2,°" = py,,(Z"*™). Moreover, Propositiofi 4.1 implies that"* = py,,,(Z2), and, since

Pty 1S 1-Lipschitz, we have

2
‘Zév’e _ gNen (4.6)

~ 2
& ZN,e,n
ti s i

2
N ~N7 3
= ‘ptk+1 (Zs ,E) - ptk+1(Ztk : n) <

As in Theoren{ 315, we defing"* by

ez =, [ 25 =B, (5 4 [ (s X0 YV, 29 ds) (Wi, — W
K4y, =y s § = Ly, ( + ] f(S, syds "yl )5)( tht1 tk) :
k

" tet1
Clearly,
tht1 N 2 let1 _ 2 _ - 2
E/ zNe —Z[=m ds = E/ zNe — Z[¢| ds + B (Z,f:v’f — 7" (4.7)
tE tg
The Cauchy-Schwartz inequality yields
2
N7 N7 b t N7 b N7 b
B, (0025 = v e, ~ W) [ < B (v v ) — R e —vem| ),
and consequently
_ . 2 2
A N IR T L v Vel B NN el
Bt N,e N,e 2
+ChiE (s, X, V5, Z009) [ ds. (4.8)
127

Plugging [4]7) and[(4.8) intd (4.5), we get:

2 2
E ‘Y;i\/,s . Y;i\f,e,n < (1 + 'Wchk ‘Etk [ Nz-: o YN,s,n}

let1 tet1

1 th+1 B 2
+(1+ ) K2 (hy + %)E/ zZNe thkv,e ds

tk

1 tht+1 9 tht+1 N 2
O+ ) <h2+/t E|X, - X| ds+/t E|vNe -y, on ds>
k k

|

YN,@ - YN,E,n
th+1 th+1

- YN,E,n)

tk+1 tht1

1
+(1+ )P KE (b + 7)E [Et,x

)~ [Bu 0%

Tkt 9
O+ S [ 760 XY 26
Vk ty,

Now write )
, N,e,n
S o Y;fk+1

2
N, —YN’E , (4.9)

tht

< 2E

+ IF ‘Yt YN,E,n

k+1 trt1

E|X, — X7 |* < 2E|X, — X4, | + 2B | Xy, — X[, (4.10)
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we obtain

2 2
E Y;i\/,e N YN,z—:,n < (1 +7khk ‘Etk [ Nz-: _ YN,s,n}

th tea1 trt1

) 1 tet1 2
+(1+n)Kk(hk+—)E/ ds
g

Yk

N,E _N76
ZS - Ztk,

1 tht1
O+ ) <h2+/ E|X; = Xy [* ds + i E | Xy, —XZZ|2>
k

tg
1 tet1
+C(hg + —) </
Yk tr

1
U)K+ B [Et,x

N,e
b J—
S Y;fk+1

ds + th ‘Y} B YN,E,n

k+1 tht1

)
_ YN,e,n)

tk+1 tet1

Y;N,s _ Y;N,e,n
k+1 k+1

2
- [en 07 ]
tk+1 9
+COKE(hy + — )th/ £ (s, X, Y,V2, ZN9)| ds.
Vk tr

Takingv;, = (1 + n)?/3K2: for by, small enough, it gives

2 2
E |y Ve _ yVen < (1+Chk+(1+772/3K2 ‘YNE_ yVen +Ch%+Chk maxIEth—ch2

te ty tht1 tht1 o<k<n
th+1 _N th+1
+CE/ Z;Vva—ztkf ds+C E|X, — X, |*ds
tr tr
tt1 2 tht1
+C E |y —ye ds+Cth/ f(s, X5, YN ZN=)2(s,
ti i

becausds 2hy, < C(ho + hy(T — 1)) < CB2. The Gronwall's lemma gives us

n—1 k
< O |+ Chi+ (1 +0)* P K hy)
k=0 Li=0

Tt
+E/ (‘Zﬁvve _ e’
123

tet1
—|—th/ ‘f(S?XS;Y;N’E,ZSJV’e)‘Q ds - E ‘Y;i\/,s o Y;i\/,e,n

173

2
2
E Y, e —yNen |

173

2
{hk e o B | X, — X

Y
1

o YN,E

tet1

|X th| +

Then, we apply Lemm 4.4:

2
N, N
E Y, € Y. €M

tg ty

< CnA+mE?)?a [ho 4+ max E ‘th - X7 |2
0<k<n k

+ZE[/tk+l

tn
—|—h0E/O ‘f(S,Xs’YSN,E,ZSN,E)‘Q ds - E ‘Y;i\/,s o Y;i\/,e,n

, N,
s =Y,

tet1

1

A classical estimation gives U]SDXS - Xy, |2] < |s — t3]. Moreover, sinceZz V¢ is bounded,

_ 2
zN= . zNe

173

+ X — X, P+

2
ds]

tn .
E/ £l X, YN, 29 ds < CT(U+[YN#| )+ CE [/ \Zév"f\“ds]
0 0

T
< CT(1+|[YNe| )+ Cn™E U |ZN<|? ds} :
0
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2
But we have an a priori estimate fir [fOT zNe

ds} that does not depend a¥i ande. So

tn
E/ £ (s, Xy, Y2, ZN9) * ds < Cn. (4.11)
0
With the same type of argument we also have

2
}/th,& _ YN7€

tet1

< Chyn™. (4.12)

If we add Zhang’s path regularity theordm]|3.5, Proposifidhahd Propositioh 4.6, we finally obtain

2b
(1+ )(K2)2an Inn N Inn
< Cnt p— Cn172b7(1+n)(K2)2a' (4.13)

2
N N
E‘Y; © _yNen
k k

Now, let us deal with the error od. First of all, (4.§) gives us

tea1 th+1 2
N 41 N en N,e

Z / —zNe } ZEU Zyon =7, dt].

k=0 [
For0 < k < n — 1, we can use[(47) anfl (#.8) to obtain
E |:/tk+1 ZN,s,n B ZN’€ 2 dt] c® |:/tk+l ZN’E B ZN’€ 2 dt]

" ty t " th t
N, Ne, Neny|?
+(]‘ + 77)2/3E |:Etk( }/;fk_:; - }/tk_j; " ‘Etk tk+1 - }/;fk_:; n)

tet1 9
+ChiE [/ | f(s, X5, Y5, Z09)| ds} .

2%

Inequality [4.1]1) and estimates fa@rgive us

[ 2
ZEU zlen — zle dt}
tet1 | 2
< ZE U zle -zl dt] (4.14)
N, Ny |2
+(]‘ + "7 2/3 ZE |:Etk }/;kﬁ»l - }/;k+€1n ‘Etk tk+1 - }/;fk+€1n)
T 2
+ChoE U | (s, X5, Y05, ZN)| ds}
0
tet1 | 2
< ZE[/ ze -z} dt]

YNE . Y—tN,e,n
k

N,en
‘Etk tk+1 _Y;Hl )

2
+(1+1n) 2/3ZE [Etk ]

+CE Uytf <y Nen ] + Chon?, (4.15)
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with an index change in the penultimate line. Then, by ugihgj)(we get

N N.
Y € Y 78771

173 tk+1 lkt1

(1 +n)2E [Et,x

‘Etk - YN,S,TL)

2]
1 tet1
+ (L4 ) KR (hy + T)E/
k

173

2
N
ZNe— 7,0 ds

tg

2
D . (4.16)

Thanks to[(419),[(4.10)[ (4]L2) and a classical estimativR @Xs — Xy, |2] we have
1)

Let us sety, = 3(1 + n)K72. We recall thaty, K2 < <122 — 0 whenn — 0. So, forn big enough,
(B.16) becomes

< CyihiE ‘Etk [ - YN@"}

tk+1 tet1

YNe _ YN,E,n

tet1

1
—|—C(hk + ry_)hk (hk =+ sup E |:|X th| +
k

Se[tk,tk+ﬂ

N,e,n
T Y;kﬂ

sup E [‘XS — Xzﬂz +

Se[tk,tk+1}

2
} C (hkn% +E “Yt —y,Nen

k+1 tet1

2
(1+ 77)2/3E |:Etk( YNE - Y}i\f’s’n ‘Etk tkﬂ - Yti\:in) ]
C'1 2 tht1 2
< el ege [ a2l
k
+Chohn?

If we inject this last estimate iff (4]L5) and we use Thedreiin\8e obtain

([

By using [4.1B) and Propositign #.6, we finally have

Nz-:n N,e
Tk - Zt

2
dt} < Chon®+Clan  sup E“YNs— yNen

tet1 trt1
o<k<n—1 + +

1

2n—
2 trt1
-0 12

k

(Inn)?

N,en  Nge
Z Zt nl—2b—Ka’

173

sup UYN R
0<k<2n

2
dt} <c
with K = 4(1 + 77)L2 M22 Since this estimate is true for eveyy> 0, we have proved the result.[]

4.3 Study of the global errore(N, e, n)
Let us study errors; (IV) andes (N, €).

Proposition 4.8. Let us assume that (HX0) and (HYO) hold. There exists a conSta- 0 such that

C
eg(N, 8) g W
2
Proof. We just have to notice th%f(t,Xt,YtN’e,ZfV’e) - f(t,Xt,YtN’E,O)‘ <C ‘va’e and‘ZlfV’€

is bounded byC'n’. a
For g we use the classical Lipschitz approximation

gy (@) = inf {g(u) + N |z — ul [u € R}
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Proposition 4.9. We assume that (HX0) holds apds a-Hoélder. Then, there exists a constatitsuch

that c
€1 (N) < " 2ba

nl—-«

Proof. gy is aN-Lipschitz function andjy — g whenN — +oo uniformly onR?. More precisely,
we have

]

Remark 4.10. For some explicit examples, it is possible to have a bettavemence speed. For exam-
ple, let us takegy(z) = (|z|* 1.>0) A C and assume that is invertible. Then, we can use the fact that
this function is not Lipschitz only i, and obtain

C =L\ Y C
() < S b (xp e JonER]) e —C
ni-o nﬁ(QaJr%)

Remark 4.11. It is also possible to obtain convergence speed whismota-Holder. For example, we
assume that is invertible and we sej(x) = H‘jzl 1.,>0(z). Then

d

1/q
> P(Xr)i €0, 1/N])] <

i=1

C C

61(N)<C Nl/q:nb/q'

Now we are able to gather all these errors.

Theorem 4.12. We assume that (HXO0), (HYO0), (HY1), and (HX1) or (HX1") haMk assume also that
g is a-Holder. Then for ally > 0, there exists a constaiit > 0 that does not depend ansuch that

C

2
n 2—a)(2+K)—2+2a

e(n):=e(N,e,n) < ;
with K = 4(1 +n) L7 M2,

Proof. Thanks to Theorerp 4.7, Propositipn]4.8 and Proposftign 4 9ave

C C C
e(n) < =g t omaew T =
Then we only need to set:= 3+ andb := Gy 7&—g7a, to obtain the result. O

Corollary 4.13. We assume that assumptions of Thedreni 4.12 hold. Moreovassuene thaf has a
sub-quadratic growth with respect to there exist®) < 3 < 1 such that, for allt € [0,7], 2 € R?,
y € R, 2,2 € RI¥4,

‘f(tvmvyvz) - f(tvmvyvz/)‘ g (Kf,z + Lf,Z(’Z’B + ‘Z/|B)) ‘Z - Z/‘ *

Then we are allowed to taki§ as small as we want. So, for ajl> 0, there exists a constaiit > 0 that
does not depend amsuch that
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Remark 4.14. When we are allowed to tak€ as small as we want, then we have- n=% < hg for
K sufficiently small. So we do not need to have a discretizagiwhon [T" — ¢, T]: n + 2 points of
discretization are sufficient o, 7).

Theoren{4.1]2 is not interesting in practice because thadsgfemnvergence depends strongly/&n
But, we just see that the global error becomes) < % when we are allowed to chooge as small

as we want. Under extra assumption we can show that we aveeallto take the constadt/, , as small
as we want.

(HX2).  bis bounded o0, T'] x R? by a constanf\/,.

Theorem 4.15.We assume that (HX0), (HYO), (HY1), (HX2) and (HX1) or (HX®ld. We assume also
that g is a-Holder. Then for ally > 0, there exists a constanit > 0 that does not depend onsuch that

C

no—n’

e(n) <
Remark 4.16. With the assumptions of the previous theorem, it is alsoilplesto have an estimate of
the global error for examples given in Remafks }1.10 pnd| Aheng(z) = (|z|* 1.20) A C, we have
C

en) < ———
WS

)

and whery(z) = []%, 1.,>0(z), we have
C

1
ni+zg "

e(n) <

Proof.  Firstly, we suppose thatis differentiable with respect te. Thanks to Remark 3.3 we see that
it is sufficient to show that .
5| [ 122 a7
t

is small uniformly inw, N ande whent is close toT".We will obtain an estimation for this quantity by
applying the same computation g [2] for the BMO norm estneétZ page 831. Thus we have

T
EQ" [ / |z’ ds(ﬂ] <EY (o) - (%) | B ] + C(T - 0),

t
with p(z) = (2™ —2¢(x+m)—1)/(2¢%), m = |Y|_, andc that depends on constants in assumption
(HYO) but does not depend dvi, f. Let us notice thatn, ¢ and sop do not depend oV andes. Since
Y is bounded is a Lipschitz function, so

T
DR U |Z§V’5|2ds‘ft] < CE?™ HYI{V — v J—}] +C(T - t).
t
We denote by YNtz zNete) the solution of BSDE[(4]1) whe ;" = z. As usual, we seXy” = x
andz="" = 0 for s < t and we define/N' (¢, ) := Y,="*. Then we give a proposition that we will
prove in the appendix.

Proposition 4.17. We assume that (HX0), (HYO0), (HY1), (HX2) and (HX1) or (HXdld. We assume
also thatg is uniformly continuous o®?. Thenu¢ is uniformly continuous of0), 7] x R¢ and there

existsw a concave modulus of continuity for all functions{nNﬂN eNye > 0}: i.e. w does not

depend onV ande.
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Then
E@N,s HYY{V,e . Y;N’e ]:t] _ E@N,s |uN’€(T, XT) _ uN’e(t,Xt)‘ ‘ft}
Ne [ N, N,
< E¢ _JHLTU(SMWSKV\U (T, X7) — u™Me(t, Xy)|
+2|Y 7E‘ooﬂUtTJ(s)dVI/s’>y ]:t]
N,e [
< E¥ [ (|T—t| n 1|ftTJ(S)dWSKV|XT—Xt|>

2|y e 7,

00 ]1|ftT U(s)dWS|>u
with dW, = dW, — V. f(s, X,, Y35, ZV%)ds. But,

]l‘ftT o(s)dWSKV ‘XT - Xt‘

T T T
U 7 o5yt < / b(s,Xs)der/ VZfE(s,XS,YSNf,Z;Vf)dH/ a(s)dWs‘
t SIS ¢ ¢

T
< MMT—0+V+C/1G+ﬂﬂWD@
t

T 1/2
< C(T—t)+v+C(T —1)/? </ \ZsNﬁ\st> .
t

Sincew is concave, we have by Jensen’s inequality

N,e
]EQ [w <|T_t| +]]'|ftTJ(s)dWS|<V|XT_Xt|) ‘ft:|

T 1/2
A T
t

T 1/2
« forr-aevserree [ 1] )
t

1/2 || #N,
< w <C]T— tl+v+C(T—t)?|z EHBMO(Q)> :
But, HZN’EHBMO(@) only depends on constants in assumption (HYO0), so it is bedinohiformly in N
ande. Moreover, ftT a(s)dVT/S is independent of; so we have by the Markov inequality
QN,E N,e T T
E |:]1|ftT O'(S)dWs‘>V .7:15] = Q ) O'(S)dWS >V
. or-n
V2
Finally, we have
& T—t
EQ" HYQ{“E ~vY|R] < w(CIm—1+v) + C(T)

< w (o T —t|"/% + |7 — t|1/4> +or -t

by settingy = |T — ¢|'/*, andEQ@"* { y e —yNe }‘t] — 0 uniformly inw, N ande whent — T.

When f is not differentiable with respect tobut is only locally Lipschitz then we can prove the result
by a standard approximation. O
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A Appendix
A.1 Proof of Lemma[4.3.
We have,
2n—1 n—1 2n—1
[T a+mn)= (Hu + Mhi)> ( [Ta+ Mh,)) .
i=0 =0 i=n
Firstly,
2n—1 T n
I]@+Mmh) < <1+ME> <C.

Moreover, for0 < i < n — 1,

Inn

hl' = ti+1 — ti = T’I’L_ai/n(l — e_alnn) < Tn—az/n
n

thanks to the convexity of the exponential function. So

n—1 n—1 Clnn
[Ta+nmn) < ] (1 + MTcm_‘“/”—>
i=0 1=0 "
Inn
= In(1+ MTan %/"——
exp (Z n + an " >>
Inn
< MT —a/n A
exp (Z a(n ) - )
1 1—-(1
< exp | MTa—- nn ( /m*)
n \\1-— (1/n(“/” )
Inn n/m
< exp (MTa na/n_1>
But,
Inn ne/n Inn 1 1
n ne/n—1 n a,lnT" a’
whenn — +oo. Thus, we have shown the result. O

A.2 Proof of Lemma4.4.
Thanks to Lemmé 4.3, we have

H (1—|—M1h + M, ) — M n—1
i H +—— ) <[[a+mm)<c
1+M2T7t§ 1 i=0
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But,
h.
14+ My——— =1+ My(n¥™ —1).
T —tip
So,
n—1 h n
I1 <1 + M27Z> - <1 + Ma(n®™ — 1))
0 T —tip
1=
] In?
= exp (nln <1 —i—aMgﬂ +0 ( - 2n>>>
n n
In?n al.
= exp|aMslnn+ O ~n*2,
n
whenn — +oo. Thus, we have shown the result. 0

A.3 Proof of Proposition .17.

We will prove this proposition as the authors gf [9] do forittferoposition 4.2. In all the proof we omit
the superscripiV, ¢ for u, Y and Z to be more readable. Let, x| € R? andtg,t;, € [0,7]. By an
argument of symmetry we are allowed to supposehat t,. We have

|U(t0,$0) - U(téaxé)‘ < |U(t0,1’0) - U(to,xé)‘ + ‘U(t07.%'6) - U(t6,.%'6)| :

Let us begin with the first term. We will use a classical argotd linearization:

T

VoY ) o (G ¢ [ (X0 x0) 4, (100 ) s
t

T
. / <Zt0’”30 — Zﬁo’%) AW,
S bl
t

with
to,x0 10,y o,z o,z 10,y rrto,2
f8(57XS aY:‘:‘ O,ZS O) —fg(SaXS 0,3/8 OaZs 0) |f Xt07$0 _Xto,m6 #0
s = xlowo _ xlomo ) ) ’
0 elsewhere,
to,x to, to,a to,x to,xl, 0,/
fe(S,XsO O’}/SO 07Zs 0) _ fe(S,XSO 07Y:9 O,Zs 0) If Yto,ll?o B Yto,l“f) 7& 0
/85 = to,To to,xy s s >
e
0 elsewhere,
to,z0 y/t0,20  rrto,T0 to,x0 yrto,wo rt0,T0
fa(S’XS Vs s Zs ) _ fE(S’XS Y s Zs )t(Zto,xo _ Ztmxf)) if ZtoTo _ Zt(w&f) £0
) s s s s 5
Vs = ‘ZﬁOJ'O _ Z§07mo

0 elsewhere,

anddW, = dW, — v.ds. By a BMO argument, there exists a probabiliy under whichi is a
Brownian motion. Then we apply a classical transformatmolitain

t 12 T 7
EQ [efto Bsds (Y;to,a:o . Yfm%)] — EQ |:eft0 Bsds (gN(qutgm:O) - gN(X?’x°)>

T S !
_|_/ Oésefto Budu (X§O71'0 _ X§07$0> d$:| 7

to
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and

|u(to, m0) — u(to, )] < C (EQ [w (‘X?,xo B X;?*TO

T
D)o o2 e - xena).
to
with w a modulus of continuity of; that is also a modulus of continuity fgry. We are allowed to
suppose that is concav, so Jensen’s inequality gives us
to,z! T to,x!
|u(t0,:ﬂ0) - u(to,xlo)‘ < C <w (E@ HX;vao — X" D +/ EQ [‘Xﬁo,xo — X% ] ds) .
to

By using the fact thab is bounded we can prove the following lemma exactly as astbb{g] do for
their Proposition 4.7:

Proposition A.1. 3C > 0 that does not depend oN and ¢ such thatvt, ¢ < [0,7], Vz,2' € R,
Vs € (0,77,
HXt T Xt z’

| <c(le-al+ 2"
Then,
|u(t0,x0)—u(t0,x6){ < C(w({xo—xf){)—i—ho—xa).

Now we will study the second term:

to, x| th ! to, ! t \Th th ! th !
) — )] = Y% — Yo% < [y oo ¢ by
Firstly,
Yto,xo to,xo < to to,xo /
— NS f(S 1’07Y O)d C‘to—t0|
to
Moreover, as for the first term we have
t / AW T / )
@ [efi et (oo yfomt) |~ EO [f P (g (X0) = g (X))

T S d t ! t/ !
+/ agelio P (Xso’mo ~ Xs°’m°> d‘s} :
to

and

‘Yto,:vo . to,xo < C (w <{t0 —f611/2) n {t _t0{1/2>
Finally,

lu(to, z() — u(ty, zq)| < C (w <|t0 _ t6|1/2) T lto t0|1/2>
and

‘U(to,xo) - u(t67x6)| <C <w (‘.710 _1'6‘) +w (|t0 — t6|1/2> + ‘1- _mO‘ + ‘tO _ t0‘1/2)

Souw is uniformly continuous off0, 7] x R% and this function has a modulus of continuity that does not
depend onV ande. Moreover, we are allowed to suppose that this modulus diruaity is concave. [

3There exist two positive constantandb such thatu(z) < ax -+ b. Then the concave hull af — w(x) V (1,51 (az + b))
is a also a modulus of continuity gf
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