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ABSTRACT— Because fault failures tend to affect whole 

areas, in some cases, and not only individual computers, we 

propose a new, efficient scheduling algorithm for problems in 

which tasks with precedence constraints and communication 

delays have to be scheduled on a virtual heterogeneous 

distributed multi areas system subject to the possibility of one 

complete area failure. Based on an extension of the Critical-

Path Method CPM/PERT, our algorithm combines an optimal 

schedule when there is no failures, with some tasks duplication 

to provide fault-tolerance in the case of the failure of one area. 

Backup copies are not established for tasks that have already 

more than one original copy in different areas.  The result is a 

schedule in polynomial time that is optimal when there is no 

area failure, and is a good reliable schedule in the case of any 

one area failure. We finally do some numerical experiments in 

which we use our algorithm on several semi-random DAGs and 

compare the optimal solutions with the reliable solutions found 

by this algorithm. 

 
KEYWORDS— DAG, scheduling with communication, 

heterogeneous systems, fault tolerance, catastrophic crash, area 

failure, reliable applications. 

I. INTRODUCTION  

 Efficiently using heterogeneous systems is a hard 

problem, because the general problem of optimally 

scheduling tasks is NP-complete, even when there are no 

communication delays [8, 10]. When the application tasks 

can be represented by Directed Acyclic Graphs (DAGs), 

many static algorithms for scheduling DAGs in meta-

computing systems are described in [1], [4], [10], [19].  

Reliable execution of a set of tasks is usually achieved by 

task duplication and backup copies [3], [9], [15], [16].  

 A very classical and useful tool to study static scheduling 

problems with DAG is the Critical Path Method (also known 

as CPM, or PERT method, or CPM/PERT) [2]. Using a 

relaxation of the constraint on the number of available 

processors, this method gives results such as a lower bound 

on the execution time (or makespan) of the application and 

lower bounds on the execution dates of all tasks of the DAG. 

Because of the relaxation, tasks can be executed as soon as 

possible. Improvements and limits of this method to 

distributed systems with communications delays may be 

found in [4], [5], [11], for example. The study given in [6] 

presents the problem of scheduling the tasks of a DAG on 

the servers of an heterogeneous system. There, the 

relaxation used in CPM/PERT was replaced by the dual 

relaxation that each server has no constraint on the number 

of tasks it can simultaneously process. That is, each server 

can simultaneously process a non limited number of tasks 

without loss of performances. Our goal was to compute a 

lower bound on the execution time of a realistic solution, 
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and compute lower bounds on the execution dates of all 

tasks of the DAG. In [12], [13], the authors suppose that one 

server (and at most one) could suffer from a crash fault. The 

algorithm presented there improved on the one presented in    

[6] by adding backup copies to the optimal solution build.  

 However, because heterogeneous systems become 

geographically larger and larger, they tend to be more 

influenced by failures that concern whole regions or areas. 

The failure of a simple DNS server, or an electric shortage 

affecting an city or region, or even a hacker attack that 

targets a whole country [18], is sufficient to temporarily 

render useless all the computing resources of an area. In this 

paper, we propose an efficient scheduling algorithm for 

problems in which tasks with precedence constraints and 

communication delays have to be scheduled on an virtual 

heterogeneous distributed multi-areas system subject to the 

possibility of one complete area failure. Based on an 

extension of the Critical-Path Method CPM/PERT, our 

algorithm combines an optimal schedule with some 

additional tasks duplication, to provide fault-tolerance. The 

result is a schedule in polynomial time that is optimal when 

there is no area failure, and is a good resilient schedule in 

the case of one area failure. 

 The rest of this paper is divided into four main parts.  In 

the first one, we present the problem, and in the second one, 

we present our new algorithm. In the third part, we make 

some numerical experiments using randomly generated tasks 

graphs, comparing the optimal solutions with the resilient 

solutions found by this algorithm. Finally, in the fourth part, 

we discuss the advantages and disadvantages of the 

proposed solution. 

II. THE CENTRAL PROBLEM 

2.1 The Distributed Servers System 

 We call Distributed Servers System (DSS) a virtual set 

of geographically distributed, multi-users, heterogeneous or 

not, servers. The processing time of a task on each server of 

a DSS is supposedly known. It may vary from one server to 

another, and some tasks may not be executed on some 

servers. 

 The classical CPM/PERT relaxation on the number of 

processors, is replaced in the DSS problem with the dual 

relaxation that each server has no constraint on the number 

of tasks it can simultaneously process. Thus we suppose that 

the concurrent executions of some tasks of the application 

on a server have a negligible effect on the processing time of 

any other task of the application on the same server. 

 The transmission delay of a result between two tasks 

depends on the tasks and on their respective servers. The 

communication delay between two tasks executed on the 

same server is supposed equal to 0. 
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Figure 1: Example of Distributed Servers System with the list of the 

executable services for each server. 

CAN(*) : Campus Area Network. 
 

In Figure 1, if we suppose that the CAN has a speed 1, the 

LAN 2 has a speed 2 and the LAN 1 has a speed 3, the 

following matrix gives the communication costs between the 

servers for one unit of data: 
Network delay  

between σi→ σj 

Server  

σ1 
Server  

σ2 
Server  

σ3 
Server  

σ4 

Server σ1 0 1 3 3 

Server σ2 1 0 3 3 

Server σ3 3 3 0 2 

Server σ4 3 3 2 0 

Table 1: Cost communication between servers (distance σr → σp  ) 
 

Thus, the total communication delay between two tasks is 

the amount of data from the first task to the second one, time 

the speed cost between their servers. 

 A DSS itself may be divide into a set of areas, that will 

be defined and used later, but that has no effects during the 

normal processing of an application. In Figure 1, for 

example, there are two areas, Area 1 and Area 2. 

2.2 Directed Acyclic Graph 

 An application is decomposed into a set of indivisible 

tasks that have to be processed. A task may need data or 

results from other tasks to fulfil its function and then send its 

results to other tasks. The transfers of data between the tasks 

introduce dependencies between them. The resulting 

dependencies form a DAG.  

 The central scheduling problem P on a Distributed 

Server System, is represented therefore by the following 

parameters:   

• a set of servers, noted Σ = {σ1, ..., σs}, interconnected by a  

network, 

• a set of the tasks of the application, noted I = {1,..., n}, to 

be executed on Σ. The execution of task i, i ∈ I, on server 

σr, σr ∈ Σ, is noted i/σr. The subset of the servers able to 

process task i is noted Σi, and may be different from Σ,  

• the processing times of each task i on a server σr is a 

positive value noted 
ri σπ   / . The set of processing times of 

a given task i on all servers of Σ is noted  Πi(Σ). 

ri σπ   / = ∞ means that the task i cannot be executed by the 

server σr. 

• a set of the transmissions between the tasks of the 

application, noted U. The transmission of a result of an 

task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j).  

• The real communication delay, noted 
pr jic σσ /, /

, of the 

transmission of the data from i to j if task i is processed by 

server σr and task j is processed by server σp is a positive 

value that is in fact the data volume of (i, j) multiplied by 

the communication cost between the two servers.  

• The set of all possible communication delays of the 

transmission of the result of task i, toward task j is noted 

∆i,j(Σ). Note that a zero in ∆i,j(Σ)  mean that i and j are on 

the same server, i.e. 
pr jic σσ /, / = 0 ⇒ σr  = σp.  And 

pr jic σσ /, / =  ∞ means that either task i cannot be executed 

by server σr, or task j cannot be executed by server σp, or 

both. 

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing 

times of the tasks of P on Σ.   

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be  the set of all 

communication delays of transmissions (i, j) on Σ. 

 The central scheduling problem P on a distributed 

servers system DSS can be modelled by a multi-valued 

DAG G = {I, U, Π(Σ),  ∆(Σ)}. In this case we note  P={G, 

Σ}. Figure 2 presents an example of DAG. 

 
Figure 2 : Example of DAG   

n.a.= not allowed, i.e. cannot execute on this server  
 

 In this example there are 9 tasks. The label on each task  

is its processing cost on the 4 servers. For example the label 

Π6 = (15, ∞, 12, 15) on task 6 means that the processing 

time of task 6 on server σ1 (respectively σ2, σ3, σ4) is 15 

(resp. ∞, 12, 15). The label on an arc (i, j) is the data volume 

from i to j. For example the data volume communicated by 

task 1 to task 3 is 2. If task 1 is executed on server σ1 and 

task 3 is executed on server σ2, the communication between 

tasks 1 and 3 noted  c1/σ1, 3/σ2  = 1*2 = 2, because the cost 

communication between σ1 and σ2 is 1. Also we can see 

that if task 1 is processed on server σ1  and task 3 is 

processed on server σ4 , then c1/σ1, 2/σ2  = 3∗ 2 = 6. 

2.3. Definition of a feasible solution 

 We note PRED(i), the set of the predecessors of task i in 

G:  { } ),(et  / )PRED( UikIkki ∈∈=  

 And we note SUCC(i), the set of the successors of task i 

in G: { } ),(et  / )SUCC( UjiIjji ∈∈=  

 A feasible solution S for the problem P is a subset of 

executions { i/σr , i∈I } with the following  properties:     

• each task i of the application is executed at least once on 

at least one server σr of Σi, 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 6 
task 7 
task 8 

 

SERVER σ1 SERVER σ2 

 Possible  Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 7 
task 8 
task 9 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 6 

 
  

  SERVER σ3 SERVER σ4 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 6 
task 7 
task 8 
task 9 

CAN 
(*)

 

LAN 1  

 

LAN 2  

Area 1 

Area 2 
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• to each task i of the application executed by a server σr 

of Σi, is associated one positive execution date 
rit σ/ , 

• for each execution of a task i on a server σr, such that 

PRED(i) ≠ ∅, there is at least an execution of a task k, k 

∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit its 

result to server σr before the execution date 
rit σ/ .    

 The last condition, also known as the Generalized 

Precedence Constraint (GPC) [5], can be expressed more 

formally as:   







++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r
cttik

t
Si

σσσσσ

σ

πσ
σ

  /, / / //

/

/),PRED(

0
/

   

else

  )PRED(   if ∅=i  

 It means that if a communication must be done between 

two scheduled tasks, there is at least one execution of the 

first task on a server with enough delay between the end of 

this task and the beginning of the second one for the 

communication to take place.  A feasible solution S for the 

problem P is therefore a set of executions i/σr of all i tasks, i 

∈ I, scheduled at their dates 
rit σ/ , and verifying the 

Generalised Precedence Constraints GPC.  Note that, in a 

feasible solution, several servers may simultaneously or not 

execute the same task. This may be useful to generate less 

communications.   All the executed tasks in this feasible 

solution, however, must respect the Generalized 

Dependence Constraints. 

2.4. Optimality Condition  

 Let T be the total processing time of an application (also 

known as the makespan of the application) in a  

feasible solution S, with T defined as: )(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 

 A feasible solution S* of the problem P modelled by a 

DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total 

processing time T* is minimal. That is, it does not exist any 

feasible solution S with a total processing time T such that T 

< T*. 

2.5. Area Failure 

 Finally, we now consider a DSS with possibilities of area 

failures.  We suppose that the DSS is composed of a set of 

areas, noted A={Σ1, …, Σz}. Each area Σi is a subset of 

servers of Σ. Each server belongs to one and only one area. 

For example in fig.1 we have 2 areas : Area1 = 

Σ1={σ1, σ2}  and Area2 = Σ2 ={σ3, σ4 }. 

 One “area failure” of an area means that all servers of 

this area are unavailable. In our problem, only one area 

failure at most can occur. We call “failed area” (FA) the 

area, in which the area failure occurs, if it occurs. To 

simplify, we suppose that a failed area stay in this state until 

the end of the execution of the application. 

 A solution is “one area failure tolerant” or 1FA tolerant 

if at least one copy of each task of the graph is executed on 

at least one server outside of the failed area, and the solution 

is feasible. Note that, for at least one solution to be feasible 

if there is one area failure, it is obvious that all tasks of the 

application must be able to be executed on at least two 

servers in different areas. 

III. THE DSS_1FA ALGORITHM 

 The algorithm proposed here, named DSS_1FA, has two 

phases: the first one is for the scheduling of original copies 

where we use the DSS-OPT algorithm [6] and the second 

one is for adding and scheduling additional backups copies 

when necessary.  

3.1. Scheduling the original copies 

 We schedule original copies of tasks in our algorithm 

with the DSS-OPT algorithm [6]. The DSS-OPT algorithm 

is an extension of CPM/PERT algorithms type to the 

distributed servers problem. In its first phase, it computes 

the earliest feasible execution date of each task on every 

server, and in its second phase it builds a feasible solution 

(without server fault) starting from the end of the graph with 

the help of the earliest dates computed  in the first phase. 

 Let P be a DSS scheduling problem, and let G = {I, U, 

Π(Σ),  ∆(Σ)} be its DAG.  

 One can first note that there is an optimal trivial solution 

to this DSS scheduling problem. In this trivial solution, all 

possible tasks are executed on all possible servers, as soon 

as possible, and their results are then broadcasted to all 

others servers. This is an obvious waste of processing power 

and communication resources, however, and something as 

optimal, but less wasteful in terms of used resources, is 

usually needed.  

 The first phase of the DSS_OPT routine, DSS_LWB(), 

goes from the initial tasks to the final ones, computing along 

the way the earliest feasible execution dates 
r / ib σ and 

earliest end date r / ir σ ,  for all possible executions i/σr  of 

each task  i of problem P. 

 The second phase of the DSS_OPT routine determines, 

for every task i that does not have any successor in G, i.e. 

task i is a “leaf” or final task, the execution i/σr ending at the 

earliest possible date r / ir σ . If several executions of task i 

end at the same smallest date 
r / ib σ , one is chosen, 

arbitrarily or using other criteria of convenience, and kept in 

the solution. Then, for each kept execution i/σr that has at 

least one predecessor in the application, the subset Li of the 

executions of its predecessors that satisfy GPC(i/σr) is 

established. This subset of executions of predecessors of i 

contains at least an execution of each of its predecessors in 

G. One execution k/σp of every predecessor task k of task i 

is chosen in the subset, arbitrarily or using other criteria of 

convenience, and kept in the solution. It is executed at its 

earliest possible date 
p / kb σ . The examination of the 

predecessors is pursued in a recursive manner until the 

studied tasks do not present any predecessors in G.  

3.2. Adding backup copies 

 The ADD_BACKUP_COPIES routine starts from tasks 

without any predecessors, similarly to DSS_LWB(), and 

proceed from there to the end of the DAG. First, if there is 

currently only one copy of a given  task, it determines what 

is the worst possible delay it may encounter if a failure 

occurs on another server, while satisfying its GPC. It also 

determines the fastest server (not considering the server 

executing the only current copy of this task in the current 

solution) able to execute this task,  and adds a backup copy 

on this server to the solution, again considering the worst 
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possible delay resulting from this failure, while satisfying 

the GPC of this copy. Else the task has already several 

copies in the optimal solution, and the routine determines for 

each original copy of this task, what is the worst possible 

delay it may encounter if a failure occurs on another server, 

while satisfying its GPC.  

3.3. DSS_1_AREA_FAILURE algorithm 

 The complete DSS_1_AREA_FAILURE algorithm is 

the following: 

Input: G = {I, U, Π(Σ),  ∆(Σ)} 

Output: A feasible solution with backup copies  

DSS_1FA () 

  DSS_OPT()       // first phase 

  ADD_BACKUP_COPIES_1FA()    // second phase 

end  DSS_1FA 

DSS_OPT() 
 DSS_LWB ()     

 )(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=  

 for all tasks i such that SUCC(i) = ∅ do 

  
iL  ← { i/σr / σr ∈ Σι   and  Tr

ri ≤σ/ } 

     i/σr  ←  keepOnefrom(
iL ) 

  schedule (i/σr) 
 end for 

end DSS_OPT 

DSS_LWB() 

 for each task i where PRED(i) = ∅  do 

  for each server σr  such that  σr ∈ Σi  do 

   0/ ←
rib σ  

   
rr iir σ/ / πσ ←  

           end for 

  mark (i) 

       end for 

 while there is a non marked task i such that 

                   all its predecessors  k in G  are marked  do 

  for each  server  σr  such that  σr ∈ Σi   do 

 ))(min(max /,///
)(PRED

/ rppp

kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

 

   
rrr iii br σσσ π /// +←  

       end for 
  mark (i) 

    end while 

end DSS_LWB 

schedule(i/σσσσr) 

 execute the task i at the date 
rib σ/ on the server σr   

 if  PRED(i) ≠ ∅ then 

  for each task  k  such that  k ∈ PRED(i)  do 

        ri

kL
σ/

← { k/σq    /   σp ∈ Σκ   and   

                         
rrppp iikkk bcb σσσσσ π //,/// ≤++ } 

   k/σq ← keepOneFrom( ri

kL
σ/

) 

   schedule (k/σq) 
          end for 

  end if 

end schedule 

keepOneFrom(Li) 

       return an execution i/σr of task i in the list of the 

       executions Li.   

end keepOneFrom. 

 

ADD_BACKUP_COPIES() 

 for each task i such that PRED(i) =  ∅  do 

  if i has only one copy scheduled  

     or all copies of i are on servers in the same area 

  then 

      Let σi  be the server executing a copy of i 

      Let αi be the area such that σi ∈ αi. 
      // compute one backup on the fastest server left 

      // outside the area αi of σi, if αi  is the failed area 

      Let σ r ∉ αi be the fastest server able to execute task i 

      Execute a new backup copy of i on σ r  at date 0 

  end if 

  mark (i) 

  end for 
 while there is a non marked task i such that all its  

                   predecessors k in G are marked  do 

  if i has only one copy scheduled  

     or all copies of i are on servers in the same area 

  then 

   Let σi  be the server executing the copy of i 

   Let αi be the area such that σi ∈ αi. 
   // First compute the delayed execution date of // task i on this 

   // server, if the failure is on an another area 

   find the delayed execution date of the copy of i on σ i 

      taking only into account the delayed  execution dates of  the 

    copies and backups of each predecessor of i to verify the GPC 
   // Second compute one backup copy on the fastest server left 

   // outside area αi, if αi  is the failed area   

   Let σ r ∉ αi be the fastest server able to execute i 

   Execute a backup copy of i on σ r taking only  into account the 

               delayed execution dates of the copies and backups of each 

               predecessor of i to verify the GPC 

  else  // i has at least two copies scheduled, on servers in separate areas. 

  // compute the delayed execution date of the copy of task i on 

  // each server, if the failure is on another area 

   for each server σ i executing a copy of i do 

     Find the delayed execution date of the copy of i on σ i taking only 

               into account the delayed execution dates of the copies and  

    backups of each predecessor of i to verify the GPC 

   end do  

  end if 

  mark (i) 

 end while 

end ADD_BACKUP_COPIES 

3.4. Numerical example: 

 We consider here the problem P definite in figure 1 and 

2, the DSS-OPT algorithm uses DSS_LWB to compute the 

earliest possible execution date of all tasks on all possible 

servers, resulting in the following values b and  r (Table 2): 

1 b1 r1  2 b2 r2  3 b3 r3 

σ1 0 15  σ1 0 19  σ1 11 31 

σσσσ2222 0 10  σσσσ2222 0 12  σ2 11 18 

σ3 0 20  σ3 0 15  σ3 9 19 

σσσσ4444    0 5  σ4 0 8  σσσσ4444    5 14 
           

4 b4 r4  5 b5 r5  6 b6 r6 

σ1 16 21  σσσσ1111 16 28  σ1 20 35 

σσσσ2222 12 18  σ2 12 32  σ2 ∞ ∞ 

σ3 15 24  σ3 15 24  σ3 18 30 

σ4 18 23  σ4 18 28  σσσσ4444    14 29 
           

7 b7 r7  8 b8 r8  9 b9 r9 

σσσσ1111 28 38  σ1 28 46  σ1 ∞ ∞ 

σ2 30 50  σσσσ2222 30 42  σσσσ2222 44 52 

σ3 ∞ ∞  σ3 ∞ ∞  σ3 ∞ ∞ 

σ4 28 48  σ4 28 38  σ4 48 56 

Table 2: The earliest possible execution date of all tasks on all possible 

servers  for the problem P 
 

It then computes the smallest makespan of any solution to 

the P problem : 

52)56,,,52min()(minmax /
)(SUCC/

=∞∞==
Σ∈∀∅=∀

r

ir

i
ii

rT σ
σ

 

In our example, the task 9 does not have any successor. The 

list L9 of the executions kept for this task in the solution is 

reduced therefore to the execution 9/σ2 . Thus  L9= {9/σ2}.     

The execution of task 9 on the server σ2 is scheduled at date 

44.   Next, The tasks 6, 7 and 8 are the predecessors  of task 



Paper ID=36 

 

 

5 

9. For the task 6, the execution 6/σ4 may satisfy the 

Generalised Precedence Constraints relative to 9/σ2. 

Therefore, this execution is kept and is scheduled at date 14 

( 4/6 σb ). For task 7, execution 7/σ1  is kept and is scheduled 

at date 28…, the table 3 presents the final executions i/σr 

kept by the DSS_OPT(P) algorithm, with their date of 

execution, in an optimal solution S. 
 

 

1/σ2 1/σ4 2/σ2 3/σ4 4/σ2 5/σ1 6/σ4 7/σ1 8/σ2 9/σ2 

rib σ/  
0 0 0 5 12 16 14 28 30 44 

rir σ/  
10 5 12 14 18 28 29 38 42 50 

Table 3:  final executions i/σr kept by the DSS_OPT(P) algorithm 
 

We obtain (figure 3) the following optimal scheduling  by 

DSS_OPT(P) algorithm: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3: DSS_OPT algorithm scheduler 
 

By adding backup copies using ADD_BACKUP_COPIES 

we get the following fault-tolerance scheduling (Figure 4.): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Gantt chart given by DSS_1_AREA_FAILURE 

 

Now we express some proprities on the results found by the 

proposed algorithm. 
 

Lemma 1: The feasible solution S calculated by the DSS_OPT 

algorithm is optimal if there is no area failure. 

Proof: Because all copies of tasks with at least one successor 

are scheduled in S only if they ensure, directly or indirectly, 

that the final copies receives their data in time in the 

solution, else are not used, it follows that the global 

makespan of the solution S is the maximal ending date of the 

copies of the tasks without any successors. 

Because only the copy with the earliest ending date of each 

task without any successor, is used in the solution S, it 

follows that no possible solution may execute one task 

without any successor that will end at an earliest date that 

the one in solution S. 

Thus the feasible solution S computed by DSS_OPT is 

optimal in execution time for the problem without area 

failure. QED 

Theorem 1: The solution calculated by DSS_1FAULT is 

optimal if there is no area failure. 
 

Proof: Because the copies in the DSS_1FAULT solution 

come and only come from the DSS_OPT solution, they all 

will be executed at the same dates if there is no area failure. 

Because of this and of Lemme 1, it then follows that the 

solution calculated by DSS_1FAULT is optimal if there is 

no area failure. QED 

 Also, in the final solution computed by DSS_1FA(), each 

task of the DAG has at least two copies (coming from the 

DSS_OPT() routine), or one copy  (coming from the 

DSS_OPT() routine) and one backup copy (build by the 

ADD_BACKUP_COPY_1FA() routine) , always executed 

on different servers.  

 Furthermore, the execution date of each backup copy and 

the delayed execution date of each original copy coming 

from DSS_OPT is always evaluated by 

ADD_BACKUP_COPIES_1FA() taking into account the 

delayed execution dates of the copies and the execution 

dates of the backups copies of each predecessor, using the 

worst possible case of failure of a predecessor, we have: 

Theorem 2: The solution calculated by DSS_1FA is feasible 

if there is at most one area failure. 

 Also, Let α be the area that contains the servers failures. 

Because the solution S is feasible when all the servers of one 

area are unavailable, this solution is also feasible if only one 

or several servers of area α are unavailable, and if all servers 

of all others areas are available. Thus: 

Theorem 3: Let S be the solution created by DSS_1FA. This 

solution S is also fault tolerant to the failure of one or 

several servers, if all servers failures occur in the same area. 

 The most computationally intensive part of DSS_OPT() 

is the first part DSS_LWB(). In this part, for each task i, for 

each server executing i, for each predecessor j of i, for each 

server executing j, a small computation is done. Thus the 

complexity of DSS_LWB() is Ο(n
2
s

2
), where n is the 

number of tasks in P, and s is the number of servers in DSS.   

Thus, the complexity of the DSS_OPT() algorithm is 

Ο(n2
s

2).  

 Similarly, in ADD_BACKUP_COPIES_1FA(), for each 

task i, for each copy of task i (at most one copy per server), 

for each predecessor j of i, for each copy of j (at most one 

per server), one small computation is done. Thus the 

complexity of ADD_BACKUP_COPIES_1FA() is bounded 

by Ο(n2
s

2), where n is the number of tasks in P, and s is the 

number of servers in DSS.   Thus we have: 

Theorem 4: The complexity of the DSS_1FAULT algorithm 

is Ο(n
2
s

2
).  

IV. NUMERICAL EXPERIMENTS 

4.1 Random graph generator 

 To evaluate DSS_1FA, we have compared the fault 

tolerant solutions it generated on some classical problems 

and DAGs to optimal solutions without fault tolerancy. In 

our study a semi-random graph generator was implemented 
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to generate weighted application DAGs with various 

characteristics. This framework first executes the random 

graph generator program to construct the application DAGs, 

which is followed by the execution of the our scheduling 

algorithms to generate output schedules. We consider two 

kinds of graphs. The first one is a regular simple two-

dimensional grid DAG (see Figure 5. a.), exhibited by the 

numerical applications, with lot of parallelism and very local 

communications. The second is the “butterfly” DAG (see 

Figure 5. b.) present in applications such as the FFT or 

shuffle algorithms, again with lot of parallelism, but a more 

complex communication pattern. 

 The servers performances are independent random 

values for each task of the DAG, and so are the  

communication delays. The processing time of a task is a 

random value generated between 10 and 30. The 

communication delay between the tasks is also a random 

value generated between 1 and 10. 
 

 

 

 
 

 

 

 

 

 

a. 2-Dimensional 

grid DAGs 
(3 lines, 5 columns)  

  

b. 3-dimensional butterfly DAGs 

 

Figure 5: Two different kind of graphs 

4.2. Performance Results 

 In Figure 6 the DAG used is the 2-Dimensional grid 

DAGs. This kind of graph needs two parameters: the 

number of lines n and the number of columns m.. Thus a 

nm-grid graph has n*m vertices. Here the chosen parameters 

are: (20,15), (20,20), (25,25), (30,25), (30,30), and (40,30), 

which  correspond, respectively to 300, 400, 625, 750, 900, 

and 1200 tasks. 

  The Figure 7 uses the butterfly DAGs. This kind of 

graph needs only one parameters: the butterfly degree n. An 

n-dimensional butterfly graph has 2n(n+1) vertices. The 

chosen degrees in this numerical tests are: 4, 5, 6, 7, and 8, 

which correspond, respectively  to 80, 192, 448, 1024, and 

2304 tasks.  

 In all our simulations, we fixed the number of servers to 

12 and the number of areas to 3 and each makespan average 

is computed over 20 random DAGs.  

 

 

 

 

 
 

 

 

 

 

 

 
 
 

 

Figure 6 :  Makespan average for 2-Dimensional grid DAGs 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure :  Makespan average for butterfly DAGs 
 

 In both kinds of DAGs (Figure 6 and Figure 7), it is 

found that the makespan average with backup copies is 

between 1.5 (usually) and 2 (at most) times the makespan 

without backup copies.  

 We got similar results when varying a little the number 

of servers and number of areas.  

 Other experiments with totally random graphs and with 

fork-join graphs yielded similar results, so they are not 

presented here. 

V. ANALYSIS 

 The model of failure, as it features at most one area 

failure, may seem limiting. However, if the probability of 

any area failure is very low, and the probabilities of area 

failure are independent, then the probability of two failures 

will be much smaller indeed. 

 Also, the solution solved by this new algorithm uses the 

classical CPM/PERT relaxation, namely that an unbounded 

number of tasks may be processed on each server in parallel 

without any effect on the tasks’ processing time, in the same 

way the classical CPM/PERT method do not consider 

resources constraints in order to get earliest execution dates 

and detect critical paths. This relaxation is not far from the 

reality, if each server is a multiprocessors architecture for 

example. Or if each server is a time-shared, multi-users 

system with a permanent heavy load coming from other 

applications, and the tasks of an application on each server 

represent a negligible additional load. Furthermore, even if 

the above conditions are not met by the real distributed 

system targeted, the results found by our algorithm may be 

used as the first step of a list scheduling algorithm, in which 

the earliest execution dates of primary and backup copies are 

used as priority values to schedule these copies on the 

servers of a real-life system. In the same way these 

CPM/PERT results are used in some real-life systems as the 

priority values of tasks in some list-scheduling algorithms 

for real shared-memory or distributed architectures. 

 This algorithm has two main advantages: 

• when there is no area failure, the DSS_1FA’s solution is 

optimal because it uses the optimal solution computed 

by DSS-OPT. 

• when there is one area failure, the DSS_1FA’s solution 

is certain to finish correctly, because every tasks has 

two or more scheduled copies on different servers in 

different areas in the final solution. If more than one 

area failure occur, the solution may still finish, but there 

is no guaranty there. 

Makespan average for butterfly DAGs
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 Note also that the solution built gives indications on the 

sensibility of an application to one area failure when 

compared to the solution without any area failure, because 

the makespan in the presence of one area failure is a worst 

case analysis. 

 Not considering the areas, one can note that the solution 

built has fault tolerance to the failure of one individual 

server. Furthermore, the solution has fault tolerance to the 

failure of several individual servers, provided that the failed 

servers are all in the same area.  

 Another benefit of our algorithm is in using the 

following idea: suppose that we know that some servers are 

very likely to have a server failure, for some reason. Even if 

they are not formally in the same area, it may be worthwhile 

to group them in a new specific artificial area, made of real 

areas, to insure that the solution built is able to survive 

failures of any number of these servers, by using backups 

outside this artificial area. 

VI. CONCLUSION AND FUTURE WORKS 

 In this paper, we have proposed a polynomial scheduling 

algorithm in which tasks with precedence constraints and 

communication delays have to be scheduled on an 

heterogeneous distributed system environment with one 

fault hypothesis.  To provide a fault-tolerant capability, we 

employed primary and backup copies.  But no backup copies 

were established for tasks which have more than one 

primary copy. 

 The result have been a schedule in polynomial time that 

gives earliest execution dates to copies of tasks when there 

is no failure, and is a good resilient schedule in the case of 

one failure. Performance evaluation on some DAGs gave an 

increase in case of one server failure in makespan of 1.5 to 2 

times the optimal makespan without server failure.  

 The execution dates of the original and backup copies 

may be used as priority values for list scheduling algorithm 

in cases of real-life, limited resources, and systems.  

 In our future work, we intend to study the same problem 

with sub-networks failures. Also, we intend to consider the 

problem of non permanent failures of servers.  Finally, we 

want to consider the problem of the partial failure of one 

server, in which one server is not completely down but loses 

the ability to execute some tasks and keeps the ability to 

execute at least one other task. 
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