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Abstract

We consider Markovian backward stochastic differentialstpns (BSDES) with drivers of quadratic
growth and bounded terminal conditions. We first show sommsmbe@stimations on the procegs
Then we give a new time discretization scheme for such BSDiEsage obtain an explicit conver-
gence rate for this scheme.

1 Introduction

Since the early nineties, there has been an increasing$ttienr backward stochastic differential equa-
tions (BSDEs for short). These equations have a wide rangpplfcations in stochastic control, in
finance or in partial differential equation theory. A pautar class of BSDE is studied since few years:
BSDEs with drivers of quadratic growth with respect to thealae z. This class arise, for example, in
the context of utility optimization problems with exponiahtutility functions, or alternatively in ques-
tions related to risk minimization for the entropic risk reeee (see e.g[JL0]). Many papers deal with
existence and uniqueness of solution for such BSDEs: weteff3], [14], 31, [|] or [}]. Our concern
is rather related to the simulation of BSDEs and more prictime discretization of BSDEs coupled
with a forward stochastic differential equation (SDE foodh Actually, the design of efficient algo-
rithms that are able to solve BSDESs in any reasonable diroetes been intensively studied since the
first work of Chevanc€]5], see for instan¢e][1§], [1] @r [8LitBn all these works, the driver of the BSDE
is a Lipschitz function with respect toand this assumption play a key role in theirs proofs. To trst be
of our knowledge, the only work where the time approximatida BSDE with a quadratic growth with
respect to: is studied is the one of Imkeller and dos Réig [11].

Our approach for the case of drivers with a quadratic growtfitains an essential modification of
previous works on time discretization of BSDESs. In a firspsige extend a result of][6] that shows the
estimation

C
|Zt|<( 0<t<T,

T
without assuming that the terminal condition is a Lipscifutzction. Let us notice that this type of esti-
mation is well known in the case of drivers with linear growatha consequence of the Bismut-Elworthy
formula. Butin our case, we do not need to suppose that thesitifi part of the SDE is invertible. Then,
thanks to this estimation, we modify the classical unifommet net to obtain a convergence speed for a
modified time discretization scheme for BSDEs: The idea iguibmore discretization points near the
final time 7" than neal). The same idea is used by Gobet and Makhloufin [9] for BSDER Vinear
growth.
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The paper is organized as follows. In the introductory ®aci we recall some of the well known
results concerning SDEs and BSDEs. In Section 3 we estatmiste estimates concerning the process
Z. Finally, in Section 4 we study the convergence speed of @ tiiscretization scheme for BSDEs.

2 Preliminaries

2.1 Notations

Throughout this pape(}V;).>o will denote ad-dimensional Brownian motion, defined on a probability
space(Q2, F,P). Fort > 0, let F; denote ther-algebrac(Ws; 0 < s < t), augmented with th@-null
sets of F. The Euclidian norm ofiR? will be denoted byl.|. The operator norm induced by on the
space of linear operator is also denoted.hyForp > 2, m € N, we denote further

e SP(R™), or S” when no confusion is possible, the space of all adapted gsesgy;)c(o, 7| With
values inR™ normed by{|Y'|| 5, = E[(sup;¢o, 1 Y;])P]H/P; S (R™), or S, the space of bounded
measurable processes;

o MP(R™), or MP, the space of all progressively measurable processgs (o) With values in
R normed by|| Z | v = E[( [ |Zs|* ds)?/)"/P.

In the following, we keep the same notatiéhfor all finite, nonnegative constants that appear in our
computations: they may depend on known parameters derfkong assumptions and df, but not on
any of the approximation and discretization parameterghdrsame spirit, we keep the same notatjon
for all finite, positive constants that we can take as litdeva want independently from the approximation
and discretization parameters.

2.2 Some results on BMO martingales

In our work, the space of Bounded Mean Oscillation martieggdBMO martingales for short) play a
key role for a priori estimates needed in our analysis oftgmis of BSDE. We refer the reader f0]12]
for the theory of BMO martingales and we just recall the prtpe that we will use in the sequel. Let
Dy = fot psdWs, t € [0,T] be a real square integrable martingale with respect to thevlan filtration.
Then® is a BMO martingale if

T 1/2
0] a0 = sup E[(®)r — (B),|F]Y2 = sup EU ¢?dslff} = e
T7€[0,T] T7€[0,T T

where the supremum is taken over all stopping timeg,ifi’]; (®) denotes the quadratic variation ®f
In our case, the very important feature of BMO martingalgbésfollowing lemma:

Lemma 2.1. Let® be a BMO martingale. Then we have:

1. The stochastic exponential

t 1 t
5(¢’)t:5t:e><p</ ¢des_§/ \qssdes), 0<t<T,
0 0

is a uniformly integrable martingale.

2. Thanks to the reverse Holder inequality, there exists 1 such thaty € LP. The maximap with
this property can be expressed in terms of the BMO nor. of
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2.3 The backward-forward system

For functionsb, o, g and f and forz € R% we will deal with the solution processes of the following
system of backward-forward stochastic differential equest Fort € [0, T they are given by

t t
X, = m—l—/ b(s,XS)ds+/ o(s)dWs, (2.1)
0 0
T T
Yo = g(n)+ [ 16XV Zyds - [ Zaw., 2.2)
t t
For the functions that appear in the above system of equati@give some general assumptions.

(HX0). b:[0,T] x R* - R?, ¢ : [0,T] — R¥? are measurable functions. There exist four positive
constants\f,, K, M, and K, such that/t, ¢’ € [0,T)], Vz, 2’ € RY,

b(t,z)] < Mp(1+ |z])
b(t,2) —b(t', ') < Ky(je—2'|+]t—t|"?)
o) < M,
lo(t) —o(t')| < K,|t—1|.

(HY0). f :[0,7] x R x R x R4 — R, g : R — R are measurable functions. There exist
five positive constantd/;, K., K;,, Ky, and M, such thatvt € [0,7], Vz,2’ € R% Vy,y' € R,
Vz, 2 € RIx4,

\f(tz,y,2)] < Mp(1+ ]yl +12%)
|f(t oy 2) — fta'y 2)| < Kpglo—a| + Kpyly— o |+ Ky + Ly.(|2] +|2]) |2 = /]
\g(m)] < Mg-

We next recall some results on BSDEs with quadratic growd.tleir original version and their proof
we refer to citer Kobylansky, Briant Confortola et Imkelthos Reis.

Theorem 2.2. Under (HX0), (HYO0), the systein (R.1)-{2.2) has a uniquetigsli X, Y, Z) € 8% x S x
M?2. The martingaleZ = W belongs to the space of BMO martingales &l Wl gm0 only depends
onT, M, and M. Moreover, there exists a pajr, ¢) such thatl /r +1/¢ = 1and&(Z « W) € L".

3 some useful estimates of

3.1 Afirst bound for Z

Theorem 3.1. Suppose that (HXO0), (HYO) hold amdis Lipschitz with Lipschitz constardt,. Then,
Vt € [0,T]
| Z| < @B )TN (K, + TK ).
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Proof.  Firstly, we suppose that g and f are differentiable with respect tq y andz. Then(X,Y, Z)
is differentiable with respect to and(V X, VY, V7) is solution of

t
VX, = Id+/ Vb(s, X, )V X,ds, (3.1)
0
T
VY, = Vg(Xr)VXr— / YV ZydW, (3.2)
t
T
+/ Vauf(s,Xs,Ys, Zo)VXs + Vy f(5, Xs, Ys, Zs)VYs + V. f (5, X5, Yy, Zs)VZsds.
t

WhereVX; = (0X}/027) 1< j<a, VY: = '(0Y1/027)1<jca € R, VZ, = (021/027)1<; j<q and
ftT VZ,dW, means
T
> [ vzyaw;
1<i<d /'t

with (VZ)" denoting the-th line of thed x d matrix processvZ. Thanks to usual transformations on
the BSDE we obtain

T
elo Vil (X5 Zds gy, = oy Vol (XY Zo)ds g (XY X — / edo Vuf (wXuYuZu)dusg 7 gy
t
T S
+ / elo Vol XuYuZudug ¢(s XV, Z,)V Xods,
t

with dW, = dW, — V.f(s, X, Ys, Zs)ds. Z « W belongs to the space of BMO martingales so we

are able to apply Girsanov theorem: there exists a probaliiliunder which(W),c(o 1) is @ Brownian
motion. Then,

efotvyf(s,Xs,Ys,Zs)dsv}/t - [EQ |:ef0TVyf(s,Xs7YS7Zs)dsvg(XT)VXT

T
+ / elo Vol XuYuZudug p(s XV, Z)V Xeds
t

‘7:25:|a

and
VY| < Bt KT (K, 4+ TK; ), (3.3)

becauseV X;| < e T Moreover, thanks to the Malliavin calculus, it is possibbeshow thatZ, =
VY;(VX;) lo(t). So we obtain

|2, < MM VY| < PRRIITM, (K + T ),
becauseVX,; | < efoT.
Whenb, g and f are not differentiable, we can also prove the result by adstahapproximation and
stability results for BSDEs with linear growth. [
3.2 Atime dependent estimate o/

We will introduce two alternative assumptions.

(HX1). b is differentiable with respect to ando is differentiable with respect t6. There exists
A € R such thatyn € R?

tna(s)[ta(s)tVb(s,x) — ta'(s)]n‘ <A ‘tna(s)F. (3.4)
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(HX1).  oisinvertible andvt € (0,77, |o(t) | < M,-1.

Example. Assumption (HX1) is verified wherys € [0, 7], Vb(s,.) commutes witho(s) and3A :
[0, T] — R9*? bounded such that'(t) = o(t)A(t).

Theorem 3.2. Suppose that (HXO0), (HY0) hold and (HX1) or (HX1') holds. &awer, suppose thatis
lower (or upper) semi-continuous. Then there exists twstosC, C’ € RT that depends only iff’,
Mg, Mf, Kf,:z:s Kf,y, Kf7z andLﬁZ such that,Vt < [O, T[

1Z,| < C+ C'(T —t)~1/2,

Proof. In afirst time, we will suppose that (HX1) holds arfidg are differentiable with respect tg
yandz. Then(Y, Z) is differentiable with respect to and(VY, V7)) is the solution of the BSDE

T
VY, = Vg(Xr)VXr— / VZ,dW,
t
T
+ / Vo f (5, X0 Yo, 2V Xa + Yy f (5, X0, Yo, Z)VY + Vo f (5 Xo, Yy Z0)V Zods.
t
Thanks to usual transformations we obtain
t
@fot Vyf(&XS’YS’ZS)dSVY; +/ efos Vyf(u,Xu,Yu,Zu)duvwf(S’Xs’}/s’ ZS)VXst _
0
T
efoT Vyf(s’XS’YS’ZS)dSVg(XT)VXT _|_/ eJo Vyf(UJ%A@7Zu)dume(3’Xs’ys’ Z)V Xds
0

T
_ / el Vol XuYo Z)duy 7 gy,
t

with dW, = dW, — V. f(s, X,, Ys, Zs)ds. We can rewrite it
T 3
Fy=Fr — / elo Vol (wXuwYuZudug 7. gy, (3.5)
t
with
t
Ft — ef(f Vyf(s,)(s,YS,ZS)OlSv}/;e + / @f()s Vyf(u,Xu,Yu,Zu)duvxf(S’ Xs, }/s, ZS)VXSdS.
0

7 = W belongs to the space of BMO martingales so we are able to &ipanov theorem: there exists

a probabilityQ under which(W),c(o. ) is @ Brownian motion. Thanks to the Malliavin calculus, it is
possible to show that; = VY;(VX;)"'o(t). So, we define:

t

T / elo Vol XuYuZdug f(s XY, Z)VXds(VX;) o (t)
0

Z, = F(VX) lo(t) = eo Vel XeYuZdds 7, o o,

B o= ME(VX)

SincedV X, = Vb(t, X;)VX,dt, thend(VX;)~! = —(VX;)"1Vb(t, X;)dt and so , thanks to the Itd's
formula,

dZ; = dFy(VXy) Lo (t) — B (VX)) IVb(t, Xy)o(t)dt + F;(VXy) Lo (t)dt,
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and

d(eMZ;) = Fy(Md — Vb(t, X;))o(t)dt + Fyo' (t)dt + eMdF (VX)) Lo(t).
Finally,

~ |2 ~ 2 ~ ~
d ‘e’\tZt‘ — d(M); +2 [A ‘Fta(t)‘ ~ Fo@®)[lo(t) Vb, X;) ta’(t)]tFt} dt + dM,,
~ |2
with M; a Q-martingale. Thanks to the assumption (HX1) we are able mwlcde that‘e“Zt‘ is a
Q-submartingale. So
T ) _ 2
EQ [/ 2 Zs‘ ds ft} > 2N ‘Zt (T —1)
t
> 2N ‘efg Vo f (s, Xe Yo, Zs)ds g7, at‘Q 1)
> C(Z* = 1)(T - 1),
with C a constant that only depends 60K, M,, Ky ., Ky, and\. Moreover,
T 2 T
EQ [/ e | 7, ds‘]—}} < CEC U 1Zo) + Jas|? ds‘]—}}
t t
< ClIZllsrow +1-
But[|Z|| gps0(q) does not depend off; becauseY’, Z) is a solution of such a quadratic BSDE:
T T _
Vimg(X0)+ [ f6, X0 Ve Z) = 2V X Ve Z)ds - [ ZaWe @8)
t t

Finally |Z,| < C (1 + (T —t)~%/?).

Whene is invertible, the inequality[(3.4) is verified with := M_ 1 (M, K, + K, ). Since this\
does not depend oWb ands’, we can prove the result whéiit, .) ando are not differentiable by a
standard approximation and stability results for lineaDIES. So, we are allowed to replace assumption
(HX1) by (HX1).

When f is not differentiable ang is only Lipschitz we can prove the result by a standard approx
mation and stability results for linear BSDEs. But we noticat our estimation ot¥ does not depend
on K,. This allows us to weaken the hypothesis pfurther: Wheng is only lower or upper semi-
continuous the result stay true. The proof is the same asrtiué pf Proposition 4.3 in[]6]. U

Remark 3.3. The previous proof gives us a more precise estimatiorZfarhenf is differentiable with
respect toz:

T 1/2
|2 < C + C'EY U \ZS\st‘J-}} (T —t)~1/2,
t

3.3 Zhang’s path regularity Theorem

Let0 =ty < t; < ... < t, =T be any given partition of0, 7], and denote,, the mesh size of this
partition. We define a set of random variables

_ 1 tit1
Ly, = E [/ Zds
tiv1 — t; t;

.7:}, Vi e {0,...,n—1}.

Then we are able to precise the famous Theorem 3.4[3]in [16]:
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Theorem 3.4. Suppose that (HX0), (HYO0) hold apds a Lipschitz function, with Lipschitz constal,.
Then we have

n—l Lit1 _ 9
ZE U |Ze — Zy,|"dt| < C(1+ Kg)én,
i=0 ti

where C is a positive constant independend,péind K ,.

Proof.  We will follow the proof of Theorem 5.6. ifJ11]: we just need $pecify how the estimate
depends ori,. Firstly, it is not difficult to show tha¥;, is the bestF;,-adapted approximation d&f in
MQ([tZ', tprl]), i.e.

tit1 _ 9 Lit1 9
EU |Ze — Zy,| dt] = inf E[/ |Zs — Zi] dt]
ti ZiELQ(Q,}—ti) t;

tit1 _ 19 tit1 9
E[/ |2, — Z,,| dt]gﬂ«:[/ | Zy — Z4,| dt]
t; ti

1

In the same spirit than previous proofs, we suppose in a ifingt thatb, g and f are differentiable with
respect tar, y andz. So,

In particular,

Zy — 7y, = VYi(VXy) lo(t) — VY3, (VXy,) to(t) =1 + I + I,

with I; = VY(VX,) Y ot) — o(t)), o = VYi((VXy)™! — (VX)) Ho(t;) and I3 = V(Y; —
Y:,)(VXy,) " to(t;). Firstly, thanks to the estimatiop (B.3) we have

IL° < IV ST K2ty — ti* < C(1+ K6

We obtain the same estimation fds| because

t
Vb(s, Xs)VXsds

ti

(VX)) = (VX)) < < KpePoT |t — ).

Lastly, Is < M,e®T |VY; — VY;.|. So,

n—1 tiv1 n—1
Y E [/ |15]2 dt] <06, > E| esssupVY; — VY, [
i=0 t; i=0 tE[ti,t¢+1]

By using the BSDE[(3]2), (HYO0), the estimation &Y, and the estimatior] (3.3), we have

VY, = VY, [°
t 2 + 2
<0(/ O+ Ky) + V- f(5, X, Yo, Z2) |vzs|ds) +c</ vzsdws>
ti t;

The inequality of Burkholder-Davis-Gundy gives us

n—1
Y E | esssupVY; — VY, [
i=0 tE[ti,t¢+1]
n—1 tit1 2 tig1
<CA+K})+C) E (/ V. f(s, X5, Ys, Z5)| IV Zs| ds> +CE (/ |V Z,|* ds)
ti t;

=0
2

T T
gC(1+Kg2)+CIE (/ \sz(s,XS,YS,ZS)HVZSyds> +/ \VZSIQCZS .
0 0
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Then, from Corollary 9 in[[2] we have

T
E U \VZS\st} <C(1+K)).
0

Moreover, by definingl € R¢ the vector which all components are equal feve have

T
. | IV2019. 55, X, Y., Z0) 1
0

7

T
'/ V24| (AW, — |V f (5, X, Ve, 7)) 1d3)
0

T 2
</ Isz(s,Xs,Y;,Zs)IIVZSIds>] < CE
0

< CE

7

Since|Z| « W belongs to the space of BMO martingales, there exists a pilitlgaQ under which
(W = fot dWs — V. f(s, X5, Ys, Zs)| 1ds) o, i @ Brownian motion. Moreover, there exists a pair
(r,p) €]1,+occ[?suchthatl /r +1/p =1,£ € L" and€~! € L" with £ := %. Then, the inequalities
of Holder and Burkholder-Davis-Gundy give us

T 2
(/ V. f (5, Xy, Vs, Z)| \VZS\ds> ]
0

1/p
+ CE

2
+CE

T
| vziaw,
0

E

2p

T
< CE@ / |V Zy| dW,
0

- ) ,
/ IV Z,| dW, ]
0

M T
/ |V Z,|? ds
L 0

Since(VY, VZ) is also the solution of the BSDE

p 1/p

T
< CE? + CE [/ |VZS|2ds] .
0

T T
VYZ = VQ(XT)VXT - / VstWs + / VZS |vzf(SaX3aY:9a Zs)| lds
t t

T
+/ vmf(5>XSaY:9a ZS)VXS + vyf(S,XSa Ys, Zs)VY; + vzf(SaXSa Ys, Zs)VstS,
t

we are allowed to use again Corollary 9 fh [2] to obtain

2
<C(1+K)).

T
E [(/ V. (5, Xo, Yo, Z)| |vzs|ds)
0

Finally,
n—1 tiv1
Y E U \Mdt} < C(1+K})o,
i=0 ti

and

n

n—1 tivt _ -1

ZEU 2, — Z,| dt] < ZE{
i =0
< C(1+K])bn.

e g 2 2
/ |17 + |L2|” + [I3]" dt

t;
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4 Convergence of a modified time discretization scheme for h\BSDE

In all this section we suppose that (HX0), (HYO) and (HX1) diX{") hold.

4.1 An approximation of the quadratic BSDE

In a first time we will approximate our quadratic BSO[E [2.2)diy another one. We sete]0, 7' and
N e N. Let (;""%, Z)*) the solution of the BSDE

T T
t t

with
fa(sa xr,Y, Z) = ]]_S<T,€f(8, xr,Yy, Z) + ].S>T,5f(8, xr,Y, 0)7
andgy a Lipschitz approximation of with Lipschitz constantV. f¢ verifies assumption (HYO) with

the same constants #s Sincegy is a Lipschitz functionZ is bounded and the BSDIE (4.1) is a BSDE
with a linear growth. Moreover, we can apply Theoren) 3.2 ttivb

Proposition 4.1. There exist three constanfe, 1, M, >, M, 3 € R* that do not depend oV and ¢
such that

M
|Zé\77€| < <MZ71 + 2721/2> A (MZ73N).

(T —s)
Thanks to BMO tools we have a stability result for quadrat®CHs (see[]2] and [IL1]):

Proposition 4.2. There exists a constant that does not depend aN ande such that

2
: |

LE [/OT(ZZV’E —thdt] < Cler(N) + ea(N€))

sup 1%
t€[0,7]

with g
er(N) == E [lgn (Xr) - g(Xr)*| "

T 2q7 1/4
ea(N,€) ;:E[(/ f(t,Xt,Y;N’a,ZtN’a)—f(t,Xt,Y;N’E,O)‘dt> ] ,

T—e

andq defined in Theoreijn 2.2.

Then, in a second time, we will approximate our modified baakiaforward system by a discrete-
time one. We will slightly modify the classical discretimat by using a non equidistant net wizin + 1
discretization times. We define thet 1 first discretization times by

=r(- ()"

and we use an equidistant net|[@h— ¢, T'] for the lastn discretization times:

2n — k
tk:T—<n >€, n < k< 2n.
n

The authors of@l] obtain this result witfi instead ofy. Nevertheless, we are able to obtain the good result by ayply
estimations of[[2].
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We denote the time step Wiy, := t11 — tx)ock<on—1- We considen X} )ock<on the classical Euler
scheme forX given by

Xy = =
X;L€+l ch + hkb(tk,X{;) + U(tk)(Wtk+1 - Wtk)7 0<k<2n—1. 4.2)

We denotep, : R1*? — R!* the projection on the ball

Mz,2
B <0, Mz,l + m)

with M, ; and M., » given by Propositiofi 4]1. Finally we denotg V=, ZN:5m) our time approxima-
tion of (Y2, ZN:¢), This couple is obtain by a slight modification of the claakiynamic programming
equation:

N77
Yo, " = ov(XE,)
1

zZNem = (thtk YN (W, — Wtk)]> , 0<k<2n—1, (4.3)

YN’E’n = ]Etk [YN7€,n] + thtk [f(tk’ Xn YN,an Zl{/gv’&n)]a 0 < k < 2n — 1. (44)

123 tpt1 tg? “lgg1
The aim of our work is to study the error of discretization

2n—1

2] N kzz(:) - |:/t:k+1

e(N,e,n) < C(e1(N) + ea(N,e) + es(N,e,n)),
with e (V) andey (N, ¢) defined in Propositiof 4.2, and

2n—1 t
2 k+1
=0 tk

k=

e(N,e,n

~—

N.
= sup E |:‘}/‘tk ’Em_}/tk
0<k<2n

2
zhen _ Zt‘ dt] .

It's easy to see that

es(N,e,n) = sup E [‘Y;N,E,n _yNe ZtJZ,E,n _ ZtN,E

k tg
0<k<2n

2
.

4.2 Studying of the time approximation error e3(N, e, n)

We need an extra assumption.

(HY1). There exists a positive constafity ; such thatvt, ¢’ € [0, 7], Vz € R%, Vy € R, Vz € R1X4,

1/2
|f(ty,2) = F(H )| < Kpolt =2

Moreover, we set = Tn~* and N = n’, with a,b € R™* two parameters. Before giving our error

estimations, we recall two technical lemmas that we wilMgrin the appendix.

Lemma 4.3. For all constantM > 0 there exist a constan®' that depends only o', M anda, such

that
2n—1

[[a+Mmn)<c vneN-
=0
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Lemma 4.4. For all constantsM; > 0 and M, > 0 there exist a constan®’ that depends only offi,
My, M5 anda, such that

H<1+M1h + M,

) < CnMz2,
i=0

T— terl

Firstly, we give a convergence result for the Euler scheme.

Proposition 4.5. Assume (HXO0) holds. Then there exists a congtattiat does not depend onand

such that
Inn

sup EUth Xt’]‘cﬂ C_
0<k<2n

Proof. We just have to copy the classical proof to obtain, thanksaimina[4]3,

sup E [|th — X&ﬂ <C sup h; =Chy.
0<k<2n 0<i<2n—1

But 1
ho=T(1—n"%") ~ a,Tﬂ7
n

and the proof is completed. [
Now, let treat the BSDE approximation. In a first time we willdy the time approximation error on
[T —e,T).

Proposition 4.6. Assume that (HX0), (HY0) and (HY1) hold. Then there exishateatC' that does not
depend om and such that

2n—1 t
2 Z k+1
k=n bk

Proof. The BSDHA4J has a linear growth with respectton [T — ¢, T] so we are allowed to apply
classical results that give us

ZN,a,n o ZN,E
tr t

Niemn  y Ne
sup E |:‘Y;fk Y;fk nl—2b

2 Clan
dt| < ——.
n<k<2n

2 2n—1 thi1
lxe(]
k=n tk
Sincegy is N-Lipschitz, we obtain the result by applying Proposit[o§.4. [
Now, let see what happen ot 7" — ¢].

sup E UYNsn _ Zg,e,n B ZtN@

n<k<2n

2dt} <0 (E[lox () — an (X)) + 5)

Theorem 4.7. Assume that (HXO0), (HY0), (HY1) and (HX1) or (HX1") hold. ier all > 0, there
exist a constanf’ that does not depend oM, ¢ andn, and such that

n—1

2] . 2]; . [/t:kﬂ

0

N. N
Zt €51 _ Zt €
k

N,e,n N,e
sup K “Yt - Y, n1—20—Ka’

0<k<2n

2
dt] < ¢

with K = 4(1 +n) L7 ,M?,.
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Proof.  We will fit the classical proof to our situation. Frofn (4.1)da@#.4) we get

Tet1

N, Nen N,e N,en N,e N, n yNegn Ngn

yVeoyNen = gy, [y -y }H{«:tk/ (/s X0, Y2, Z0) = f g, X2,V 5 Z00°T) ) s
e

We introduce a parametey, > 0 that will be chosen later. Thank’s to Proposit@ 4.1 andiaggion

(HYO0), f is Lipschitz onlt;, t;.1] with a Lipschitz constanf;, := K' + (T—ti(w where K2 =

2Ly, M, ». A combination of Young's inequalitya +b)* < (14 vghy)a®+ (1+ ﬁ)bQ and properties
of f gives

(4.5)

2
ds> .

2 2
B[V —v=m [ < (14 whoE [By, [V - VNS

let1 tet1

2
N
ZNe— 7, %" ds

9 1 tet1
1+ )RR+ [
Yk tr

N.
}/'SN,E _ Y €51

1 5 trt+1 9 trt1
+C(hk+7)<hk+/ E|X,— X} | d5+/ E
k

" ” let1
We define )
~N’ b Pyp— N? b
Ztk = h_kEtk [Y;tkfl n(Wtk+1 - Wtk)]

So,Zlka’E”1 — ptHl(Zlfkv’e’”). Moreover, Propositiofi 4.1 implies that"* = p,, ,(Z2"), and, since
Pty 1S 1-Lipschitz, we have

2 2
N, N,e,n N, ~N,en
‘Zs e _ 7 <|ze - ZY (4.6)

173

2
~N7 9
= ‘ptk+1 (ZSN,E) - ptk+1(Ztk : n)

As in Theoren[ 34, we defing"* by

B tea1 th+1
tht]kV’e =" / ZNeds = By, ((YN’E +/ f(s, X, Y2, ZN5)ds) (W, | — Wtk)> .
ty

173

Clearly,

tet1
E
tg

The Cauchy-Schwartz inequality yields

>N
Z;V,E _ Z €M

2 2
_N’ ~N7 b
D ds+th‘Ztk6_Ztkan

4.7)

2 tet1 _
ds:E/ (Z;va—zj]f@
tg

2 2 2
N’ N7 b t N7 N’ b N7 N7 b
B (5 =V Wi, = W) | < B (Vs = Y = B (v = v b
and consequently
>Ne _ 5Nen|? N, Nen|? N, Neny|?
hiE ‘Ztk T—Z,7" < (LHE B (|Y ) - Y ") - ‘Et;@(ytkfl =Y,
tht1
+CE [ (s, X, Y 2V (4.8)
tg



4 CONVERGENCE OF A MODIFIED TIME DISCRETIZATION SCHEME FORHE BSDE 13

Plugging [4]7) and[(4.8) intd (4.5), we get:
2 2
E ‘Y;i\/,s . Y;i\f,e,n < (1 + 'Wchk ‘Etk [ Nz-: o YN,s,n}

tet1 tet1

5 1 tet1 2
+(1+n)Kk(hk+7)E/ ds
k

ty

1 5 tht+1 9 tht+1
+C(hk+—)<hk+/ E|X, - X | ds+/
Yk tE ty

N,e ~N,e
AL

YN,E - YN,e,n
s thy1

2
ds>

1 N N, yN Noenn |2
+(1+ ) KR (he + —)E [Etk( Ytkfl - Ytkj " ‘]Etk tkfl - Ytkj ")
Tkt
+COKE(hy + — )th/ f(s, Xg, YNE ZN=)2 (s,
Vk tr,
Now write ) ) )
N, N,e,n N, N,e N,e N,e,n
B[y —yien <om|yvpe oyl pam |y —yen)”, (4.9)
E|X, - X!'|” < 2B |X, — X, |* + 2E | X, — X1 |7 (4.10)
We obtain

2
N N,
E Y;fk € Y. €M

173

2
< (1+'Wchk ‘Etk[ Ns_YNan}

let1 tet1

9 tpa N _Ne 2
(1t ) KR (e + T)E / zVe — 7N as
k

ty

1 tht1
+C(he+ ) <hi+/ E|X; — Xy " ds + E | Xy, _X’ZHQ>
k

173

1 tet1
+C(hk + —) (/ E
Tk the

L) KR+ [Et,x

N.
YSN,E _ Y €

tet1 tet1 lkt1

2
ds + th‘YN*f _yMen

)
_ YN,e,n)

YN,E _ YN,e,n
tk+1 tht1

tet1 tht1

)~ [B 05

]
tr41
—|—CKk(hk + )th/ f(S, X87 Y;Nﬁ? Zév’a)QdS'

Yk tr

takeyy, = (1 + n)K?: for hy, small enough, it gives

2
N N,
ElY. € Y. €M

< (L4 (14 n)K2hy)E (Y]“ _yNen

2
2 _ yn |2
+ Chi; + Chy max E | X, — X1

the t le+1 tet1
tey1 _ 2 tht1
tk tk
1 2 tht1
N, ) )
+0 | B v [ s+ OmE / F(s. X YN 2V ds,
ke k

becausef(,fhk < C(ho + hp(T —t11)™H < Cln—”. The Gronwall's lemma gives us

k
Z T[]+ @+nK?h)

k=0 Li=0

tk+
tk

Bt Nie N2 Nge Nen
+th/ f(S,XS,Y;’,ZS’)dS—FE‘Y;n’ _thn77

ty

F YN,@ N YN,a,n

ty ty

2 2
[hk + hy, Org]?gnE | X, — X7 |

2
ds

1

, N,e
=Y,

2
N
ZNe — ZNE | X - X, P+ el

tg
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Then, we apply Lemmp 4.4:

2
N N
E }/tt ,€ _ }/t ,E,M
k k

< CntmE?)?a {ho + max E ‘th - X7 2
0<k<n k

+ZEUtM

tn
+holE ; f(s, X5, Y2, ZN9)2ds + B ‘thnV»*f oy e

2
N,e
ZN,E EZ B

173

N
Y'SN,E _ Y €

tet1
2]

A classical estimation gives U]SDXS - Xy, |2] < |s — t3]. Moreover, sinceZz V¢ is bounded,

+ X — Xi, [P +

2
ds]

tn tn
E f(s, Xs, YNE ZN520s < CT(1+\YN’€|OO)+CE/ \ZsN’erlds
0 0

T
< CT(1+\YN’€|OO)+Cn2b/ |ZN<| ds,
0

2
ZM4|" ds that does not depend a@¥i ande. So

tn
E [ f(s, X, YNE, ZN5)24s < On®.
0

With the same type of argument we also have

2
Ne _yNelm < Chyn®. (4.11)

tet1

If we add Zhang’s path regularity theordm]|3.4, Proposifidhahd Propositiofi 4.6, we finally obtain

2b
14n)(K2)2e7" Inn Inn
< CnHME?) — = O (4.12)

2
E ‘Y;N’E _ Y;N,s,n
k k

Now, let deal with the error o&. First of all, (4.B) gives us

tea1 th+1 2
Nsn Nen N,e
o <SR[ e - ).

For0 < k < n — 1, we can us€ (47) anfl (1.8) to obtain

[ 2 (] )

~N.e, N, ~7N, N,

EUt Z, " = 2" dt} < E[/t 7" =2 " dt}

k k

N, N, Nemy|?
+L+ 0 B (2 - 2 - B 25 - ven)

tht1
+ChiE U f(s,XS,Y;N@,Z;V@)st] .

tg
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Assumptions ory and estimation fo give us

- tet1 tht+1 2
Nsn Ns N,e
afa) < Se[[ 2l
el e a > t
N, N, vV Noenn |2
cen SR s - v ) - [ - v
k=0
T
+ChoE [/ L+ |V +n?|zNe ds]
0
— Tkt 2
< 3 [ |-z o
k=0 b
N, Nee, Nem |2
+(1 + 77) ZE |:Etk( Y;k - }/;fk o ‘Etk tk+1 - }/;fk+€1n)
k=0
2
+L 4+ [y = 7] + Onon, (4.13)

with an index change in the penultimate sum. Then, by ugir®) (de get

(1+n) ZE[Etk 2]

2 1
< (1+41n) kth‘Etk { v,V —YN’M} + (1+ )’ K7 (b + %)E/

let1 tet1
173

YNe _ YN,e,n

; _ YN,e,n
k

tk+1 tet1 )

o

N,en
T Y;fkﬂ

1
+C'(hg + ,Y—)hk (hk + sup E [|X X7 \2 +
k

Se[tk,tk+1]

2
D . (4.14)

Thanks to[(4]9),[(4.10)[ (4.]11) and a classical estimatioR @Xs - X, |2] we have

N
}/;N,&‘ —Y, €,

trt1 trt1 tr41

sup E [‘X Xy 2

Se[tk,tk+1}

2
} < hkn2b+E “YNa _yNen

]
Let sety, = 3(1+n)2K2. We recall thafy, K2 < <122 — 0 whenn — 0. So, forn big enough, [(4.14)
become

]

YN 5 Y;i\f,e,n

2 1 lt1

B
2 i,

If we inject this last estimation ir{ (4.]13) and we use ThedBed) we obtain

1 |:/tk+1
sz 5

(1+n) ZE |:Etk

N
“Yt _yNem
k+1 k+1

+Ch2 2,

‘Etk Na_YNen)

tet1 lkt1

1 2
C nn ZsN’E _ gNen|” 4o

g

N

Nan ZN,.E2
At

dt} < Ch0n2b+Clnn sup E“Y y Ve

17
0<k<n—1 + +

1
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By using [4.1R) and Propositign }.6, we finally have
1

2n— t
2 k41
]+ > E U
k=0 b

with K = 4(1 + n)LiZMf,Q. Since this estimation is true for evepy> 0, we have prove the result.l]

(Inn)?

N,en  »Nge
Ztk Zt nl—2b—Ka’

sup E “yti\ﬂe,n _ Yti\f,e
0<k<2n

2
a <c

4.3 Studying of the global errore(N, e, n)

Let us study errors; (IV) andea(N, ¢).
Proposition 4.8. There exists a constant > 0 such that

BQ(N, 8) < W.
2
Proof. We just have to notice th%if(t,Xt,Y;N’E,ZtN’E) — f(t,Xt,Y;N’E,O)‘ <C ‘ZtN’s and‘ZtN’E
is bounded byC'n’. a
Proposition 4.9. We assume thatis a-Hdlder. Then, there exists a constaritsuch that
C
e1(N) € —5
ni-a

Proof. We set
gn(z) = inf {g(u) + Nz —ul|lue ]Rd} .

Thengy is N-Lipschitz andgy — g whenN — +o0 uniformly onR<. More precisely, we have

C
lg — 9N < Nj

11—«

0

Remark 4.10. For some explicit examples, it is possible to have a bettavemence speed. For exam-
ple, let takey(z) = (|z|* 1,>0) A C and assume that is invertible. Then, we can use the fact that this
function is not Lipschitz only ifi, and obtain

el(N)g%P(XTE [O,N%Dumm

nl-a«a

Remark 4.11. It is also possible to obtain convergence speed whismota-Holder. For example, we
assume that is invertible and we sej(x) = H‘jzl 14,>0(z). Then

d 1/q
er(N) < C |SB(Xp)i € 0, 1/N])] < w7 = %
=1

Now we are able to gather all these errors.
Theorem 4.12. We assume that (HX0), (HY0), (HY1), and (HX1) or (HX1") haMk assume also that
g is a-Holder. Then for ally > 0, there exists a constaiit > 0 that does not depend ansuch that
C

e(n) :=e(N,e,n) < —
n 2—a)(2+K)—2+2a

)

with K = 4(1 +n) L3 M2,
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Proof. Thanks to Theorerh 4.7, Propositipn]4.8 and Proposftign 4 8ave

C C C
e(n) < =gt omaewm T =
Then we just have to set:= 12 andb := (2—a)(21+_1?)—2+2a to obtain the result. a

Corollary 4.13. We assume that assumptions of Thedrenj 4.12 hold. Moreovessuene thaf has a
sub-quadratic growth with respect to there exist) < 3 < 1 such that, for allt € [0,7], 2 € R?,
y € R, 2,2 € R4,

f(tay,2) = F(ta,y, 2)] < (Kpe + Lpo(2° + 2] ) |2 = 2.

Then we are allowed to taki§ as small as we want. So, for ajl> 0, there exists a constaiit > 0 that

does not depend amsuch that
C

no—n’

e(n) <

Remark 4.14. When we are allowed to tak€ as small as we want, then we have- n=% < hg for
K sufficiently small. So we do not need to have a discretizagiwhon [T' — ¢,T]: n + 2 points of
discretization are sufficient g, 7'].

Theoren{4.3]2 is not interesting in practice because thedsgfemnvergence strongly depends§n
But, we just see that the global error becomes) < % when we are allowed to chooge as small
as we want. Under extra assumption we can show that we aveealltw take the constadt/, , as small
as we want.

(HX2).  bis bounded or0, T x R? by a constani\Z,.

Theorem 4.15.We assume that (HX0), (HYO), (HY1), (HX2) and (HX1) or (HX®ld. We assume also
that g is a-Ho6lder. Then for ally > 0, there exists a constanit > 0 that does not depend onsuch that

C

no=n’

e(n) <

Remark 4.16. With assumptions of the previous theorem, it is also passibhave an estimation of the
global error for examples given in remarks 4.10 gnd j.11. kjie) = (|z|* 1,>0) A C, we have
C

en) < ———
( )\ na+11+;:1777’

and whery(z) = []%, 1.,>0(z), we have
C

1
ni+zg "

e(n) <

Proof.  Firstly, we suppose that is differentiable with respect to. Thanks to remark 3.3 we see that
it is sufficient to show that .
EQ" [/ |z<|? ds(ﬂ}
t

is small uniformly on(, in N ande whent is close toT".We will obtain an estimation for this quantity
by applying the same computation thgh [2] for the BMO nornmeste of Z page 831. Thus we have

T
EQ"* [/t \Zﬁ“ﬁf@(ﬁ] <EY Hap(YTN’E) —o(Y,")

‘.7-}] L OT -1,
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with () = (e2@+™ —2¢(z+m)—1)/(2¢?), m = |Y |, andcthat depends on constants in assumption
(HYO) but does not depend dvi, f. Let notice thatn, ¢ and sop do not depend oV ande. SinceY
is boundedy is a Lipschitz function, so

T
EQ"* U |Z§V’5|2ds‘]-}] < CE®"" HYTN —yNe .7-}] +C(T —t).
t
We denote(Y V5be | zNete) the solution of BSDE[(4}1) whei;” = . As usual, we seK:” =

andz="" = 0 for s < t and we define/N'¢ (¢, ) := Y,*"*. Then we give a proposition that we will
prove in the appendix.

Proposition 4.17. We assume that (HX0), (HYO0), (HY1), (HX2) and (HX1) or (HXdld. We assume
also thatg is uniformly continuous o®?. Thenu™ is uniformly continuous off), 7] x R¢ and their

existsw a concave modulus of continuity for all functions{'rvaE\N eNyje> O}: that is to sayw does
not depend oV ande.

Then
T R Y.
< EO :llftT o (s)dWs | <v [u™S (T, X7) — u™=(t, Xy)|
+2|vNE| L 17 o (s)avir [ >w ft}
< EV° :w (|T —t| + ]1|ftTJ(S)dWs’<V | X7 — Xt|>

+2|Y M1

ftT o(s)dWs |>1/ ft} ’

with dW, = dW, — V. f(s, X4, Y35, ZV%)ds. But,
1
|

ftT o(s)dWS|<u |XT o Xt|

T T T
/ b(s,XS)der/ sza(s,Xs,YsN’E,ZéV’E)ds—k/ o(s)dW,
t t t

]lUtT o(s)dWS|<u

T
< Mb(T—t)+1/+C/ (1+|2N=)ds
t

T 1/2
< O —t)+v+C(T —1t)/? (/ \Z§v€|2ds> .
t

Sincew is concave, we have by Jensen’s inequality

EQ"* [u) <‘T —t|+ l‘ftT o (s)dWs | <v | X1 — Xt’) ‘E]

T 1/2
) ”(C’T‘t”HC(T—w”EQN’E K/ 2264 as) \ﬂp
t

T 1/2
< o(omaroscmyr [zt aln))
t

< w <C|T —t|+v+CO(T - t)'/? HZN’EHBMO(Q)> :
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But, HZN=E only depends on constants in assumption (HY0), so it is bedinohiformly in vV

Isno

ande. Moreover, ftT o(s)dWs| is independent af; so we have by Bienaymé-Tchebychev inequality

T
QN,E - N, N
E [l‘ftTJ(S)dWS‘>y ‘E] = Q 8(/15 U(S)dWS >V>
I to(s)o(s)ds
S T2
_ MAT -1
~ V2 3

Finally, we have

(T -1)
2

N,e N’ N’
o

.7—}] < w(C\T—tyl/2+u>+C

1%
< w (c T — Y2 4|7 — t]1/4> v o -2,

t — T. Whenf is not differentiable with respect tobut is only locally Lipschitz then we can prove the

result by a standard approximation. O
A Appendix
A.1 Proof of Lemma[4.3.
We have,
2n—1 n—1 2n—1
[T a+mn)= (Hu + Mhi)> ( [Ja+ Mhi)> .
=0 =0 i=n
Firstly,
I] (0 +Mmh) < <1+M—> < C.
- n

Moreover, for0 <: < n — 1,

_alnn

nny o ppai/ng 00

hl' = ti+1 — ti = T’rliai/n(l — €

thanks to the convexity of the exponential function. So

n—1 n—1

[Ta+m) < IT (14 drranmt)

1=0 1=0

N
o
i

o

N
o
"

o

vt ()

a/n
MTa,ln—nin ) .

n na/n—1

VAN
®

~

T

N
D
~
T
|
~
2
|
S
~
=
=
S
N——



A APPENDIX 20

But,
Inn ne/n Inn 1 1

o Aan )
n ne/n —1 na,lnT" a

Thus, we have shown the result. O

A.2 Proof of Lemma44.
Thanks to Lemm§ 4.3, we have

Hn;ol (1 + Myh; + Ms T,hi, ) n_l M n-l
SR h’ LT (1 — ki) < [[t+ Mib) < C.
| <1 + My T_tzi-H) i=0 L4 Mo T—ti i=0
So, we just have to show that
n—1 e
I (14 g ) < cne
pirs T —tit1
But,
hA
14+ My—"— =1+ My(n®™ —1).
T —tit1
So,
n—1 hz o/ "
IT(1+M—) = <1+M2(n —1))
L - T — 1t
=0
1 In?
= exp <nln (1 —|—a]\42ﬂ + 0 < - 2n>>>
n n
In’n Al
= exp|aMalnn+ O ~ nt2,
n
Thus, we have shown the result. 0

A.3 Proof of Proposition 4. 17.

We will prove this proposition as the author §f [7] do for Position 4.2. In all the proof we omit the
superscriptV, e for u, Y andZ to be more readable. Let, ), € R? andt, t), € [0,T]. By an argument
of symmetry we are allowed to suppose thak t,. We have

|U(t0,1’0) - U(taaxé)‘ < |U(t0,1’0) - U(to,xé)‘ + ‘U(t0,$6) - U(t6,.%'6)| :

Let us begin with the first term. We will use a classical argotaé linearization:

! / T ! /
Y;toﬂﬂo _ Y;toﬂfo _ gN(X;Q,l“O) _ gN(X;?vmo) +/ Qg <X§0,l‘0 _ Xzovm()) + 0, (Ysto,l“o _ YStOF’fo) ds
t

T
[ (e
S I
t

with

to,x to,zy  rto,x to,x( -t to,u
fa(saXSO OaY:‘:‘ O’ZS 0)_f8(SaXS O,Y; OaZS 0)
Qg = X;o,:vo _ X'znyzj
0 elsewhere,

if Xm0 _ x0T 4,
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to, to, Lo, to, 10,20 b0, T
fE(S7XSO$07Y90xO7ZS 0)_f€(87X80 x07}/t9 07Z8 0)
— to,!
ﬁs Y'St0710 _ Y'SO To
0 elsewhere,

if Ystowo _ Ystovxf) £ 0,

€ to,zo to,xo rrto,To € to,ro to,z0 110,20
f(S,Xs’ aY;, ,Z37 )_f(SaXS, ’Y:?’ ,ZS7 )t
2

Vs = Z;fo,ro . Z};O’%

0 elsewhere,

anddW, := dW,—~,ds. By a BMO argument, there exists a probabiliyunder whichlV is a brownian
motion. Then we apply a classical transformation to obtain

t / T /
Q [efto Bsds (Y;to,ro . Yfm%)] - [EQ |:eft0 Bsds (gN(Xég,mo) - gN(X;?,xo)>
T Ej !
[l )]
to
and

!u(to,xo) — u(to,xg)‘ < C (EQ [w (‘X;”xo — X;t?’gc6

T
) [ e e - a).
to
with w a modulus of continuity of; that is also a modulus of continuity fgry. We are allowed to
suppose that is concavf, so Jensen’s inequality gives us
to, ! T to, !
|u(t0,x0) — U(t07$6)‘ < C (w (EQ HX;g%J»‘o _ Xj?vﬂﬁo }) —l—/ EQ HXzo,:vo _ Xso,xo ] ds> )
to

By using the fact thab is bounded we can prove the following lemma exactly as astbb{ff] do for
their Proposition 4.7:

Proposition A.1. 3C' > 0 that does not depend oN and ¢ such thatvt,t € [0,7], Vz,2' € R,

Vs € [0, 7],
. 2 [l - x| < (e o —1).

Then,
lu(to, z0) — u(to,zf)| < C(w (Jwo — 2p]) + |zo — 20]) -
Now we will study the second term:

|U(t0,1'/0) — u(t67x6)| _ ‘Y;;mxé _ t07$0

‘Yto,xo . to,xo

/ / / !
Yto,azo _ Yto,azo
, .
to t;

Firstly,
tl
t th ! t!
‘Yto’xo o R f(s,2p, Ys
0

0% 0)ds

< Clto — ) -
to

There exist two positive constantsaindb such thatv(z) < az +b. Then the concave hull of — w(z)V (1,51 (az + b))
is a also a modulus of continuity gf

to,x! . to,z!
(Zgoﬂco _ ZSO 0) if Zgoﬂfo _ ZSO 0 £,
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Moreover, as for the first term we have

t / . T ’ T
@ [ehia et (jorb —yfort) |~ EQ [eftoﬁsds (9w (X7270) = gu (X7070))

T S d ! ! !
[ i (7 i) ]
to

and

‘Yto,:vo . to,:vo < C (w <|t0 . t6|1/2) 4 |t 750|1/2)
Finally,

lu(to, zh) — u(th,zp)| < C (w <|t0 - t{)|1/2) T It t0|1/2>
and

|u(t0,x0) - u(t6,x6)| <C <w (|x0 — x6|) +w (|t0 _ t6|1/2) + |:U0 — :UO| + |t0 — t0|1/2)

Sow is uniformy continuous off0, 7] x R? and this function has a modulus of continuity that does not
depend onV ands. Moreover, we are allowed to suppose that this modulus diraity is concave. [
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