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A going-down theorem for Chow-Grothendieck motives

Charles De Clercq

January 5, 2010

Abstract

Let (M(X), p) be a direct summand of the motive associated with a geometrically split,
geometrically irreducible variety over a field F satisfying the nilpotence principle. We show
that under some conditions, if (M(XE), pE) is a direct summand of another motive ME over
a field extension E, then (M(X), p) is a direct summand of M over F .

I Introduction

Throughout this note, Λ will always be a finite field. Given a field F , an F -variety will be
understood as a separated scheme of finite type over F . Given such Λ and an F -variety X , we can
consider CHi(X ; Λ), the Chow group of i-dimensional cycles on X with coefficients in Λ, defined
by CHi(X) ⊗Z Λ. These groups are the first step in the construction of the category CM(F ; Λ)
of Chow-Grothendieck motives with coefficients in Λ. This category is constructed as the pseudo-
abelian enveloppe of the category CR(F ; Λ) of correspondences with coefficients in Λ. Our main
reference for the construction and the main properties of these categories is [2].

Definition I.1. Let X be an F -variety. A field extension E/F is a splitting field of X if the
E-motive XE is isomorphic to a finite direct sum of twisted Tate motives.

Following [2], we will write CH(X ; Λ) for the colimit of all CH(XE ; Λ), where E runs through
all field extensions E/F . We will say that an F -variety X is geometrically split if X splits over the
algebraic closure of F .

For any field extension E/F , we will say that any element of CH(X ; Λ) lying in the image of
the restriction morphism CH(XE ; Λ) −→ CH(X ; Λ) is E-rational.

The purpose of this note is to generalize the following result, proved by N. Karpenko ([3,
Proposition 4.6]).

Theorem I.2. Let X be a geometrically irreducible, geometrically split variety satisfying the nilpo-
tence principle and M be a motive. Assume that there exists a field extension E/F such that

1. the field extension E(X)/F (X) is purely transcendental;

2. the upper indecomposable summand of M(X)E is also lower and is a summand of ME.

Then the upper indecomposable summand of M(X) is a summand of M .

The class of geometrically split, geometrically irreducible F -varieties satisfying the nilpotence
principle is quite large (see [2], [1], [4]). N. Karpenko uses this result for instance to prove several
motivic decompositions in CM(F ; Λ) ([3, lemma 7.1]). Here we generalize theorem I.2 by replacing
the motive M(X) by the direct summand (M(X), p) associated with a projector p ∈ CHdim(X)(X×
X ; Λ).

I would like to thank Nikita Karpenko, my Ph.D. thesis adviser, for raising this question and
guiding me during this work.

II The Chow group of a geometrically split F -variety

Let X be a geometrically split F -variety. Let us consider the motivic decomposition

M(XE) ≃
m⊕

i=1

Λ(ai)
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where m and ai are integers, over a splitting field E of X .

By definition of morphisms in CM(E; Λ), HomCM(E;Λ)(Λ(i), Λ(j)) ≃ δijΛ, where δij stands
for the Kronecker symbol. Therefore there is an integer n called the rank of X such that

CH(XE ; Λ) ≃
n⊕

i=1

Λ.

Moreover, the isomorphism between M(XE) and the previous direct sum of twisted Tate motives
defines an homogeneous basis (xk)n

k=1 of the Λ-module CH(XE ; Λ).

Proposition II.1. Let X be a geometrically split F -variety. then the pairing

Ψ :
CH(X ; Λ) × CH(X ; Λ) −→ Λ

(α, β) 7−→ deg(α · β)

is bilinear, symetric and non-degenerate.

Proof. c.f. [5, Remark 5.6]

Since the bilinear form Ψ is non-degenerate, it gives rise to an isomorphism of Λ-modules
between CH(X ; Λ) and its dual space HomΛ(CH(X; Λ), Λ) given by

f :
CH(X; Λ) −→ HomΛ(CH(X ; Λ), Λ)

u 7−→ Ψ(u, ·)

Now consider the dual basis (x′
i)

n
i=0 of the basis (xi)

n
i=0. We define the antedual basis of (xi)

n
i=0

by (x∗
i )

n
i=0, where x∗

i := f−1(x′
i). By definition of the antedual basis, we have Ψ(xi, x

∗
j ) = δij ,

where δij is the Kronecker symbol.

Proposition II.2. Let M and N be two motives in CM(F ; Λ), with M split. Then there is an
isomorphism of Λ-modules

CH∗(M ; Λ) ⊗ CH∗(N ; Λ) −→ CH∗(M ⊗ N ; Λ)

Proof. c.f. [2, Proposition 64.3].

Computations become much simpler on split varieties.

Lemma II.3. Let X be a split variety of rank n and two smooth complete varieties Y and Y ′.
Consider the homogeneous basis (xk)n

k=1 defined previously and its antedual basis (x∗
k)n

k=1. Then
for all cycles y ∈ CH(Y ; Λ), y′ ∈ CH(Y ′; Λ) and for all 1 ≤ i, j ≤ n,

(xi × y) ◦ (y′ × x∗
j ) = δij(y

′ × y).

Proof. We set 1 for the identity class, either in CH(Y ; Λ) or in CH(Y ′; Λ).

(xi × y) ◦ (y′ × x∗
j ) = (Y ′

pY
X)∗

(
(Y ′×XpY )∗(y′ × x∗

j ) · (p
X×Y
Y ′ )∗(xi × y)

)

= (Y ′

pY
X)∗

(
(y′ × x∗

j × 1) · (1 × xi × y)
)

= (Y ′

pY
X)∗

(
y′ × (x∗

j · xi) × y
)

= deg(x∗
j · xi)(y

′ × y)

= δij(y
′ × y)
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III Direct summands of geometrically split F -varieties

Let X be an F -variety and p ∈ CHdim(X)(X ×X ; Λ) be the projector defining the direct summand
(X, p). A direct summand of the motive (X, p) is given by a projector in EndCM(F ;Λ)((X, p), (X, p)),
by definition of the category CM(F ; Λ).

Lemma III.1. Let X be an F -variety, and p ∈ CHdim(X)(X × X ; Λ) the projector defining the
direct summand (X, p). Then every direct summand of (X, p) is a summand (X, q) associated with
a projector q ∈ CHdim(X)(X × X ; Λ) satisfying p ◦ q ◦ p = q.

Proof. Indeed we have EndCM(F ;Λ)((X, p), (X, p)) = p ◦ CHdim(X)(X × X ; Λ) ◦ p, thus for any
projector q ∈ EndCM(F ;Λ)((X, p), (X, p)), there is a cycle s ∈ CHdim(X)(X × X ; Λ) such that
q = p ◦ s ◦ p. But p is itself a projector, therefore p ◦ q ◦ p = p2 ◦ s ◦ p2 = p ◦ s ◦ p = q.

We now study the notion of upper and lower direct summands of a direct summand (M(X), p).
From now on, we consider a geometrically split F -variety X of rank n. We keep the notation
(xk)n

k=1 for the homogeneous basis of CH(X ; Λ) and (x∗
k)n

k=1 for the antedual basis of (xk)n
k=1

associated with the pairing Ψ.

Definition III.2. Let X a geometrically split F -variety and p ∈ CHdim(X)(X × X ; Λ) be a non-
zero projector. We denote by p the image of p under the restriction map to a splitting field E of
X. Considering the bases (xi)

n
i=1 and (x∗

i )
n
i=1 of CH(XE ; Λ), we have

p =
n∑

i=1

n∑

j=1

pij(xi × x∗
j ).

We define the lowest codimension of p by

cdmin(p) := min
pij 6=0

(codim(xi)))

where codim(xi) stands for the codimension in CH(X ; Λ).

As X is geometrically split, the summand (X, p) associated with the projector p ∈ CHdim(X)(X×
X ; Λ) splits over a field extension E/F :

(XE , pE) ≃
m⊕

i=1

(Λ(ai))
mi (III.1)

where ai, mi and m are integers, and we set i < j ⇒ ai < aj .

Definition III.3. Let X be a geometrically split F -variety, and (X, p) be a summand of X. Let
also (X, q) be a direct summand of the motive (X, p). Consider the decomposition III.1 of (X, p)
in a splitting field E of X. The summand (X, q) is :

1. upper in (X, p) if CHa1((XE , qE)) 6= 0.

2. lower in (X, p) if CHam
((XE , qE)) 6= 0.

By definition, a direct summand (X, q) is upper in (X, p) if and only if (X(− dim(X)),tq)
is lower in the dual motive (X(− dim(X)),tp). We can now study the link between the lowest
codimension of a summand and the position of its motivic decomposition.

Proposition III.4. Let X be a geometrically split F -variety, and p ∈ CHdim(X)(X × X ; Λ) the
projector defining the summand (X, p). Consider the motivic decomposition III.1 given above of
the motive (XE , pE), where E is a splitting field of X. Then

a1 = cdmin(p)

Proof. Let us show first that cdmin(p) ≥ a1. Indeed we consider the motivic decomposition III.1,
thus
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CHa1((XE , pE); Λ) ≃
m⊕

i=1

HomCM(E;Λ)(Λ(ai), Λ(a1))
mi ≃ Λm1 6= 0.

Consequently CHa1(XE , Λ) ◦ pE 6= 0 by definition of Chow groups in CM(E; Λ).
Let x ∈ CHa1(XE ; Λ) such that x ◦ pE 6= 0. Since (xi)

n
i=1 is homogeneous, we can consider the

base (xk)k∈K of the Λ-module CHa1(XE ; Λ) and write x =
∑

k∈K λkxk. Then

x ◦ pE 6= 0 ⇒

(
∑

k∈K

λkxk

)
◦




n∑

i=1

n∑

j=1

pij(xi × x∗
j )


 6= 0

⇒
n∑

i=1

∑

k∈K

λkpikxi 6= 0

⇒ ∃(i0, k0) ∈ {1, .., n} × K, pi0k0
6= 0

Then since codim(xi0 ) = dim(XE) − codim(x∗
k0

) = codim(xk0
) = a1 we have proven that

cdmin(p) ≤ a1.
Suppose on the other hand that cdmin(p) = s < a1. Then there are two index i0, j0 in

{1, .., n} such that pi0j0 6= 0, and codim(xi0) = s. Then xj0 ◦ pE =
∑n

i=0 pij0xi 6= 0, therefore
CHs(XE ; Λ) ◦ pE 6= 0, as codim(xi0 ) = codim(xj0 ). But this contradicts the fact that

CHs(XE ; Λ) ◦ pE = HomCM(E;Λ)((XE , pE); Λ(s))

=

m⊕

i=1

HomCM(E;Λ)(Λ(ai); Λ(s))mi

= 0

Therefore cdmin(p) = a1.

Proposition III.5. Let X be a geometrically split F -variety, and p the projector defining the
summand (M(X), p). Let also be (M(X), q) a direct summand of (M(X), p). Then

cdmin(p) = cdmin(q) ⇔ (X, q) is upper in (X, p).

Proof. We keep the same notations as in proposition III.4.
As q defines a direct summand of (X, p) we have q = p ◦ q ◦ p by lemma III.1, thus for any k

CHk((XE , qE); Λ) = CHk(XE ; Λ) ◦ qE

= CHk(XE ; Λ) ◦ (pE ◦ qE ◦ pE)

But qE ◦ pE = (pE ◦ qE ◦ pE) ◦ pE = pE ◦ qE ◦ pE = qE , thus

CHk((XE , qE); Λ) =
(
CHk(XE ; Λ) ◦ pE)

)
◦ qE = CHk((XE , pE); Λ) ◦ qE .(∗)

Therefore for any k such that CHk((XE , pE); Λ) = 0, we have shown that CHk((XE , qE); Λ) =
0.

Now write the decomposition of (XE , qE) :

(XE , qE) ≃
s⊕

j=1

(Λ(bj))
si

with i < j ⇒ bi < bj . Equality (∗) implies that for all j ∈ {1, .., s}, bj ≥ a1. But proposition III.4
implies that b1 = cdmin(q), thus

cdmin(p) = cdmin(q) ⇔ b1 = a1

⇔ CHa1((XE , qE); Λ) 6= 0
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IV Proof of the main theorem

Following [3], we recall some results on the category generated by geometrically split F -varieties
satisying the nilpotence principle in CM(F ; Λ). We will say that a pseudo-abelian category satisfies
the Krull-Schmidt principle if every object of this category decomposes in a unique way as a direct
sum of indecomposable objects (up to permutation of these indecomposable summands).

Lemma IV.1. ([3, Corollary 3.2]) Let X be a geometrically split F -variety satisfying the nilpotence
principle. Then an appropriate power of any endomorphism of the motive X is a projector.

Proposition IV.2. ([3, Corollary 3.3])The Krull-Schmidt principle holds for the pseudo-abelian
Tate subcategory of CM(F, Λ) generated by the motives of geometrically split F -varieties satisfying
the nilpotence principle.

Remark IV.3. More generally, proposition IV.2 is true when Λ is any finite commutative ring (see
[3, Corollary 3.2]). The Krull-Schmidt principle also holds for the category generated by motives
of quadrics when the ring of coefficients Λ is Z. Nevertheless, the Krull-Schmidt principle does
not hold in the category generated by the motives of projective homogeneous varieties when Λ = Z

(see [6]) and this is one of the reasons why we suppose that Λ is a finite field.

Let X be a geometrically split F -variety. Let p ∈ CHdim(X)(X×X ; Λ) be the projector defining
the direct summand (X, p) of X . As seen before, the homogeneous base (xk)n

k=1 and its antedual
base (x∗

k)n
k=1 relatively to the pairing Ψ allow us to decompose p in a splitting field E of the motive

X , that is to say pE =
∑n

i=1

∑n

j=1 pij(xi × x∗
j ).

Definition IV.4. Let X be a geometrically split F -variety and E a splitting field of the motive X.
Let p be the projector defining the direct summand (X, p). We say that couple (i, j) ∈ {1, .., n}2 is
contained in pE if pij 6= 0. We will also say that an element xi×x∗

j of the base of CHdim(XE)(XE×
XE; Λ) is contained in pE if the couple (i, j) is contained in pE.

Notation IV.5. The set of all elements xi × x∗
j of CHdim(XE)(XE × XE ; Λ) which are contained

in the projector pE will be called the base of pE, and denoted B(pE).

Definition IV.6. Let X be a geometrically split F -variety and two projectors p and q defining the
two direct summand (X, p) and (X, q). Let E be a splitting field of X. We say that p contains q if
B(qE) ⊂ B(pE). We will say that q intersects p if B(qE) ∩ B(pE) 6= ∅.

Remark IV.7. Given a geometrically split F -variety X and two direct summands (X, p) and (X, q)
of the motive X defined by the two projectors p and q, we will also say that the summand (X, p)
contains the summand (X, q) if the projector p contains the projector q.

Since Λ is a finite field, we have seen that the category generated by motives of geometrically
split F -varieties satisfying the nilpotence principle satisfies the Krull-Schmidt principle (proposition
IV.2). By definition of the category CM(F ; Λ), direct summands of the motive of an F -variety
correspond to projectors in EndCM(F ;Λ)(X), thus in a splitting field E of the motive X , every

F -rational cycle in CHdim(X)(X × X ; Λ) is a linear combination of minimal F -rational cycles,
corresponding to indecomposable direct summands of X . We now prove the key-lemma.

Lemma IV.8. Let X be a geometrically split, geometrically irreducible F -variety satisfying the
nilpotence principle. Let p be the projector defining the direct summand N := (X, p) of X. Let
also Y be a smooth complete F -variety, and M := (Y, q) the direct summand of Y induced by
the projector q. Assume that there is a field extension E/F and two E-rational correspondences
h : XE → ME and k : ME → XE such that

1. every E(X)-rational cycle in CH(X × Y ; Λ) is also F (X)-rational;

2. k ◦ h ∈ CHdim(XE)(XE × XE ; Λ) defines an upper direct summand (XE , k ◦ h) of NE.
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Then there exists an F -rational cycle h′ and a E-rational cycle k′ such that

• k′ ◦ h′
E is a non-zero projector in CHdim(XE)(XE × XE; Λ);

• the E-motive (XE , k′ ◦ h′
E) contains every upper indecomposable summand of (XE , k ◦ h);

• the cycle k′ is F -rational if k is F -rational.

Proof. We denote by s the composite k ◦ h. By assumption, s is a projector in CHdim(XE)(XE ×
XE ; Λ) satisfying s = pE ◦ s ◦ pE by lemma III.1. Moreover we suppose that (M(X), s) is upper in
(M(X), pE), that is to say cdmin(s) = cdmin(p) by proposition III.5.

Let us decompose the images of the cycles h, k, s and p in a splitting field of the F -variety X
of rank n :

1. h =
∑n

i=1 hi(xi × yi)

2. k =
∑n

j=1 kj(y
′
j × x∗

j )

3. s =
∑n

i=1

∑n

j=1 sij(xi × x∗
j )

4. p =
∑n

i=1

∑n

j=1 pij(xi × x∗
j )

with sij = hikj deg(y′
j · yi) by definition of s.

Since E(X) is a field extension of E, the cycle h is E(X)-rational, hence F (X)-rational by
assumption 1).

Now consider the morphism Spec(F (X)) −→ X induced by the generic point of the geometri-
cally irreducible variety X . It induces a morphism

ǫ : (X × Y )F (X) −→ X × Y × X

whose pull-back ǫ∗ : CHdim(X)(X × Y × X ; Λ) −→ CHdim(X)(X × Y ; Λ) maps every cycles of the
form

∑
i λi(αi ×βi×1) on

∑
i λi(αi ×βi) and vanishes on elements of the form

∑
i λi(αi ×βi×γi),

where codim(γi) > 0.
Moreover, the pull-back ǫ∗ induces a surjection of F -rational cycles onto F (X)-rational cycles

([2, corollary 57.11]). Therefore we can choose an F -rational cycle h1 ∈ CHdim(X)(X × Y ×X; Λ)

such that ǫ∗(h1) = h.
By definition of ǫ∗ we have

h1 =

n∑

i=1

hi(xi × yi × 1) +
∑

(α × β × γ)

where cycles γ are of strictly positive codimension.
Now let us look at the cycle h1 as a correspondence h1 : X −→ Y × X. Setting h2 := h1 ◦ p,

h2 is F -rational and its image in a splitting field of X is

h2 =

(
n∑

i=1

hi(xi × yi × 1)

)
◦ p +

(∑
(α × β × γ)

)
◦ p

=
n∑

i=1

n∑

j=1

hjpij(xi × yj × 1) +
∑

α̃ × β̃ × γ̃

where cycles γ̃ are of strictly positive codimension and cycles α̃ satisfies codim(α̃) ≥ cdmin(p).
Consider now the diagonal embedding

∆ :
X × Y −→ X × Y × X
(x, y) 7−→ (x, y, x)

.

The morphism ∆ induces a pull-back ∆∗ : CHdim(X)(X ×Y ×X ; Λ) −→ CHdim(X)(X ×Y ; Λ).

Setting h3 := ∆∗(h2), h3 is an F -rational cycle and

h3 =

n∑

i=1

n∑

j=1

hjpij(xi × yj) +
∑

(α̃ · γ̃) × β̃
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where codim(α̃ · γ̃) > cdmin(p) since codim(α̃) ≥ cdmin(p) and codim(γ̃) > 0.
The next step consists of computing the composite k ◦ h3 :

k ◦ h3 =

(
n∑

l=1

kl(y
′
l × x∗

l )

)
◦




n∑

i=1

n∑

j=1

hjpij(xi × yj)


+

(
n∑

l=1

kl(y
′
l × x∗

l )

)
◦
(∑

(α̃ · γ̃) × β̃
)

=
n∑

i=1

n∑

l=1




n∑

j=1

klhjpij(y
′
l × x∗

l ) ◦ (xi × yj)


+

∑
ᾱ × β̄

=

n∑

i=1

n∑

l=1




n∑

j=1

klhjpij deg(y′
l · yj)


 (xi × x∗

l ) +
∑

ᾱ × β̄

Where cycles α satisfy codim(α) > cdmin(p) = cdmin(s).
Let us show that for any (i, l) ∈ {1, .., n}2,

∑n

j=1 klhjpij deg(y′
l · yj) = sil. First s defines a

direct summand of (X, pE), thus by lemma III.1 s ◦ pE = pE ◦ s ◦ pE ◦ pE = pE ◦ s ◦ pE = s. Now
compute s ◦ p :

s ◦ p =




n∑

i=1

n∑

j=1

sij(xi × x∗
j )



 ◦

(
n∑

l=1

n∑

t=1

plt(xl × x∗
t )

)

=

n∑

j=1

n∑

l=1

n∑

i=1

n∑

t=1

sijplt(xi × x∗
j ) ◦ (xl × x∗

t )

=

n∑

j=1

n∑

l=1

(
n∑

i=1

sijpli

)
(xl × x∗

j )

Therefore for any (i, l) with codim(xi) = cdmin(s), the component of k ◦ h3 over xi × x∗
l is

equal to
∑n

j=1 klhjpij deg(y′
l · yj) and we have

n∑

j=1

klhjpij deg(y′
l · yj) =

n∑

j=1

sjlpij

= sil.

We thus have obtained

(k ◦ h3) =
∑

codim(xi)=cdmin(p)

n∑

j=1

sij(xi × x∗
j ) +

∑
α × β

where cycles α satisfy codim(α) > cdmin(p) = cdmin(s).
As Λ is finite, there exists an integer n0 such that (g ◦ (f3)E)◦n0 is a projector by lemma IV.1.

Setting h′ = h3 and k′ = (k ◦ h3)
◦n0−1 ◦ k, we see that

(k′ ◦ h′) =
∑

codim(xi)=cdmin(p)

n∑

j=1

sij(xi × x∗
j ) +

∑
α̂ × β̂

where codim(α̂) > cdmin(p), therefore k′ ◦ h′
E is non-zero.

If k is F -rational, then k′ = (k ◦ h3)
◦n0−1 ◦ k is also F -rational. Moreover, the cycle k′ ◦ h′

intersects every projector w ∈ CH(X × X ; Λ) satisfying cdmin(w) = cdmin(k ◦ h), and B(w) ⊂
B(k ◦h). In particular k′ ◦h′ intersects every upper direct summand of the motive (XE , k ◦h), and
therefore contains every indecomposable direct summand of the motive (XE , k ◦ h).

The main theorem is a direct consequence of lemma IV.8.

Theorem IV.9. Let X be a geometrically irreducible, geometrically split F -variety satisfying the
nilpotence principle. Consider the projector p defining the indecomposable direct summand N :=
(X, p) of the motive X. Let also Y be a smooth complete F -variety and M := (Y, q) the direct
summand induced by a projector q. Assume the existence of a field extension E/F such that
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1. every E(X)-rational cycle in CH(X × Y ; Λ) is also F (X)-rational;

2. the E-motive NE contains an indecomposable direct summand (XE , s) both lower and upper
and is a direct summand of ME.

Then the motive N is a direct summand of the motive M .

Proof. By assumption, the E-motive NE is a direct summand of ME, that is to say there are two
correspondences f ∈ CHdim(XE)(XE×YE ; Λ) and g ∈ CHdim(YE)(YE×XE ; Λ) such that g◦f = pE .
Let us apply lemma IV.8.

Lemma IV.8 implies that there are two correspondences g′ ∈ CHdim(YE)(YE × XE ; Λ) and

f ′ ∈ CHdim(XE)(XE × YE ; Λ), with f ′ F -rational, such that g′ ◦ f ′
E is a non-zero projector and

the motive (XE , g′ ◦ f ′
E) contains every upper indecomposable summand of (XE , pE).

Now consider the cycle pE ◦ g′ ◦ f ′
E ◦ pE . Lemma IV.1 justifies the existence of an integer n0

such that (pE ◦ g′ ◦ f ′
E ◦ pE)n0 is a projector. Moreover we have the decomposition

g′ ◦ f ′ =
∑

codim(xi)=cdmin(p)

n∑

j=1

pij(xi × x∗
j ) +

∑
α × β

with codim(α) > cdmin(p).
Set ḡ := (pE ◦g′ ◦f ′

E ◦pE)◦n0−1 ◦pE ◦g′ and f̄ := f ′ ◦p. The cycle ḡ◦ f̄E is a projector satisfying
pE ◦ ḡ ◦ f̄E ◦ pE = ḡ ◦ f̄E. Besides in a splitting field of X

ḡ ◦ f̄E =
∑

codim(xi)=cdmin(p)

n∑

j=1

pij(xi × x∗
j ) +

∑
α̂ × β̂

with codim(α̂) > cdmin(p), therefore the motive (XE , ḡ ◦ f̄E) is an upper direct summand of the
motive NE . Besides (XE , ḡ ◦ f̄E) intersects any upper direct summand of NE , thus contains the
indecomposable direct summand (XE , s). It follows that the summand (XE , ḡ ◦ f̄E) is both upper
and lower in NE .

Transposing, the summand (XE(− dim(XE)),t f̄E ◦t ḡ) is a direct summand of the dual motive
N∗

E which is upper, as (XE , ḡ ◦ f̄E) is lower in NE , therefore we can apply lemma IV.8 again.

Lemma IV.8 justifies the existence of an F -rational cycle g̃ and another cycle f̃ which is also
F -rational, such that tf̃E ◦t g̃E is a non-zero projector in EndCM(E;Λ)(N

∗
E). Transposing again,

the cycle g̃E ◦ f̃E is a non-zero projector in CHdim(XE)(XE × XE ; Λ).

By nilpotence principle, an appropriate power (g̃◦ f̃)ñ is a non-zero projector in CHdim(X)(X×

X ; Λ). Setting g := (g̃ ◦ f̃)ñ−1 ◦ g̃ and f := f̃ , the cycle g ◦ f is a non zero-projector. But the motive
N is indecomposable, therefore we can conclude that g◦ f = p, that is to say N is a direct summand
of M .
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