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RÉSUMÉ 

Afin de récupérer les mouvements des articulateurs tels 
que les lèvres, la mâchoire ou la langue, à partir du son de 
parole, nous avons développé et comparé deux méthodes 
d’inversion basées l’une sur les modèles de Markov 
cachés (HMMs) et l’autre sur les modèles de mélanges de 
gaussiennes (GMMs). Les mouvements des articulateurs 
sont caractérisés par les coordonnées médiosagittales de 
bobines d’un articulographe électromagnétique (EMA) 
fixées sur les articulateurs. Dans la première méthode, des 
HMMs à deux flux, acoustique et articulatoire, sont 
entrainés à partir de signaux acoustique et articulatoire 
synchrones. Le HMM acoustique sert à reconnaitre les 
phones, ainsi que leurs durées. Ces informations sont 
ensuite utilisées par le HMM articulatoire pour synthétiser 
les trajectoires articulatoires. Pour la deuxième méthode, 
un GMM d’association directe entre traits acoustiques et 
articulatoires est entrainé sur le même corpus suivant le 
critère de minimum d’erreur quadratique moyenne 
(MMSE) à partir des trames acoustiques d’empan 
temporel plus ou moins grand. Pour un corpus de données 
EMA mono-locuteur enregistré par un locuteur français, 
l’erreur RMS de reconstruction sur le corpus de test pour 
la méthode fondée sur les HMMs se situe entre 1.96 et 
2.32 mm, tandis qu’elle se situe entre 2.46 et 2.95 mm 
pour la méthode basée sur les GMMs. 

1. INTRODUCTION  

Speech inversion is a long-standing problem, as testified 
by the famous work by Atal et al. [Ata78] in the 
seventies. Speech inversion was traditionally based on 
analysis-by-synthesis, as implemented by [Maw00], or by 
[Oun05] who optimised codebooks to recover vocal tract 
shapes from formants. But since a decade, more 
sophisticated learning techniques have appeared, thanks 
to the advent of the availability of large corpora of 
articulatory and acoustic data provided by devices such as 
the ElectroMagnetic Articulograph (EMA) or marker 
tracking devices based on classical or infrared video. 

Our laboratory is thus involved in the development of an 
inversion system that allows producing augmented speech 
from the sound signal alone, possibly associated with 
video images of the speaker’s face. Augmented speech 
consists of audio speech supplemented with signals such 
as the display of usually hidden articulators such (e.g. 
tongue or velum) by means of a virtual talking head, or 
with hand gestures as used in cued speech by hearing-
impaired people. 

2. STATE -OF-THE-ART  

At least, two classes of statistical models of the speech 
production mechanisms can be found in the recent 
literature: Hidden Markov Models (HMMs) (cf. [Hir04], 
[Zha08] or [Ben09]), and Gaussian Mixture Models 
(GMMs) (cf. [Tod08]). In addition to the structural 
differences between HMMs and GMMs, an important 
difference is that HMMs explicitly use phonetic 
information and temporal ordering while the GMMs 
simply cluster the multimodal behaviour of similar speech 
chunks. 

Hiroya & Honda [Hir04] developed a method that 
determines articulatory movements from speech acoustics 
using a HMM-based speech production model. After 
proper labelling of the training corpus, each phoneme is 
modelled by a context-dependent HMM, and a separate 
linear regression mapping is trained at each HMM state 
between the observed acoustic and the corresponding 
articulatory parameters. The articulatory parameters of the 
statistical model are then determined for a given speech 
spectrum by maximizing a posteriori estimation. In order 
to assess the importance of phonetics, they tested their 
method under two experimental conditions, namely with 
and without phonemic information. In the former, the 
phone HMMs were assigned according to the correct 
phoneme sequence for each test utterance. In the latter, 
the optimal state sequence was determined among all 
possible state sequences of the phone HMMs and silence 
model. They found that the average RMS errors of the 
estimated articulatory parameters were 1.50 mm from the 
speech acoustics and the phonemic information in the 
utterance and 1.73 mm from the speech acoustics only. 

Zhang & Renals [Zha08] developed a similar approach. 
Their system jointly optimises multi-stream phone-sized 
HMMs on synchronous acoustic and articulatory frames. 
The inversion is carried out in two steps : first a 
representative HMM state alignment is derived from the 
acoustic channel ; a smoothed mean trajectory is 
generated from the HMM state sequence by an 
articulatory trajectory formation model using the same 
HMMs. Depending on the availability of the phone labels 
for the test utterance, the state sequence can be either 
returned by an HMM decoder, or by forced alignment 
derived from phone labels, leading to RMS errors of 
respectively 1.70 mm and 1.58 mm. 

Toda and coll. [Tod08] described a statistical approach 
for both articulatory-to-acoustic mapping and acoustic-to-
articulatory inversion mapping without phonetic 
information. Such an approach interestingly enables 



 

 

language-independent speech modification and coding. 
They modelled the joint probability density of articulatory 
and acoustic frames in context using a Gaussian mixture 
model (GMM) based on a parallel acoustic-articulatory 
speech database. They employed two different techniques 
to establish the GMM mappings. Using a minimum mean-
square error (MMSE) criterion with an 11 frames acoustic 
window and 32 mixture components, they obtained RMS 
inversion errors of 1.61 mm for one female speaker, and 
of 1.53 mm for a male speaker. Using a maximum 
likelihood estimation (MLE) method and 64 mixture 
components, they improved their results to 1.45 mm for 
the female speaker, and 1.36 mm for the male speaker. 

The studies described above do not allow concluding 
about the optimal inversion method since data, speakers 
and languages are not comparable. Hiroya & Honda 
[Hir04] and Zhang & Renals [Zha08] have shown that 
using explicit phonetic information to built HMMs gives 
better results. Toda and coll. [Tod08], using GMMs and 
no phonetic information, get lower RMS errors. However, 
the corpora as well as training and testing conditions are 
not completely comparable. Therefore, the aim of the 
present work is to compare the HMM-based method used 
in [Ben09] with a GMM-based method similar to that of 
[Tod08] using the minimum mean-square error (MMSE) 
criterion for the GMM-based mapping method, 
everything else being comparable. 

3. ARTICULATORY AND ACOUSTIC DATA  

3.1. The corpus  

For this preliminary study, a corpus already recorded was 
used [Bad08]. It consists of a set of two repetitions of 224 
nonsense vowel-consonant-vowel (VCV) sequences 
(uttered in a slow and controlled way), where C is one of 
the 16 French consonants and V is one of 14 French oral 
and nasal vowels; two repetitions of 109 pairs of CVC 
real French words, differing only by a single cue (the 
French version of the Diagnostic Rhyme Test); 68 short 
French sentences, 9 longer phonetically balanced French 
sentences, and 11 long arbitrary sentences. The corpus 
was recorded on a single male French subject, which 
means that no speaker adaptation / normalisation 
problems will be dealt with in this study.  

The phones have initially been labelled for each utterance 
using a forced alignment procedure based on the audio 
signal and the corresponding phonetic transcription string 
based on HMMs. Subsequent manual correction of both 
phoneme labels and phoneme boundaries were performed 
using the Praat software [Boe05]. The centres of 
allophones were automatically chosen as the average 
between beginning and end of the phonemes. Altogether 
the corpus contained 7350 allophones, i.e. about 22 
minutes of speech. The 36 phonemes are: [a ɛ e i y u o ø 

ɔ œ ɑ ̃ɛ ̃œ̃ ɔ ̃p t k f s ʃ b d g v z ʒ m n ʁ l w ɥ j ə _ __], 
where _ and __ are internal short and utterance initial and 
final long pauses respectively. 

3.2. The acoustic and articulatory data 

The articulatory data have been recorded by means of an 
ElectroMagnetic Articulograph (EMA) that allows 
tracking flesh points of the articulators thanks to small 
electromagnetic receiver coils. Studies have shown that 
the number of degrees of freedom of speech articulators 
(jaw, lips, tongue …) for speech is limited, and that a 
small but sufficient number of carefully selected 
measurement locations can allow retrieving them with a 
good accuracy [Bad06; Bad08]. In the present study, six 
coils are used: a jaw coil is attached to the lower incisors 
(jaw), whereas three coils are attached to the tongue tip 
(tip), the tongue middle (mid), and the tongue back (bck) 
at approximately 1.2 cm, 4.2 cm, and 7.3 cm, 
respectively, from the extremity of the tongue; an upper 
lip coil (upl) and a lower lip coil (lwl) are attached to the 
boundaries between the vermilion and the skin in the 
midsagittal plane. Extra coils attached to the upper incisor 
and to the nose served as references to compensate for 
head movements in the midsagittal plane. The audio-
speech signal was recorded at a sampling frequency of 
22050 Hz, in synchronization with the EMA coordinates, 
which were recorded at a 500 Hz sampling frequency.  

3.3. Overview of the data 

In order to reduce the noise of the EMA data, the 
articulatory trajectories were first low pass filtered with a 
cut-off frequency of 50 Hz. Then we verified that the 
general articulatory characteristics of each phoneme were 
in accordance with our expectation by displaying, in the 
midsagittal plane, the dispersion ellipses of the six coils 
estimated over the sets of all the instances. The minimum 
and maximum number of instances per phoneme was 18 
(for short pauses) and 348 (for /a/). This illustrates the 
coherence and the validity of the data. Figure 1, which 
displays these ellipses for phoneme /t/, illustrates the very 
low variability of the tongue tip coil for /t/, as could be 
expected since the tongue is in contact with the hard 
palate for this articulation. It should however be reminded 
that the articulations were sampled at the instant midway 
between the phone boundaries, which does not 
completely ensure that it corresponds to the actual centre 
of the phone if the trajectories are not symmetrical. 
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Figure 1: Dispersion ellipses of the measured coordinates 
of the six EMA coils for phoneme /t/. These ellipses are 
computed from the samples taken at the middle of the 231 
instances of /t/ in the corpus. 



 

 

3.4. Context classes for phonemes  

Due to coarticulatory effects, it is unlikely that a single 
context-independent HMM could optimally represent a 
given allophone. Therefore, context-dependent HMMs 
were trained. Rather than using a priori phonetic 
knowledge to define such classes, confusion trees have 
been built for both vowels and consonants, based on the 
matrix of City-Block distances of the coils coordinates 
between each pair of phone. Each allophone was 
represented by its mean over all the associated instances. 
Using hierarchical clustering to generate dendrograms 
allowed to define six coherent classes for vocalic contexts 
([a ɛ ɛ ̃| ø œ œ̃ | e i | y | u | o ɔ ɑ ̃ɔ]̃) shown as a confusion 
tree in Figure 2 and ten coherent classes for consonantal 
contexts ([p b m | f v | ʁ | ʃ ʒ | l | t d s z n | j | ɥ | k g | w]) 
shown as a confusion tree in Figure 3. The schwa, the 
short and the long pauses ([ə _ __]) are ignored in the 
context classes. Using acoustic spectral distances did lead 
to classes less satisfactory from the point of view of 
phonetic knowledge. 
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Figure 2: Dendrogram of 6 classes for vocalic contexts 
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Figure 3: Dendrogram of 10 classes for consonantal 
contexts 

4. ARTICULATORY AND ACOUSTIC HMM S 

MODELS  

We recall the experiments made in [Ben09]. For the 
training of the HMMs, acoustic feature vectors consisted 
of the 12 Mel-Frequency Cepstral Coefficients (MFCC) 
and of the logarithm of the energy, along with the first 
time derivatives, computed from the signal down sampled 

to 16 kHz over 25 ms windows at a frame rate of 100 Hz. 
Articulatory feature vectors consisted of the x and y 
coordinates of the six active coils. Their first time 
derivatives are also added. The EMA traces were down 
sampled to match the 100 Hz shift rate of the acoustic 
feature vectors.  

Various contextual schemes were tested: phonemes 
without context (no-ctx), with left (L-ctx) or right context 
(ctx-R), and with both left and right contexts (L-ctx-R). 

Left-to-right, 3-state phoneme HMMs with one Gaussian 
per state and a diagonal covariance matrix are used. For 
training and test the HTK3.4 toolkit is used [You06]. The 
training is performed using the Expectation Maximization 
(EM) algorithm based on the Maximum Likelihood (ML) 
criterion. 

The acoustic and articulatory features vectors are here 
considered as two streams in the HTK multi-stream 
training procedure. Subsequently, the HMMs obtained are 
split into articulatory HMMs and acoustic HMMs. 

A bigram language model considering sequences of 
phones in context is trained over the complete corpus. 
Thus, the recognised phoneme sequences respect French 
phonotactics. No prosodic constraints such as a duration 
model are added. The acoustic-to-articulatory inversion is 
achieved in two steps. The first step performs phoneme 
recognition, based on the acoustic HMMs. The result is a 
sequence of recognised allophones together with their 
durations. The recognition results are given in the Table 
1. The recognition performances are increased by the use 
of phonemes in context. The procedure of replacement of 
the HMMs, which aims to compensate for the too small 
size of the training sets (cf. [Ben09]), increases the 
recognition rate from 76.9 to 84.0 %. 

Table 1 : Recognition rates (Percent Correct, Accuracy) 
for the experiments with different types of contexts. The 
star * indicates the series of experiments for which 
missing HMMs were replaced by the closest model. 

Train - Test
Nb phones

Cor, Acc (%) Cor Acc Cor Acc Cor Acc Cor Acc

89,67 70,41 97,63 91,29 98,12 92,95 99,28 97,88

88.09 67.91 85.56 64.66 87.57 66.19 76.90 68.59

89,09 72.30 91,46 77,18 84,04 75.69
2/3 - 1/3 *

385 379 1312

2/3 - 1/3

1 - 1

1159

L-ctx-Rctx-RL-ctx

392 1376387

Nb Nb

366 358

no-ctx

36

36

Nb Nb

 

The second step of the inversion aims at reconstructing 
the articulatory trajectories from the chain of phoneme 
labels and boundaries delivered by the recognition 
procedure. As described in [Gov06], the synthesis is 
performed as follows, using the software developed by 
the HTS group [Tam99; Zen04]. A linear sequence of 
HMM states is built by concatenating the corresponding 
phone HMMs. The proper state durations are estimated by 
z-scoring. A sequence of observation parameters is 
generated using a specific ML-based parameter 
generation algorithm [Zen04]. In order to assess the 
contribution of the trajectory formation to RMS errors of 



 

 

the complete inversion method, we also synthesised these 
trajectories directly from the original labels, simulating a 
perfect acoustic recognition step. 

The root-mean-square (RMS) error is calculated for the 
difference between the measured and the estimated 
articulatory coordinates, excluding the long pauses at the 
beginning and the end of each utterance. The mean 
correlation coefficient (Corr) measures the degree of 
amplitude similarity and the synchrony of the trajectories. 
Table 2 shows the RMS errors. The results are consistent 
with those in Table 1. In addition, Table 2 displays the 
errors corresponding to cases where the recognition step 
is bypassed by synthesising the articulatory trajectories 
directly from the original phoneme sequences; the 
relatively high level of these errors shows that a 
significant part of the overall error is due to the trajectory 
formation model that often oversmooths the predicted 
movements and does not capture properly coarticulation 
patterns. Note that all the differences in Table 2 are 
significant (p < 0.03). 

Table 2: RMS errors (mm) and correlation coefficients 
for the experiments with different types of contexts. The 
star * indicates the series of experiments for which 
missing HMMs are replaced by the closest model. The ^ 
indicate that the synthesis is generated from the original 
labels. 

no-ctx L-ctx ctx-R L-ctx-R
RMS 2.26 1.62 1.62 1.05
Corr 0.72 0.82 0.83 0.90
RMS 2.32 2.15 2.06 2.31
Corr 0.70 0.71 0.73 0.69
RMS 2.07 1.96 2.08
Corr 0.72 0.75 0.73
RMS 2.21 1.86 1.87 1.74
Corr 0.75 0.77 0.75 0.82

2/3 - 1/3 ^

Train - Test

1 - 1

2/3 - 1/3

2/3 - 1/3 *

 

5. MULTIMODAL GMM  MODELS 

We apply the GMM-based mapping using the minimum 
mean-square error (MMSE) criterion, which has been 
often used for voice conversion. The determination of a 
target parameter trajectory with appropriate static and 
dynamic properties is obtained here by combining local 
estimates of the mean and variance for each frame p(t) 
and its derivative ∆p(t) with the explicit relationship 
between static and dynamic features (e.g. ∆p(t) = p(t) – 
p(t-1)) in the MMSE-based mapping. 

The 1st to 13th Mel-cepstral coefficients are used as a 
spectral representation of the speech signal. The shift 
duration is also 10 ms. The 12-dimensional EMA data is 
accordingly down sampled to match this 100 Hz sampling 
rate. 

The number of mixture components is varied from 8 to 
32. The number of input acoustic frames is fixed to 9 but 
the size of context window is varied from a phoneme size 
(~100 ms) to a syllable size (330 ms) (by picking one 
frame every 1-4 frames). A reduction of the acoustic 

dimension (9*13 = 117) is performed by Principal 
Component Analysis (PCA): the number of principal 
components is set to 24.  

It has been reported in the literature that the low pass 
filtering of training as well as estimated articulatory 
trajectories improves the mapping performance (e.g., 
Richmond, 2001). The optimal cut-off frequency of the 
low pass filter is deemed to be 25Hz. 

The RMS error and the correlation coefficient are 
calculated over the same training and test data used for 
evaluating the HMM system.  

Table 3 shows the RMS error (in mm) and the correlation 
coefficient for the different experiments using different 
numbers of mixtures and different sizes of context 
window. The RMS error decreases when the number of 
mixtures increases and when the size of context window 
decreases. The most plausible interpretation is that a 
phoneme-sized window optimally contains necessary 
local phonetic cues for inversion. The 32 mixtures appear 
to constitute the best representation of the 36 phonemes.  

The better mapping accuracy is finally achieved when the 
size of the context window is set to 90 ms and the number 
of mixture components is set to 32 in this experiment. In 
that case, the RMS error is 2.46 mm. 

Table 3: RMS errors and correlation coefficient with 
different numbers of mixtures (# mix) and sizes of context 
window (ctw) 

ctw
#mix RMS Corr RMS Corr RMS Corr RMS Corr

8 2.87 0.56 2.77 0.59 2.84 0.57 2.95 0.55
16 2.76 0.58 2.61 0.62 2.67 0.60 2.94 0.55
32 2.46 0.63 2.55 0.63 2.61 0.60 2.87 0.57

90 170 250 330

 

6. COMPARISON AND COMMENTS  

Figure 4 displays the measured and reconstructed 
articulatory trajectories of the Y-coordinates for the two 
competing systems. It seems that the GMM-based method 
has difficulty in dealing with the asynchronous behaviour 
of inter-articulatory coordination. 

Our HMM-based system generates an RMS error of 
1.96 mm for the same data. Surprisingly, the performance 
of the HMM-based inversion mapping is significantly 
more accurate than that of the GMM-based system 
although results published on voice–conversion 
experiments seem to suggest the opposite. A possible 
explanation for this contrastive behaviour lays perhaps in 
the fact that GMM-based techniques are more appropriate 
to deal with unimodal mappings where events in source 
and targets are largely synchronous, whereas HMM-based 
techniques are able to deal with context-dependent 
mappings and delays between frames structured by state 
transitions. 

Both systems can however be improved. HMM-based 
inversion can include more sophisticated treatment of 
articulatory-to-acoustic asynchrony by introducing delay 



 

 

models that have been quite effective in HMM-based 
multimodal synthesis [Gov07]. The GMM-based system 
could be improved by considering other dimensionality 
reduction techniques such as Linear Discriminant 
Analysis (LDA) that are quite effective in HMM-based 
inversion [Tra08]. Both systems can also be improved by 
incorporating visual information as input and including 
this additional information more intimately in the 
optimization process that will consider multimodal 
coherence between input and output parameters: lips are 
clearly visible and jaw is indirectly available in facial 
movements. 

Figure 5 displays the statistics of the RMS errors for the 
HMM-based and GMM-based methods. The difference is 
highly significant (p<10-7). Figure 5 shows that the 
HMM-based system produces a global RMS error lower 
than that produced by the GMM-based one, but produces 
in some cases errors that are higher than the highest errors 
obtained with the GMM system.  
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Figure 5: Comparing RMS error of HMM and GMM 
reconstruction using anova1. 

7. CONCLUSIONS AND PERSPECTIVES 

We have implemented and compared two acoustic-to-
articulatory speech inversion techniques, which contrast 

in the way they capture and exploit a priori multimodal 
coherence. This work tends to show that the inversion 
process should be “phonetic-aware”. Several reserves can 
however be made on these first experiments: 

First, the HMM system benefits from the phonotactics of 
the target language. Despite the fact that the language 
model has not been trained on test data, the phonological 
structures of test and training utterances are very similar. 
Note however that French has a rich syllabic inventory 
and that we can imagine that results obtained with 
languages such as Japanese, Polish or Spanish with 
various syllabic complexities may lead to different 
results. 

Secondly, global objective measurements may not 
entirely mirror phone-specific behaviour that may 
drastically impact subjective rating of generated 
articulation. The precision of the recovery is of course a 
highly important element for the evaluation but other 
elements such as the precision of the recovery of crucial 
elements such as vocal tract constrictions are naturally 
also very important. 

Thirdly, we have shown elsewhere [Tar07] that viewers 
have various performance for tongue reading and that 
performance increases with training. Note also that the 
realism of motion may compensate for inaccurate detailed 
shaping: the kinematics of the computed trajectories could 
be more important for perception that the accuracy of the 
trajectories themselves. 

Finally, the results of this study will allow us to develop a 
tutoring system for on-line phonetic correction [Bad98], 
in which recovered articulatory movements will be used 
to drive a virtual 3D talking head with all possible 
articulatory degrees-of-freedom [Bad02; Bad08]. 
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Figure 4: Comparing original (thick lines) and synthesized (thin lines) trajectories of ordinates of 6 EMA fleshpoints 
computed from the acoustic signal. Left: HMM-based inversion and trajectory formation using phone-sized Markov 
models with right context; right: synthesis by GMM-mapping using a context window of 90 ms and a mixture of 32 
Gaussians. 
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