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HMMs and GMMs based methods for acoustic-to-articulatory speech inversion

Afin de récupérer les mouvements des articulateurs tels que les lèvres, la mâchoire ou la langue, à partir du son de parole, nous avons développé et comparé deux méthodes d'inversion basées l'une sur les modèles de Markov cachés (HMMs) et l'autre sur les modèles de mélanges de gaussiennes (GMMs). Les mouvements des articulateurs sont caractérisés par les coordonnées médiosagittales de bobines d'un articulographe électromagnétique (EMA) fixées sur les articulateurs. Dans la première méthode, des HMMs à deux flux, acoustique et articulatoire, sont entrainés à partir de signaux acoustique et articulatoire synchrones. Le HMM acoustique sert à reconnaitre les phones, ainsi que leurs durées. Ces informations sont ensuite utilisées par le HMM articulatoire pour synthétiser les trajectoires articulatoires. Pour la deuxième méthode, un GMM d'association directe entre traits acoustiques et articulatoires est entrainé sur le même corpus suivant le critère de minimum d'erreur quadratique moyenne (MMSE) à partir des trames acoustiques d'empan temporel plus ou moins grand. Pour un corpus de données EMA mono-locuteur enregistré par un locuteur français, l'erreur RMS de reconstruction sur le corpus de test pour la méthode fondée sur les HMMs se situe entre 1.96 et 2.32 mm, tandis qu'elle se situe entre 2.46 et 2.95 mm pour la méthode basée sur les GMMs.

INTRODUCTION

Speech inversion is a long-standing problem, as testified by the famous work by Atal et al. [START_REF] Atal | Inversion of articulatory-toacoustic transformation in the vocal tract by a computer-sorting technique[END_REF] in the seventies. Speech inversion was traditionally based on analysis-by-synthesis, as implemented by [START_REF] Mawass | Synthesis of French fricatives by audio-video to articulatory inversion[END_REF], or by [START_REF] Ouni | Modeling the articulatory space using a hypercube codebook for acoustic-to-articulatory inversion[END_REF] who optimised codebooks to recover vocal tract shapes from formants. But since a decade, more sophisticated learning techniques have appeared, thanks to the advent of the availability of large corpora of articulatory and acoustic data provided by devices such as the ElectroMagnetic Articulograph (EMA) or marker tracking devices based on classical or infrared video.

Our laboratory is thus involved in the development of an inversion system that allows producing augmented speech from the sound signal alone, possibly associated with video images of the speaker's face. Augmented speech consists of audio speech supplemented with signals such as the display of usually hidden articulators such (e.g. tongue or velum) by means of a virtual talking head, or with hand gestures as used in cued speech by hearingimpaired people.

STATE-OF-THE-ART

At least, two classes of statistical models of the speech production mechanisms can be found in the recent literature: Hidden Markov Models (HMMs) (cf. [START_REF] Hiroya | Estimation of articulatory movements from speech acoustics using an HMM-based speech production model[END_REF], [START_REF] Zhang | Acousticarticulatory modeling with the trajectory HMM[END_REF] or [START_REF] Ben Youssef | Acoustic-to-articulatory inversion using speech recognition and trajectory formation based on phoneme hidden Markov models Interspeech[END_REF]), and Gaussian Mixture Models (GMMs) (cf. [START_REF] Toda | Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model[END_REF]). In addition to the structural differences between HMMs and GMMs, an important difference is that HMMs explicitly use phonetic information and temporal ordering while the GMMs simply cluster the multimodal behaviour of similar speech chunks.

Hiroya & Honda [START_REF] Hiroya | Estimation of articulatory movements from speech acoustics using an HMM-based speech production model[END_REF] developed a method that determines articulatory movements from speech acoustics using a HMM-based speech production model. After proper labelling of the training corpus, each phoneme is modelled by a context-dependent HMM, and a separate linear regression mapping is trained at each HMM state between the observed acoustic and the corresponding articulatory parameters. The articulatory parameters of the statistical model are then determined for a given speech spectrum by maximizing a posteriori estimation. In order to assess the importance of phonetics, they tested their method under two experimental conditions, namely with and without phonemic information. In the former, the phone HMMs were assigned according to the correct phoneme sequence for each test utterance. In the latter, the optimal state sequence was determined among all possible state sequences of the phone HMMs and silence model. They found that the average RMS errors of the estimated articulatory parameters were 1.50 mm from the speech acoustics and the phonemic information in the utterance and 1.73 mm from the speech acoustics only.

Zhang & Renals [START_REF] Zhang | Acousticarticulatory modeling with the trajectory HMM[END_REF] developed a similar approach. Their system jointly optimises multi-stream phone-sized HMMs on synchronous acoustic and articulatory frames. The inversion is carried out in two steps : first a representative HMM state alignment is derived from the acoustic channel ; a smoothed mean trajectory is generated from the HMM state sequence by an articulatory trajectory formation model using the same HMMs. Depending on the availability of the phone labels for the test utterance, the state sequence can be either returned by an HMM decoder, or by forced alignment derived from phone labels, leading to RMS errors of respectively 1.70 mm and 1.58 mm. Toda and coll. [START_REF] Toda | Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model[END_REF] described a statistical approach for both articulatory-to-acoustic mapping and acoustic-toarticulatory inversion mapping without phonetic information. Such an approach interestingly enables language-independent speech modification and coding. They modelled the joint probability density of articulatory and acoustic frames in context using a Gaussian mixture model (GMM) based on a parallel acoustic-articulatory speech database. They employed two different techniques to establish the GMM mappings. Using a minimum meansquare error (MMSE) criterion with an 11 frames acoustic window and 32 mixture components, they obtained RMS inversion errors of 1.61 mm for one female speaker, and of 1.53 mm for a male speaker. Using a maximum likelihood estimation (MLE) method and 64 mixture components, they improved their results to 1.45 mm for the female speaker, and 1.36 mm for the male speaker. The studies described above do not allow concluding about the optimal inversion method since data, speakers and languages are not comparable. Hiroya & Honda [START_REF] Hiroya | Estimation of articulatory movements from speech acoustics using an HMM-based speech production model[END_REF] and Zhang & Renals [START_REF] Zhang | Acousticarticulatory modeling with the trajectory HMM[END_REF] have shown that using explicit phonetic information to built HMMs gives better results. Toda and coll. [START_REF] Toda | Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model[END_REF], using GMMs and no phonetic information, get lower RMS errors. However, the corpora as well as training and testing conditions are not completely comparable. Therefore, the aim of the present work is to compare the HMM-based method used in [START_REF] Ben Youssef | Acoustic-to-articulatory inversion using speech recognition and trajectory formation based on phoneme hidden Markov models Interspeech[END_REF] with a GMM-based method similar to that of [START_REF] Toda | Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model[END_REF] using the minimum mean-square error (MMSE) criterion for the GMM-based mapping method, everything else being comparable.

ARTICULATORY AND ACOUSTIC DATA

The corpus

For this preliminary study, a corpus already recorded was used [Bad08]. It consists of a set of two repetitions of 224 nonsense vowel-consonant-vowel (VCV) sequences (uttered in a slow and controlled way), where C is one of the 16 French consonants and V is one of 14 French oral and nasal vowels; two repetitions of 109 pairs of CVC real French words, differing only by a single cue (the French version of the Diagnostic Rhyme Test); 68 short French sentences, 9 longer phonetically balanced French sentences, and 11 long arbitrary sentences. The corpus was recorded on a single male French subject, which means that no speaker adaptation / normalisation problems will be dealt with in this study.

The phones have initially been labelled for each utterance using a forced alignment procedure based on the audio signal and the corresponding phonetic transcription string based on HMMs. Subsequent manual correction of both phoneme labels and phoneme boundaries were performed using the Praat software [START_REF] Boersma | Praat: doing phonetics by computer (Version 4.3.14)[END_REF]. The centres of allophones were automatically chosen as the average between beginning and end of the phonemes. Altogether the corpus contained 7350 allophones, i.e. about 22 minutes of speech. The 36 phonemes are: [a ɛ e i y u o ø ɔ oe ɑ̃ ɛ̃ oẽ ɔ̃ p t k f s ʃ b d g v z ʒ m n ʁ l w ɥ j ə _ __],

where _ and __ are internal short and utterance initial and final long pauses respectively.

The acoustic and articulatory data

The articulatory data have been recorded by means of an ElectroMagnetic Articulograph (EMA) that allows tracking flesh points of the articulators thanks to small electromagnetic receiver coils. Studies have shown that the number of degrees of freedom of speech articulators (jaw, lips, tongue …) for speech is limited, and that a small but sufficient number of carefully selected measurement locations can allow retrieving them with a good accuracy [START_REF] Badin | Threedimensional linear modeling of tongue: Articulatory data and models[END_REF]Bad08]. In the present study, six coils are used: a jaw coil is attached to the lower incisors (jaw), whereas three coils are attached to the tongue tip (tip), the tongue middle (mid), and the tongue back (bck) at approximately 1.2 cm, 4.2 cm, and 7.3 cm, respectively, from the extremity of the tongue; an upper lip coil (upl) and a lower lip coil (lwl) are attached to the boundaries between the vermilion and the skin in the midsagittal plane. Extra coils attached to the upper incisor and to the nose served as references to compensate for head movements in the midsagittal plane. The audiospeech signal was recorded at a sampling frequency of 22050 Hz, in synchronization with the EMA coordinates, which were recorded at a 500 Hz sampling frequency.

Overview of the data

In order to reduce the noise of the EMA data, the articulatory trajectories were first low pass filtered with a cut-off frequency of 50 Hz. Then we verified that the general articulatory characteristics of each phoneme were in accordance with our expectation by displaying, in the midsagittal plane, the dispersion ellipses of the six coils estimated over the sets of all the instances. The minimum and maximum number of instances per phoneme was 18 (for short pauses) and 348 (for /a/). This illustrates the coherence and the validity of the data. Figure 1, which displays these ellipses for phoneme /t/, illustrates the very low variability of the tongue tip coil for /t/, as could be expected since the tongue is in contact with the hard palate for this articulation. It should however be reminded that the articulations were sampled at the instant midway between the phone boundaries, which does not completely ensure that it corresponds to the actual centre of the phone if the trajectories are not symmetrical. 

Context classes for phonemes

Due to coarticulatory effects, it is unlikely that a single context-independent HMM could optimally represent a given allophone. Therefore, context-dependent HMMs were trained. Rather than using a priori phonetic knowledge to define such classes, confusion trees have been built for both vowels and consonants, based on the matrix of City-Block distances of the coils coordinates between each pair of phone. Each allophone was represented by its mean over all the associated instances. Left-to-right, 3-state phoneme HMMs with one Gaussian per state and a diagonal covariance matrix are used. For training and test the HTK3.4 toolkit is used [START_REF] Young | The HTK Book. Revised for HTK Version[END_REF]. The training is performed using the Expectation Maximization (EM) algorithm based on the Maximum Likelihood (ML) criterion.

The acoustic and articulatory features vectors are here considered as two streams in the HTK multi-stream training procedure. Subsequently, the HMMs obtained are split into articulatory HMMs and acoustic HMMs.

A bigram language model considering sequences of phones in context is trained over the complete corpus. Thus, the recognised phoneme sequences respect French phonotactics. No prosodic constraints such as a duration model are added. The acoustic-to-articulatory inversion is achieved in two steps. The first step performs phoneme recognition, based on the acoustic HMMs. The result is a sequence of recognised allophones together with their durations. The recognition results are given in the Table 1. The recognition performances are increased by the use of phonemes in context. The procedure of replacement of the HMMs, which aims to compensate for the too small size of the training sets (cf. [START_REF] Ben Youssef | Acoustic-to-articulatory inversion using speech recognition and trajectory formation based on phoneme hidden Markov models Interspeech[END_REF]), increases the recognition rate from 76.9 to 84.0 %. The second step of the inversion aims at reconstructing the articulatory trajectories from the chain of phoneme labels and boundaries delivered by the recognition procedure. As described in [START_REF] Govokhina | TDA: A new trainable trajectory formation system for facial animation InterSpeech[END_REF], the synthesis is performed as follows, using the software developed by the HTS group [START_REF] Tamura | Text-to-audio-visual speech synthesis based on parameter generation from HMM EUROSPEECH[END_REF][START_REF] Zen | An introduction of trajectory model into HMMbased speech synthesis Fifth ISCA ITRW on Speech Synthesis[END_REF]. A linear sequence of HMM states is built by concatenating the corresponding phone HMMs. The proper state durations are estimated by z-scoring. A sequence of observation parameters is generated using a specific ML-based parameter generation algorithm [START_REF] Zen | An introduction of trajectory model into HMMbased speech synthesis Fifth ISCA ITRW on Speech Synthesis[END_REF]. In order to assess the contribution of the trajectory formation to RMS errors of the complete inversion method, we also synthesised these trajectories directly from the original labels, simulating a perfect acoustic recognition step.

The root-mean-square (RMS) error is calculated for the difference between the measured and the estimated articulatory coordinates, excluding the long pauses at the beginning and the end of each utterance. The mean correlation coefficient (Corr) measures the degree of amplitude similarity and the synchrony of the trajectories.

Table 2 shows the RMS errors. The results are consistent with those in Table 1. In addition, Table 2 displays the errors corresponding to cases where the recognition step is bypassed by synthesising the articulatory trajectories directly from the original phoneme sequences; the relatively high level of these errors shows that a significant part of the overall error is due to the trajectory formation model that often oversmooths the predicted movements and does not capture properly coarticulation patterns. Note that all the differences in Table 2 are significant (p < 0.03). 

MULTIMODAL GMM MODELS

We apply the GMM-based mapping using the minimum mean-square error (MMSE) criterion, which has been often used for voice conversion. The determination of a target parameter trajectory with appropriate static and dynamic properties is obtained here by combining local estimates of the mean and variance for each frame p(t) and its derivative ∆p(t) with the explicit relationship between static and dynamic features (e.g. ∆p(t) = p(t)p(t-1)) in the MMSE-based mapping.

The 1st to 13th Mel-cepstral coefficients are used as a spectral representation of the speech signal. The shift duration is also 10 ms. The 12-dimensional EMA data is accordingly down sampled to match this 100 Hz sampling rate.

The number of mixture components is varied from 8 to 32. The number of input acoustic frames is fixed to 9 but the size of context window is varied from a phoneme size (~100 ms) to a syllable size (330 ms) (by picking one frame every 1-4 frames). A reduction of the acoustic dimension (9*13 = 117) is performed by Principal Component Analysis (PCA): the number of principal components is set to 24.

It has been reported in the literature that the low pass filtering of training as well as estimated articulatory trajectories improves the mapping performance (e.g., Richmond, 2001). The optimal cut-off frequency of the low pass filter is deemed to be 25Hz.

The RMS error and the correlation coefficient are calculated over the same training and test data used for evaluating the HMM system.

Table 3 shows the RMS error (in mm) and the correlation coefficient for the different experiments using different numbers of mixtures and different sizes of context window. The RMS error decreases when the number of mixtures increases and when the size of context window decreases. The most plausible interpretation is that a phoneme-sized window optimally contains necessary local phonetic cues for inversion. The 32 mixtures appear to constitute the best representation of the 36 phonemes.

The better mapping accuracy is finally achieved when the size of the context window is set to 90 ms and the number of mixture components is set to 32 in this experiment. In that case, the RMS error is 2.46 mm. 

COMPARISON AND COMMENTS

Figure 4 displays the measured and reconstructed articulatory trajectories of the Y-coordinates for the two competing systems. It seems that the GMM-based method has difficulty in dealing with the asynchronous behaviour of inter-articulatory coordination.

Our HMM-based system generates an RMS error of 1.96 mm for the same data. Surprisingly, the performance of the HMM-based inversion mapping is significantly more accurate than that of the GMM-based system although results published on voice-conversion experiments seem to suggest the opposite. A possible explanation for this contrastive behaviour lays perhaps in the fact that GMM-based techniques are more appropriate to deal with unimodal mappings where events in source and targets are largely synchronous, whereas HMM-based techniques are able to deal with context-dependent mappings and delays between frames structured by state transitions.

Both systems can however be improved. HMM-based inversion can include more sophisticated treatment of articulatory-to-acoustic asynchrony by introducing delay models that have been quite effective in HMM-based multimodal synthesis [START_REF] Govokhina | Learning optimal audiovisual phasing for a HMM-based control model for facial animation 6 th ISCA Workshop on Speech Synthesis[END_REF]. The GMM-based system could be improved by considering other dimensionality reduction techniques such as Linear Discriminant Analysis (LDA) that are quite effective in HMM-based inversion [START_REF] Tran | Improvement to a NAM captured whisper-to-speech system Interspeech[END_REF]. Both systems can also be improved by incorporating visual information as input and including this additional information more intimately in the optimization process that will consider multimodal coherence between input and output parameters: lips are clearly visible and jaw is indirectly available in facial movements.

Figure 5 displays the statistics of the RMS errors for the HMM-based and GMM-based methods. The difference is highly significant (p<10 -7 ). Figure 5 shows that the HMM-based system produces a global RMS error lower than that produced by the GMM-based one, but produces in some cases errors that are higher than the highest errors obtained with the GMM system. 

CONCLUSIONS AND PERSPECTIVES

We have implemented and compared two acoustic-toarticulatory speech inversion techniques, which contrast in the way they capture and exploit a priori multimodal coherence. This work tends to show that the inversion process should be "phonetic-aware". Several reserves can however be made on these first experiments:

First, the HMM system benefits from the phonotactics of the target language. Despite the fact that the language model has not been trained on test data, the phonological structures of test and training utterances are very similar. Note however that French has a rich syllabic inventory and that we can imagine that results obtained with languages such as Japanese, Polish or Spanish with various syllabic complexities may lead to different results.

Secondly, global objective measurements may not entirely mirror phone-specific behaviour that may drastically impact subjective rating of generated articulation. The precision of the recovery is of course a highly important element for the evaluation but other elements such as the precision of the recovery of crucial elements such as vocal tract constrictions are naturally also very important.

Thirdly, we have shown elsewhere [START_REF] Tarabalka | Can you "read tongue movements[END_REF] that viewers have various performance for tongue reading and that performance increases with training. Note also that the realism of motion may compensate for inaccurate detailed shaping: the kinematics of the computed trajectories could be more important for perception that the accuracy of the trajectories themselves.

Finally, the results of this study will allow us to develop a tutoring system for on-line phonetic correction [START_REF] Badin | Towards the use of a virtual talking head and of speech mapping tools for pronunciation training Proceedings of the ESCA Tutorial and Research Workshop on Speech Technology in Language Learning[END_REF], in which recovered articulatory movements will be used to drive a virtual 3D talking head with all possible articulatory degrees-of-freedom [Bad02; Bad08].
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Figure 1 :

 1 Figure 1: Dispersion ellipses of the measured coordinates of the six EMA coils for phoneme /t/. These ellipses are computed from the samples taken at the middle of the 231 instances of /t/ in the corpus.

Figure 2 :Figure 3 :

 23 Figure 2: Dendrogram of 6 classes for vocalic contexts

Figure 5 :

 5 Figure 5: Comparing RMS error of HMM and GMM reconstruction using anova1.

Figure 4 :

 4 Figure 4: Comparing original (thick lines) and synthesized (thin lines) trajectories of ordinates of 6 EMA fleshpoints computed from the acoustic signal. Left: HMM-based inversion and trajectory formation using phone-sized Markov models with right context; right: synthesis by GMM-mapping using a context window of 90 ms and a mixture of 32 Gaussians.

Table 1 :

 1 Recognition rates (Percent Correct, Accuracy) for the experiments with different types of contexts. The star * indicates the series of experiments for which missing HMMs were replaced by the closest model.

	Train -Test	no-ctx	L-ctx	ctx-R	L-ctx-R
	Nb phones	Nb	Nb	Nb		Nb
	Cor, Acc (%)	Cor Acc Cor Acc Cor	Acc	Cor Acc
	1 -1	89,67 70,41 97,63 91,29 98,12 92,95 99,28 97,88 392 1376 387 36
	2/3 -1/3	88.09 67.91 85.56 64.66 87.57 66.19 76.90 68.59 1159 366 358 36
	2/3 -1/3 *		89,09 72.30 91,46 77,18 84,04 75.69 385 379 1312

Table 2 :

 2 RMS errors (mm) and correlation coefficients for the experiments with different types of contexts. The star * indicates the series of experiments for which missing HMMs are replaced by the closest model. The ^ indicate that the synthesis is generated from the original labels.

	-Test		no-ctx	L-ctx	ctx-R L-ctx-R
	1 -1		RMS Corr	2.26 0.72	1.62 0.82	1.62 0.83	1.05 0.90
	2/3 -1/3	RMS Corr	2.32 0.70	2.15 0.71	2.06 0.73	2.31 0.69
	2/3 -1/3 *	RMS Corr		2.07 0.72	1.96 0.75	2.08 0.73
	2/3 -1/3	Train	RMS Corr	2.21 0.75	1.86 0.77	1.87 0.75	1.74 0.82

Table 3 :

 3 RMS errors and correlation coefficient with different numbers of mixtures (# mix) and sizes of context window (ctw)

	ctw	90	170	250	330
	#mix	RMS Corr RMS Corr RMS Corr RMS Corr
	8	2.87 0.56 2.77 0.59 2.84 0.57 2.95 0.55
	16	2.76 0.58 2.61 0.62 2.67 0.60 2.94 0.55
	32	2.46 0.63 2.55 0.63 2.61 0.60 2.87 0.57