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A going down theorem for Grothendieck Chow motives

Charles De Clercq

Abstract

Let X be a geometrically split, geometrically irreducible variety over a field F
satisfying the nilpotence principle. Consider a motivic direct summand N of X and

M a twisted motivic direct summand of another F -variety Y . We show that under

some assumptions on a field extension E/F , if an indecomposable motive is both

an outer direct summand of NE and a direct summand of ME, then an outer direct

summand of N is also a direct summand of M .

Introduction

Let F be a field and F a finite field. Throughout this note an F -variety will be un-
derstood as a smooth, projective and separated scheme of finite type over F . For any
F -variety X , the Chow group of cycles on X modulo rational equivalence with coeffi-
cients in F is defined by CH(X)⊗ F and denoted Ch(X). An F -variety X is split (resp.
geometrically split) if the motive of X (resp. the motive of XE for some field extension
E/F ) in the category CM(F ;F) of Grothendieck Chow motives with coefficients in F is
isomorphic to a finite direct sum of Tate motives.

Another important property is the following. An F -variety X satisfies the nilpotence
principle if for any field extensions L/E/F the kernel of the change of base field morphism
resL/E : End(M(XE)) −→ End(M(XL)) consists of nilpotents. The present note provides
the following technical tool to study motivic decompositions of geometrically split F -
varieties satisfying the nilpotence principle.

Theorem 1. Let N be a motivic direct summand of a geometrically split, geometrically
irreducible F -variety X satisfying the nilpotence principle and M a twisted motivic direct
summand of another F -variety Y . Assume that there is a field extension E/F such that

1. every E(X)-rational cycle in Ch(X × Y ) is F (X)-rational;

2. an indecomposable motive in CM(F ;F) is both an outer direct summand of NE and
a direct summand of ME .

Then an outer direct summand of N is a direct summand of M .

In the first section we recall briefly the definition of the category CM(F ;F) while
the second section is devoted to the study of direct summands of geometrically split F -
varieties, introducing the notion of upper and lower direct summands. In section 3 we
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prove theorem 1 and the fourth section is devoted to the already existing applications of
particular cases of this result.

Acknowledgments. I would like to thank N. Karpenko for raising this question and his
suggestions.

1 Generalities on Grothendieck Chow motives

We refer to [3] and [8] for more details on the construction of the category CM(F ;F)
of Grothendieck Chow motives over F with coefficients in F.

Let X and Y be two F -varieties and X =
∐n

k=1Xk be the decomposition of X as
a disjoint union of irreducible components with respective dimension d1,...,dn. For any
integer i the group of correspondences between X and Y of degree i with coefficients in F

is defined by Corri(X, Y ) =
∐n

k=1Chdk+i(Xk×Y ). We now consider the category C(F ;F)
whose objects are pairs X [i], where X is an F -variety and i is an integer. Morphisms
are defined in terms of correspondences by HomC(F ;F)(X [i], Y [j]) = Corri−j(X, Y ). For
any correspondences f : X [i] Y [j] and g : Y [j] Z[k] in Mor(C(F ;F)) the composite
g ◦ f : X [i] Z[k] is defined by

g ◦ f =
(

XpZY
)

∗

(

(X×YpZ)
∗(f) · (pY×Z

X )∗(g)
)

where UpWV : U × V ×W → U ×W is the natural projection.
The category C(F ;F) is preadditive and its additive completion CR(F ;F) is the cat-

egory of correspondences over F with coefficients in F, which has a structure of tensor
additive category given by X [i] ⊗ Y [j] = (X × Y )[i + j]. The category CM(F ;F) of
Grothendieck Chow motives with coefficients in F is the pseudo-abelian envelope of the
category CR(F ;F). Its objects are finite direct sums of triples (X, π)[i], where X is an
F -variety, i is an integer and π ∈ Chdim(X)(X ×X) is a projector. Morphisms are given
by HomCM(F ;F) ((X, π)[i], (Y, ρ)[j]) = ρ ◦ Corri−j(X, Y ) ◦ π and the objects of CM(F ;F)
are called motives. For any F -variety X the motives (X,ΓidX )[i] (where ΓidX is the graph
of the identity of X) will be denoted X [i] and X [0] is the motive of X . The motives
F[i] = Spec(F )[i] are the Tate motives.

Definition 2. Let M ∈ CM(F ;F) be a motive and i an integer. The i-dimensional Chow
group Chi(M) of M is defined by HomCM(F ;F)(F[i],M). The i-codimensional Chow group
Chi(M) of M is defined by HomCM(F ;F)(M,F[i]).

For any field extension E/F and any correspondence α : X [i] Y [j] the pull-back of
α along the natural morphism (X × Y )E → X × Y will be denoted αE . If N = (X, π)[i]
is a twisted motivic direct summand of X , the motive (XE , πE)[i] will be denoted NE.

Finally the category CM(F ;F) is endowed with the duality functor. IfX and Y are two
F -varieties and α ∈ Ch(X × Y ) is a correspondence, the image of α under the exchange
isomorphism X × Y → Y ×X is denoted tα. The duality functor is the additive functor
† : CM(F ;F)op → CM(F ;F) which maps any motive (X, π)[i] to (X,tπ)[− dim(X) − i]
and any correspondence α : (X, π)[i] (Y, ρ)[j] to tα.
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2 Direct summands of geometrically split F -varieties

Throughout this section we consider a geometrically split F -variety X and E/F a
splitting field of X . By [7, Remark 5.6] the pairing

Ψ :
Ch(XE)× Ch(XE) −→ F

(α, β) 7−→ deg(α · β)

is non degenerate hence gives rise to an isomorphism of F-modules between Ch(XE)
and its dual space HomF(Ch(XE),F) given by α 7→ Ψ(α, ·). The ante dual basis of an
homogeneous basis (xk)

n
k=1 of Ch(XE) with respect of Ψ is the basis (x∗

k)
n
k=1 of Ch(XE)

such that for any 1 ≤ i, j ≤ n, Ψ(xi, x
∗
j ) = δij , where δij is the Kronecker symbol. By

definition of the composition in CM(F ; Λ), for any other F -varieties Y , Y ′ and any cycles
(y, y′) ∈ Ch(Y )× Ch(Y ′) we have the formula

(xi × y) ◦ (y′ × x∗
j ) = δij(y

′ × y). (1)

Let π be a non-zero projector in Chdim(X)(X ×X) and N = (X, π) the associated mo-
tivic direct summand ofX . The base ofN is the set B(N) = {i ∈ Z, Chi(NE) is not trivial}.
The bottom of N (denoted b(N)) is the least integer of B(π) and the top of N (denoted
t(N)) is the greatest integer of B(N). We now introduce the notion of upper and lower
motivic direct summands of N .

Definition 3. Let N be a direct summand of the twisted motive of a geometrically split
F -variety and M a motivic direct summand of N . We say that

1. M is upper in N if b(M) = b(N);

2. M is lower in N if t(M) = t(N);

3. M is outer in N if M is both lower and upper in N .

Remark 4. Keeping the same F -varietyX and any direct summand N = (X, π), consider
an homogeneous basis (xk)

n
k=1 of Ch(XE) and its ante dual basis (x∗

k)
n
k=1. The base,

bottom and top of N can be easily determined by the decomposition

πE =

n
∑

i,j=1

πi,j(xi × x∗
j )

noticing that B(N) = {dim(xi), πi,j 6= 0 for some j}.

Lemma 1. Let N = (X, π) be a motivic direct summand of a geometrically split F -
variety and M = (X, ρ) a direct summand of N . Then M is lower in N (resp. upper in
N) if and only if the dual motive M † is upper in N † (resp. M † is lower in N †).

Proof. For any motive O and for any integer i, Chi(O†) = Ch−i(O). It follows that
b(O†) = −t(O) and t(O†) = −b(O).
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3 Proof of the main theorem

Let C be a pseudo-abelian category and C be the set of the isomorphism classes of
objects of C. We say that the category C satisfies the Krull-Schmidt principle if the
monoid (C,⊕) is free. While A. Vishik has shown that the Krull-Schmidt principle holds
for the motives of quadrics (even in the case of integral coefficients, see [8]) the Krull-
Schmidt principle also holds for the motives of geometrically split F -varieties satisfying
the nilpotence principle in CM(F ;F) by [5, Corollary 3.3].

Lemma 2. Let (X, π) be a direct summand of an F -variety X . A direct summand (X, ρ)
of X is a direct summand of (X, π) if and only if π ◦ ρ ◦ π = ρ.

Proof. Indeed End ((X, π)) = π◦Chdim(X)(X×X)◦π, thus any projector ρ in End ((X, π))
satisfies π ◦ ρ ◦ π = ρ.

If X is an F -variety, we write Ch(X) for the colimit of all Ch(XK), where K runs
through all field extensions K/F . For any field extension L/F , we will say that an
element lying in the image of the natural morphism of Ch(XL) −→ Ch(X) is L-rational.
The image of any correspondence α in Ch(X) will be denoted α. The following lemma is
the key-ingredient in the proof of theorem 1.

Lemma 3. Let N be a motivic direct summand of a geometrically split, geometrically ir-
reducible F -variety X satisfying the nilpotence principle andM a twisted direct summand
of an F -variety Y . Assume the existence of a field extension E/F such that

1. any E(X)-rational cycle in Ch(X × Y ) is F (X)-rational;

2. there are two correspondences h : NE  ME and k : ME  NE such that (XE , k◦h)
is an lower direct summand of NE .

Then there are two correspondences f : N  M and g : ME  NE such that (XE , g ◦fE)
is a direct summand of NE which contains any lower indecomposable direct summand of
(XE , k ◦ h). Furthermore if k is F -rational, then g is also F -rational.

Proof. Setting M=(Y, ρ)[i] and N=(X, π), we construct explicitly the two correspon-
dences f and g. Since E(X) is a field extension of E, h is E(X)-rational, hence F (X)-
rational by assumption 1. The morphisms Spec(F (XL)) −→ XL for every field extension
L/F induce the pull-back ε∗ : Ch(X × Y ×X) −→ Ch((X × Y )F (X)). Furthermore ε∗

induces a surjection of F -rational cycles onto F (X)-rational cycles by [3, Corollary 57.11]
and we can consider a cycle h1 ∈ Ch(X×Y ×X) such that ε∗(h1) = h. Since ε∗ maps any
homogeneous cycle

∑

i αi×βi×1 to
∑

i αi×βi and vanishes on homogeneous cycles whose
codimension on the third factor is strictly positive, we have h1 = h× 1+ · · · where ” · · ·”
is a linear combination of homogeneous cycles in Ch(X × Y ×X) with strictly positive
codimension on the third factor.

We now look at h1 as a correspondence X  Y ×X and consider the cycle h2 = h1◦π.
By formula 1 we have

h2 =
(

h× 1
)

◦ π + · · · ,
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where ” · · ·” is a linear combination of homogeneous cycles in Ch(X × Y ×X) with di-
mension lesser than t(N) on the first factor and strictly positive codimension on the third
factor. Finally considering the pull-back of the morphism ∆ : X × Y → X × Y × X
induced by the diagonal embedding X and setting h3 = ∆∗(h2), we have

h3 = h ◦ π + · · ·

where ” · · ·” stands for a linear combination of homogeneous cycles in Ch(X × Y ) with
dimension strictly lesser than t(N) on the first factor.

By formula 1 and since k ◦ h is a projector, for any positive integer n we have

(

π ◦ k ◦ h3 ◦ π
)n

= k ◦ h+ · · ·

where ” · · ·” is a linear combination of homogeneous cycles in Ch(X ×X) with dimension
on the first factor strictly lesser than t(N). The direct summand k ◦ h is lower, therefore
all these correspondences are non-zero, and an appropriate power

(

π ◦ k ◦ h3 ◦ π
)◦n0

is
a non-trivial projector by [5, Corollary 3.2]. This implies (see [3, Exercise 92.6]) that
for another integer n1, the correspondence (πE ◦ k ◦ (h3)E ◦ πE)

n1 is a projector. Setting
f = h3 ◦π and g = (πE ◦ k ◦ (h3)E ◦ πE)

◦n1−1 ◦πE ◦k, we see that g is F -rational if k is F -
rational. The correspondence g ◦ fE is a projector which defines a direct summand of NE

by lemma 2. Furthermore any lower indecomposable direct summand of (XE, k ◦ h) must
lie in (X, g◦fE), since g◦f contains all factors xi×x∗

j , where dim(xi) = t ((XE, k ◦ h)).

Proof of Theorem 1. Let O=(XE, κ) be an outer indecomposable direct summand of NE

which is also a direct summand of ME . We prove theorem 1 by applying lemma 3 once,
then the duality functor and finally lemma 3 another time to get all our correspondences
defined over the base field F .

Since O is a direct summand of ME , there are two correspondences h : NE  ME

and k : ME  NE such that k ◦ h = κ. Moreover O is lower in NE , so lemma 3 justifies
the existence of two other correspondences h′ : N  M and k′ : ME  NE such that
O2 = (XE , k

′ ◦ h′
E) is a direct summand of NE , and the motive O2 is outer in NE since it

contains O. The dual motive O†
2 = (XE ,

th′
E ◦tk′)[− dim(X)] is therefore outer in N †

E by
lemma 1 and is a direct summand of the dual motive M †

E . Twisting these three motives
by dim(X), we can apply lemma 3 again. The correspondence th′ is F -rational, so lemma
3 gives two correspondences f : N †

 M † and g : M †
 N † such that the motive

(XE , gE ◦ fE) is both an outer direct summand of N † (since it contains the dual motive
O†) and a direct summand of M †. Transposing again, the motive (X,tf ◦tg) is an outer
direct summand of N and a direct summand of M .

4 Applications

As shown by Chernousov, Gille and Merkurjev (see [1] and [2]) any projective homoge-
neous variety under the action of a semisimple affine algebraic group is geometrically split
and satisfies the nilpotence principle. The notions of upper and lower direct summands
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were introduced by Karpenko in the case of integral F -varieties (see [6, Section 2b]) to
study motivic decompositions of such projective homogeneous varieties.

The theory of upper motives and the study of motivic decompositions of projective
homogeneous varieties under a semisimple affine algebraic groupG already have important
applications. For example [6, Theorem 4.3] shows that if D is a p-primary central division
F -algebra, any generalized Severi-Brauer variety SB(pk, D) has an indecomposable outer
direct summand in CM(F ;Fp). In particular those varieties are incompressible, and the
computation of the canonical dimension of any variety of flags of right ideals in a central
simple F -algebra follows ([6, Corollary 4.4]).

Theorem 1 allows to extract some motivic direct summands which appear on some
field extension E/F to the base field. Theorem 1 generalizes [5, Proposition 4.6], replacing
the whole motive of the variety X by an arbitrary direct summand. Replacing X by a
direct summand requires to construct explicitly the rational cycles to get an outer direct
summand defined over F , and theorem 1 thus gives a new proof of [5, Proposition 4.6].
Note that the assumption of theorem 1 on the field extension E(X)/F (X) holds if the
field extension is unirational.

The particular case [5, Proposition 4.6] has important applications, and is one of
the main ingredients in the proof of [5, Theorem 1.1]. Finally theorem 1 was applied by
Garibaldi, Petrov and Semenov in [4] to study motivic decompositions of projective homo-
geneous varieties under the action of a semisimple affine algebraic group G of exceptional
type, and answer a question of Rost and Springer (see [4, Proposition 9.11, Proposition
9.17]).
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