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RESUME 2. STATE -OF-THE-ART

Afin de récupérer les mouvements des articulatéelss At least, two classes of statistical models of speech
que les levres, la machoire ou la langue, a pdutson de production mechanisms can be found in the recent
parole, nous avons développé et comparé deux meshotiterature: Hidden Markov Models (HMMs) (cf. [HirD4
d’inversion basées l'une sur les modeles de Markdizha08] or [Ben09]), and Gaussian Mixture Models
cachés (HMMs) et I'autre sur les modeles de mélange (GMMs) (cf. [Tod08]). In addition to the structural
gaussiennes (GMMs). Les mouvements des articukateutifferences between HMMs and GMMs, an important
sont caractérisés par les coordonnées médiosagittid difference is that HMMs explicitly use phonetic
bobines d'un articulographe électromagnétique (EMAnformation and temporal ordering while the GMMs
fixées sur les articulateurs. Dans la premiére augthdes simply cluster the multimodal behaviour of simitgreech
HMMs & deux flux, acoustique et articulatoire, sonthunks.

entrainés a partir de signaux acoustique et astioine Hiroya & Honda [Hir04] developed a method that

synchrones. Le HMM acoustique sert a reconnaitse le . . :
S . : . determines articulatory movements from speech dicsus
phones, ainsi que leurs durées. Ces informatioms so

ensuite utilisées par le HMM articulatoire pour thtiser uf:)ngerallag'e’\l/llil\n/l-b(;sfr?e frg?gzh é’é?dﬁ:t'ggcﬁmgsgd?ﬂer
les trajectoires articulatoires. Pour la deuxién&thnde, prop 9 9 pus, p

un GMM d’association directe entre traits acousjet modelled by a context-dependent HMM, and a separate

articulatoires est entrainé sur le méme corpusastile “Z?V?lgéﬁg:ﬁzs'ggsrg:/gg'ngcfugt?énzi dattﬁgcgoﬂgﬁgiﬁ din
crittre de minimum d'erreur quadratique moyenn X 9

(MMSE) a partir des trames acoustiques OI,empaarticulatory parameters. The articulatory paransedéthe

temporel plus ou moins grand. Pour un corpus deékes Statistical model are Fhen determ_lne_d fqr a _glvpeesh
e . spectrum by maximizing a posteriori estimationohder
EMA mono-locuteur enregistré par un locuteur frasca

I'erreur RMS de reconstruction sur le corpus dé pesir 283155(?55”;1? tlvrcgocer;ar;iemg;tg?%git(l;iﬁc,)rtze%;m
la méthode fondée sur les HMMs se situe entre &t96 P ’

2:32 rm, tans el se siue enre 245 et 29 S0 WL BT ormaton 1y e orner e
pour la méthode basée sur les GMMs. P Y 9

phoneme sequence for each test utterance. In tteg, la
the optimal state sequence was determined among all
1. INTRODUCTION possible state sequences of the phone HMMs anacsile
Speech inversion is a long-standing problem, agfiees Model. They found that the average RMS errors ef th
by the famous work by Atakt al. [Ata78] in the estimated articulatory parameters were 1.50 mm fiven
seventies. Speech inversion was traditionally based SPeech acoustics and the phonemic information & th
analysis-by-synthesis, as implemented by [Maw0ppy Utterance and 1.73 mm from the speech acoustigs onl

[Oun05] who optimised codebooks to recover voaatittr znang & Renals [Zha08] developed a similar approach
shapes from formants. But since a decade, MOfigejr system jointly optimises multi-stream phoieed
sophisticated learning techniques have appeareshk$h HpMs on synchronous acoustic and articulatory frame
to the advent of the availability of large corposd The inversion is carried out in two steps: first a
articulatory and acoustic data provided by deviagsh as representative HMM state alignment is derived frove

the ElectroMagnetic Articulograph (EMA) or markeracoystic channel: a smoothed mean trajectory is
tracking devices based on classical or infrareéwid generated from the HMM state sequence by an

Our laboratory is thus involved in the developmehan articulatory trajectory formation model using thame
inversionsystem that allows producirgigmented speech HMMs. Depending on the availability of the phonbdés
from the sound signal alone, possibly associateth wifor the test utterance, the state sequence canitiber e
video images of the speaker’s fadsugmented speech returned by an HMM decoder, or by forced alignment
consists of audio speech supplemented with sigsath denved_ from phone labels, leading to RMS errors of
as the display of usually hidden articulators sgefy. respectively 1.70 mm and 1.58 mm.

tongue or velum) by means of a virtual talking head Toda and coll. [Tod08] described a statistical apph

with hand gestures as used doed speectby hearing- for hoth articulatory-to-acoustic mapping and atious-

impaired people. articulatory  inversion mapping without phonetic
information. Such an approach interestingly enables
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language-independent speech modification and codin® 2. The acoustic and articulatory data
They modelled the joint probability density of attiatory .
and acoustic frames in context using a Gaussiattuneix 1he articulatory data have been recorded by mefas o
model (GMM) based on a parallel acoustic-articutato EléctroMagnetic  Articulograph  (EMA) that  allows
speech database. They employed two different tgabsi tracking flesh points _of the _artlculat_ors thanksstoall
to establish the GMM mappings. Using a minimum mearglectromagnetic receiver coils. Studies have shtmm
square error (MMSE) criterion with an 11 framesuste ~ the number of degrees of freedom of speech artinsla
window and 32 mixture components, they obtained RM&2W. lips, tongue ...) for speech is limited, anaita
inversion errors of 1.61 mm for one female speaked Small but sufficient number of carefully ~selected
of 1.53 mm for a male speaker. Using a maximurf"®@surement locations can allow retrieving thenh wit
likelihood estimation (MLE) method and 64 mixtured0od accuracy [Bad06; Bad08]. In the present stsiy,
components, they improved their results to 1.45 fam c_0|Is are used: a jaw c0|_l is attached to the Iowerso_rs
the female speaker, and 1.36 mm for the male speake (i8W), whereas three coils are attached to theuerigp
(tip), the tongue middle (mid), and the tongue béutk)
The studies described above do not allow concluding approximately 1.2 c¢m, 4.2 cm, and 7.3 cm
about the optimal inversion method since data, kggrsa respectively, from the extremity of the tongue;aper
and languages are not comparable. Hiroya & Hondg coil (upl) and a lower lip coil (Iwl) are atthed to the
[Hir04] and Zhang & Renals [ZhaO8] have shown thagoundaries between the vermilion and the skin i@ th
using explicit phonetic information to built HMMsv@s  midsagittal plane. Extra coils attached to the uppeisor
better results. Toda and coll. [Tod08], using GMd®l  and to the nose served as references to compefosate
no phonetic information, get lower RMS errors. Hv@®  head movements in the midsagittal plane. The audio-
the corpora as well as training and testing comaétiare Speech Signa| was recorded at a Samp"ng frequeﬁcy
not completely comparable. Therefore, the aim @& thp2050 Hz, in synchronization with the EMA coordiest

present work is to compare the HMM-based method usyhich were recorded at a 500 Hz sampling frequency.
in [Ben09] with a GMM-based method similar to thudt

[Tod08] using the minimum mean-square error (MMSE ;
criterion for the GMM-based mapping method,é's' Overview of the data

everything else being comparable. In order to reduce the noise of the EMA data, the
articulatory trajectories were first low pass fitld with a
3. ARTICULATORY AND ACOUSTIC DATA cut-off frequency of 50 Hz. Then we verified thaiet

general articulatory characteristics of each phanerare

in accordance with our expectation by displayingthe
3.1. The corpus midsagittal plane, the dispersion ellipses of thxecsils
For this preliminary study, a corpus already reedrivas estimated over the sets of all the instances. Tinémam
used [Bad08]. It consists of a set of two repatiiof 224 and maximum number of instances per phoneme was 18
nonsense vowel-consonant-vowel (VCV) sequencdfor short pauses) and 348 (for /a/). This illussathe
(uttered in a slow and controlled way), where @rie of coherence and the validity of the data. Figure hiclw
the 16 French consonants and V is one of 14 Frerah displays these ellipses for phoneme /t/, illussdte very
and nasal vowels; two repetitions of 109 pairs ®OC low variability of the tongue tip coil for /t/, asould be
real French words, differing only by a single cube( expected since the tongue is in contact with thed ha
French version of the Diagnostic Rhyme Test); 68rish palate for this articulation. It should howeverrbeninded
French sentences, 9 longer phonetically balancedcdhr that the articulations were sampled at the instaidivay
sentences, and 11 long arbitrary sentences. Thaugorbetween the phone boundaries, which does not
was recorded on a single male French subject, whicempletely ensure that it corresponds to the actemtre
means that no speaker adaptation / normalisatiafthe phone if the trajectories are not symmerica

problems will be dealt with in this study. 1

wm— Hard palate
I jaw
i

I mid

[ bek

The phones have initially been labelled for eadbrahce
using a forced alignment procedure based on théauc,|
signal and the corresponding phonetic transcripsinimg

based on HMMs. Subsequent manual correction of ba ‘
phoneme labels and phoneme boundaries were pedorn® ”’T”’U
using the Praat software [Boe05]. The centres of
allophones were automatically chosen as the averaof -f---4-----—--b-- 4oLt
between beginning and end of the phonemes. Altegetr
the corpus contained 7350 allophones, i.e. about .

minutes of speech. The 36 phonemes are:diy uo o
sedé®&>3ptkfsfbdgvzsmnslwyjo__], Figure 1: Dispersion ellipses of the measured coordinates

where _and __ are internal short and utterandialiaind ©f the Six EMA cails for phoneme /U. These ellipsere
final IoEg paugs respectively. computed from the samples taken at the middle P81

instances of /t/ in the corpus.
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3.4. Context classes for phonemes to 16 kHz over 25 ms windows at a frame rate of H20

] o ) ) Articulatory feature vectors consisted of tleandy

context-independent HMM could optimally represent @erjvatives are also added. The EMA traces werendow

given allophone. Therefore, context-dependent HMM§ampIed to match the 100 Hz shift rate of the aious
were trained. Rather than using a priori phonetigaiyre vectors.

knowledge to define such classes, confusion tree® h

been built for both vowels and consonants, basethen Various contextual schemes were tested: phonemes
matrix of City-Block distances of the coils coordies Without context(no-ctx) with left (L-ctx) or right context
between each pair of phone. Each allophone wé&tx-R) and with both left and right contexts-ctx-R)
represen_ted by_ its mean over all the associatadnoss. Left-to-right, 3-state phoneme HMMs with one Gaassi
Using hierarchical clustering to generate dendmogra per state and a diagonal covariance matrix are. USed
allowed to define six coherent classes for vooadiatexts training and test the HTK3.4 toolkit is used [Yoli0Bhe
(laeélocee|eil|y|u]oods3]) shown as a confusion training is performed using the Expectation Maxiatian

tree in Figure 2 and ten coherent classes for camgal (EM) algorithm based on the Maximum Likelihood (ML)

contexts bm [fv i |f3|1tdszn]|j|y|kg|w]) criterion.

shown as a confusion tree in Figure 3. The schh@, tThe acoustic and articulatory features vectors fane
short and the long pauses ([ _]) are ignored in the considered as two streams in the HTK multi-stream
context classes. Using acoustic spectral distadicelead training procedure. Subsequently, the HMMs obtaiaed

to classes less satisfactory from the point of viefv splitintoarticulatory HMMsandacoustic HMMs

phonetic knowledge. A bigram language model considering sequences of

51 phones in context is trained over the complete umrp

a5l Thus, the recognised phoneme sequences respechFren

al phonotactics. No prosodic constraints such as atidur

asl model are added. The acoustic-to-articulatory isieer is
achieved in two steps. The first step performs phua

3k

recognition, based on the acoustic HMMs. The rdsudt

=5 sequence of recognised allophones together withr the
il durations. The recognition results are given in Tiable
15¢ 1. The recognition performances are increased dyte

1 of phonemes in context. The procedure of replacemmien
o5l the HMMs, which aims to compensate for the too §mal
o L R S ; size of the training sets (cf. [Ben09]), increasbe

recognition rate from 76.9 to 84.0 %.

Figure2: Dendrogram of 6 classes for vocalic contexts Table 1 : Recognition rates (Percent Correct, Accuracy)

o for the experiments with different types of contexthe
ast star * indicates the series of experiments for Whic
ar —‘ missing HMMs were replaced by the closest model.
il Train - Test no-ctx L-ctx ctx-R L-ctx-R
3r Nb phones Nb Nb Nb Nb
25l Cor, Acc (%) | Cor | Acc| Cor| Acc| Cor| Acc| Cor| Acg
L 1.1 36 392 387 1376

89,67| 70,41 97,68 91,29 98,12 92)o5 9928 97,88
15 23 -13 36 366 358 1159
AL 88.09] 67.91 85.5p 64.46 87.57 6619 76/90 68.59

385 379 1312

osp 23-13" 89,0¢[72.3(] 91,4¢] 77,1¢]| 84,0¢] 75.6¢

pbm fv r | kg tdnsz j h shzh w

The second step of the inversion aims at recortgtgic
Figure 3: Dendrogram of 10 classes for consonantdhe articulatory trajectories from the chain of pame

contexts labels and boundaries delivered by the recognition
procedure. As described in [Gov06], the synthesis i
4. ARTICULATORY AND ACOUSTIC HMM s performed as follows, using the software developgd

MODELS the HTS group [Tam99; Zen04]. A linear sequence of
HMM states is built by concatenating the correspogd
We recall the experiments made in [Ben09]. For thehone HMMs. The proper state durations are estuiriaye
training of the HMMs, acoustic feature vectors éstesl z-scoring. A sequence of observation parameters is
of the 12 Mel-Frequency Cepstral Coefficients (MFCCgenerated using a specific ML-based parameter
and of the logarithm of the energy, along with flist ~ generation algorithm [Zen04]. In order to assess th
time derivatives, computed from the signal down glaah  contribution of the trajectory formation to RMS @ns of



the complete inversion method, we also synthedisese dimension (9*13 = 117) is performed by Principal
trajectories directly from the original labels, sil@ting a Component Analysis (PCA): the number of principal
perfect acoustic recognition step. components is set to 24.

The root-mean-square (RMS) error is calculatedtfier It has been reported in the literature that the |mags
difference between the measured and the estimatiitering of training as well as estimated articoky
articulatory coordinates, excluding the long pawstethe trajectories improves the mapping performance ,(e.g.
beginning and the end of each utterance. The meRichmond, 2001). The optimal cut-off frequency bét
correlation coefficient (Corr) measures the degode low pass filter is deemed to be 25Hz.

amplitude similarity and the synchrony of the tcijeies.
Table 2 shows the RMS errors. The results are stamgi
with those in Table 1. In addition, Table 2 disglahe
errors corresponding to cases where the recognitiep
is bypassed by synthesising the articulatory ttajges Table 3 shows the RMS error (in mm) and the cotimria
directly from the original phoneme sequences; theoefficient for the different experiments usingfeiiént
relatively high level of these errors shows that aumbers of mixtures and different sizes of context
significant part of the overall error is due to thgjectory window. The RMS error decreases when the number of
formation model that often oversmooths the predictemixtures increases and when the size of contextiovin
movements and does not capture properly coartionlat decreases. The most plausible interpretation i$ tha
patterns. Note that all the differences in Tablear2 phoneme-sized window optimally contains necessary
significant (p < 0.03). local phonetic cues for inversion. The 32 mixtuappear

Sto constitute the best representation of the 3Gehmes.

The RMS error and the correlation coefficient are
calculated over the same training and test datd tme
evaluating the HMM system.

Table 2: RMS errors (mm) and correlation coefficient
for the experiments with different types of congexthe The better mapping accuracy is finally achieved mihe
star * indicates the series of experiments for Whicsize of the context window is set to 90 ms andnilv@ber
missing HMMs are replaced by the closest model. Theof mixture components is set to 32 in this expenmén
indicate that the synthesis is generated from tiginal that case, the RMS error is 2.46 mm.

labels. Table 3: RMS errors and correlation coefficient with

Train - Test no-ctx | L-ctx | ctx-R | L-ctx-R different numbers of mixtures (# mix) and sizesofitext
1-1 RMS | 2.2¢€ 1.6Z 1.62 1.0% window (ctw)
. . . 0.9C
s 2 5 T 20 1200 T 231 |y e Be |- T0 120 T30
2/3-1/3 o 0.7C 071 RE 0.69 #mix RMS | Corr { RMS | Corr | RMS | Corr | RMS | Corr
: = — . 8 2.87]0.56f 2.77 ] 0.59] 2.8¢] 0.57{ 2.9% | 0.55
213 - 1/3 * FoMS 207 | 1.9¢ | 2.0¢ 16 | 2.7¢| 05¢] 2.61] 0.62] 2.61]0.6(] 2.92] 0.5¢
corr 0.7z | 0.7¢ | 0.7¢ 32 | 2.46] 0.62] 2.5¢ | 0.62] 2.61] 0.6(] 2.87] 051
.1z~ | RMS| 221 [ 18€ | 187 | 174
Corr 0.75 0.77 0.75| 0.82

6. COMPARISON AND COMMENTS

5. MuLTIMODAL GMM MODELS Figure 4 displays the measured and reconstructed
articulatory trajectories of the Y-coordinates fhe two

We apply the GMM-based mapping using the minimurgompeting systems. It seems that the GMM-basedadeth

mean-square error (MMSE) criterion, which has beegys difficulty in dealing with the asynchronous aeibur
often used for voice conversion. The determinatbm  of inter-articulatory coordination.

target parameter trajectory with appropriate sta

dynamic properties is obtained here by combiningallo Our HMM-based system generates an RMS error of
estimates of the mean and variance for each fraft)e pl-96 mm for the same data. Surprisingly, the peréorce
and its derivativeAp(t) with the explicit relationship Of the HMM-based inversion mapping is significantly

between static and dynamic features (Ag(t) = p(t) — more accurate than that Of the GMM'based SySl‘:em
p(t-1)) in the MMSE-based mapping. although results published on voice—conversion

o experiments seem to suggest the opposite. A pessibl
The 1st to 13th Mel-cepstral coefficients are ussda explanation for this contrastive behaviour layshpes in
spectral representation of the speech signal. T S the fact that GMM-based techniques are more apatepr
duration is also 10 ms. The 12-dimensional EMA data to geal with unimodal mappings where events in @ur
accordingly down sampled to match this 100 Hz s&mgpl and targets are largely synchronous, whereas HMséda
rate. techniques are able to deal with context-dependent

The number of mixture components is varied frono8 tMappings and delays between frames structuredate st
32. The number of input acoustic frames is fixe@ tout ~ransitions.
the size of context window is varied from a phonesize Bty systems can however be improved. HMM-based

(~100 ms) to a syllable size (330 ms) (by pickin® o jhyversion can include more sophisticated treatmeft
frame every 1-4 frames). A reduction of the acaustigrticulatory-to-acoustic asynchrony by introducitelay



bek

upl

Iwl

Figure 4: Comparing original (thick lines) and synthesizeur(tlines) trajectories of ordinates of 6 EMA flpsints
computed from the acoustic signal. Left: HMM-basedersion and trajectory formation using phone-gdikéarkov
models with right context; right: synthesis by GMivapping using a context window of 90 ms and a méxtf 32
Gaussians.

models that have been quite effective in HMM-basebh the way they capture and exploit a priori mutiohal
multimodal synthesis [Gov07]. The GMM-based systemoherence. This work tends to show that the ingersi
could be improved by considering other dimensidpali process should be “phonetic-aware”. Several reserae
reduction techniques such as Linear Discriminarfiowever be made on these first experiments:

Analysis (LDA) that are quite effective in HMM-bake
inversion [Tra08]. Both systems can also be impdolg
incorporating visual information as input and irdihg
this additional information more intimately in the
optimization process that will consider multimoda
coherence between input and output parametersatips
clearly visible and jaw is indirectly available facial
movements.

First, the HMM system benefits from the phonotacté
the target language. Despite the fact that the uagg
model has not been trained on test data, the pbgival
Istructures of test and training utterances are samjlar.
Note however that French has a rich syllabic inegnt
and that we can imagine that results obtained with
languages such as Japanese, Polish or Spanish with
various syllabic complexities may lead to different
Figure 5 displays the statistics of the RMS erforsthe  results.
HMM-based and GMM-based methods. The difference 5 S

econdly, global objective measurements may not

highly significant (p<10). Figure 5 shows that the 2= : . :

HMM-based system produces a global RMS error Iowe(e{m're.Iy mirror phone-s_pec_mc be_hawour that may
than that produced by the GMM-based one, but presluc rasU;:aIIy m;lpact SUbJeC?VE rating o %enerated
: : Do articulation. The precision of the recovery is olicse a

in some cases errors that are higher than the stigiors highly important element for the evaluation but esth

obtained with the GMM system. elements such as the precision of the recoveryafia
elements such as vocal tract constrictions areralitu
also very important.

0.6 =

] Thirdly, we have shown elsewhere [Tar07] that vieswve
have various performance for tongue reading and tha
, performance increases with training. Note also that
realism of motion may compensate for inaccuratailbet

i shaping: the kinematics of the computed trajecsor@uld

be more important for perception that the accuiacihe

i trajectories themselves.

051

0.4

Values
o
w

0.2

Finally, the results of this study will allow us develop a
tutoring system for on-line phonetic correction B8],
% in which recovered articulatory movements will beed
‘ ‘ to drive a virtual 3D talking head with all possbl

HMM GMM articulatory degrees-of-freedom [Bad02; Bad08].
Figure 5: Comparing RMS error of HMM and GMM

reconstruction using anoval. 8. ACKNOWLEDGMENTS
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