
HAL Id: hal-00443653
https://hal.science/hal-00443653

Submitted on 9 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Area Failures and Reliable Distributed Applications
Moustafa Nakechbandi, Jean-Yves Colin

To cite this version:
Moustafa Nakechbandi, Jean-Yves Colin. Area Failures and Reliable Distributed Applications. ICCES
09, Dec 2009, Le Caire, Egypt. pp.CD. �hal-00443653�

https://hal.science/hal-00443653
https://hal.archives-ouvertes.fr

Paper ID=36

1

ABSTRACT— Because fault failures tend to affect whole

areas, in some cases, and not only individual computers, we

propose a new, efficient scheduling algorithm for problems in

which tasks with precedence constraints and communication

delays have to be scheduled on a virtual heterogeneous

distributed multi areas system subject to the possibility of one

complete area failure. Based on an extension of the Critical-

Path Method CPM/PERT, our algorithm combines an optimal

schedule when there is no failures, with some tasks duplication

to provide fault-tolerance in the case of the failure of one area.

Backup copies are not established for tasks that have already

more than one original copy in different areas. The result is a

schedule in polynomial time that is optimal when there is no

area failure, and is a good reliable schedule in the case of any

one area failure. We finally do some numerical experiments in

which we use our algorithm on several semi-random DAGs and

compare the optimal solutions with the reliable solutions found

by this algorithm.

KEYWORDS— DAG, scheduling with communication,

heterogeneous systems, fault tolerance, catastrophic crash, area

failure, reliable applications.

I. INTRODUCTION

 Efficiently using heterogeneous systems is a hard

problem, because the general problem of optimally

scheduling tasks is NP-complete, even when there are no

communication delays [8, 10]. When the application tasks

can be represented by Directed Acyclic Graphs (DAGs),

many static algorithms for scheduling DAGs in meta-

computing systems are described in [1], [4], [10], [19].

Reliable execution of a set of tasks is usually achieved by

task duplication and backup copies [3], [9], [15], [16].

 A very classical and useful tool to study static scheduling

problems with DAG is the Critical Path Method (also known

as CPM, or PERT method, or CPM/PERT) [2]. Using a

relaxation of the constraint on the number of available

processors, this method gives results such as a lower bound

on the execution time (or makespan) of the application and

lower bounds on the execution dates of all tasks of the DAG.

Because of the relaxation, tasks can be executed as soon as

possible. Improvements and limits of this method to

distributed systems with communications delays may be

found in [4], [5], [11], for example. The study given in [6]

presents the problem of scheduling the tasks of a DAG on

the servers of an heterogeneous system. There, the

relaxation used in CPM/PERT was replaced by the dual

relaxation that each server has no constraint on the number

of tasks it can simultaneously process. That is, each server

can simultaneously process a non limited number of tasks

without loss of performances. Our goal was to compute a

lower bound on the execution time of a realistic solution,

Moustafa NAKECHBANDI and Jean-Yves COLIN are from LITIS

Lab. of Le Havre University, 5, rue Philippe Lebon, BP 540, 76058, Le

Havre cedex, France.

e-mail: {moustafa.nakechbandi, jean-yves.colin}@univ-lehavre.fr

and compute lower bounds on the execution dates of all

tasks of the DAG. In [12], [13], the authors suppose that one

server (and at most one) could suffer from a crash fault. The

algorithm presented there improved on the one presented in

[6] by adding backup copies to the optimal solution build.

 However, because heterogeneous systems become

geographically larger and larger, they tend to be more

influenced by failures that concern whole regions or areas.

The failure of a simple DNS server, or an electric shortage

affecting an city or region, or even a hacker attack that

targets a whole country [18], is sufficient to temporarily

render useless all the computing resources of an area. In this

paper, we propose an efficient scheduling algorithm for

problems in which tasks with precedence constraints and

communication delays have to be scheduled on an virtual

heterogeneous distributed multi-areas system subject to the

possibility of one complete area failure. Based on an

extension of the Critical-Path Method CPM/PERT, our

algorithm combines an optimal schedule with some

additional tasks duplication, to provide fault-tolerance. The

result is a schedule in polynomial time that is optimal when

there is no area failure, and is a good resilient schedule in

the case of one area failure.

 The rest of this paper is divided into four main parts. In

the first one, we present the problem, and in the second one,

we present our new algorithm. In the third part, we make

some numerical experiments using randomly generated tasks

graphs, comparing the optimal solutions with the resilient

solutions found by this algorithm. Finally, in the fourth part,

we discuss the advantages and disadvantages of the

proposed solution.

II. THE CENTRAL PROBLEM

2.1 The Distributed Servers System

 We call Distributed Servers System (DSS) a virtual set

of geographically distributed, multi-users, heterogeneous or

not, servers. The processing time of a task on each server of

a DSS is supposedly known. It may vary from one server to

another, and some tasks may not be executed on some

servers.

 The classical CPM/PERT relaxation on the number of

processors, is replaced in the DSS problem with the dual

relaxation that each server has no constraint on the number

of tasks it can simultaneously process. Thus we suppose that

the concurrent executions of some tasks of the application

on a server have a negligible effect on the processing time of

any other task of the application on the same server.

 The transmission delay of a result between two tasks

depends on the tasks and on their respective servers. The

communication delay between two tasks executed on the

same server is supposed equal to 0.

Area Failures and Reliable Distributed Applications

 Moustafa NAKECHBANDI, Jean-Yves COLIN

Paper ID=36

2

Figure 1: Example of Distributed Servers System with the list of the

executable services for each server.

CAN(*) : Campus Area Network.

In Figure 1, if we suppose that the CAN has a speed 1, the

LAN 2 has a speed 2 and the LAN 1 has a speed 3, the

following matrix gives the communication costs between the

servers for one unit of data:
Network delay

between σi→ σj

Server

σ1
Server

σ2
Server

σ3
Server

σ4

Server σ1 0 1 3 3

Server σ2 1 0 3 3

Server σ3 3 3 0 2

Server σ4 3 3 2 0

Table 1: Cost communication between servers (distance σr → σp)

Thus, the total communication delay between two tasks is

the amount of data from the first task to the second one, time

the speed cost between their servers.

 A DSS itself may be divide into a set of areas, that will

be defined and used later, but that has no effects during the

normal processing of an application. In Figure 1, for

example, there are two areas, Area 1 and Area 2.

2.2 Directed Acyclic Graph

 An application is decomposed into a set of indivisible

tasks that have to be processed. A task may need data or

results from other tasks to fulfil its function and then send its

results to other tasks. The transfers of data between the tasks

introduce dependencies between them. The resulting

dependencies form a DAG.

 The central scheduling problem P on a Distributed

Server System, is represented therefore by the following

parameters:

• a set of servers, noted Σ = {σ1, ..., σs}, interconnected by a

network,

• a set of the tasks of the application, noted I = {1,..., n}, to

be executed on Σ. The execution of task i, i ∈ I, on server

σr, σr ∈ Σ, is noted i/σr. The subset of the servers able to

process task i is noted Σi, and may be different from Σ,

• the processing times of each task i on a server σr is a

positive value noted
ri σπ / . The set of processing times of

a given task i on all servers of Σ is noted Πi(Σ).

ri σπ / = ∞ means that the task i cannot be executed by the

server σr.

• a set of the transmissions between the tasks of the

application, noted U. The transmission of a result of an

task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j).

• The real communication delay, noted
pr jic σσ /, /

, of the

transmission of the data from i to j if task i is processed by

server σr and task j is processed by server σp is a positive

value that is in fact the data volume of (i, j) multiplied by

the communication cost between the two servers.

• The set of all possible communication delays of the

transmission of the result of task i, toward task j is noted

∆i,j(Σ). Note that a zero in ∆i,j(Σ) mean that i and j are on

the same server, i.e.
pr jic σσ /, / = 0 ⇒ σr = σp. And

pr jic σσ /, / = ∞ means that either task i cannot be executed

by server σr, or task j cannot be executed by server σp, or

both.

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing

times of the tasks of P on Σ.

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be the set of all

communication delays of transmissions (i, j) on Σ.

 The central scheduling problem P on a distributed

servers system DSS can be modelled by a multi-valued

DAG G = {I, U, Π(Σ), ∆(Σ)}. In this case we note P={G,

Σ}. Figure 2 presents an example of DAG.

Figure 2 : Example of DAG

n.a.= not allowed, i.e. cannot execute on this server

 In this example there are 9 tasks. The label on each task

is its processing cost on the 4 servers. For example the label

Π6 = (15, ∞, 12, 15) on task 6 means that the processing

time of task 6 on server σ1 (respectively σ2, σ3, σ4) is 15

(resp. ∞, 12, 15). The label on an arc (i, j) is the data volume

from i to j. For example the data volume communicated by

task 1 to task 3 is 2. If task 1 is executed on server σ1 and

task 3 is executed on server σ2, the communication between

tasks 1 and 3 noted c1/σ1, 3/σ2 = 1*2 = 2, because the cost

communication between σ1 and σ2 is 1. Also we can see

that if task 1 is processed on server σ1 and task 3 is

processed on server σ4 , then c1/σ1, 2/σ2 = 3∗ 2 = 6.

2.3. Definition of a feasible solution

 We note PRED(i), the set of the predecessors of task i in

G: { }),(et /)PRED(UikIkki ∈∈=

 And we note SUCC(i), the set of the successors of task i

in G: { }),(et /)SUCC(UjiIjji ∈∈=

 A feasible solution S for the problem P is a subset of

executions { i/σr , i∈I } with the following properties:

• each task i of the application is executed at least once on

at least one server σr of Σi,

Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8

SERVER σ1 SERVER σ2

 Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 7
task 8
task 9

Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 6

 SERVER σ3 SERVER σ4

Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8
task 9

CAN
(*)

LAN 1

LAN 2

Area 1

Area 2

Paper ID=36

3

• to each task i of the application executed by a server σr

of Σi, is associated one positive execution date
rit σ/ ,

• for each execution of a task i on a server σr, such that

PRED(i) ≠ ∅, there is at least an execution of a task k, k

∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit its

result to server σr before the execution date
rit σ/ .

 The last condition, also known as the Generalized

Precedence Constraint (GPC) [5], can be expressed more

formally as:







++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r
cttik

t
Si

σσσσσ

σ

πσ
σ

 /, / / //

/

/),PRED(

0
/

else

)PRED(if ∅=i

 It means that if a communication must be done between

two scheduled tasks, there is at least one execution of the

first task on a server with enough delay between the end of

this task and the beginning of the second one for the

communication to take place. A feasible solution S for the

problem P is therefore a set of executions i/σr of all i tasks, i

∈ I, scheduled at their dates
rit σ/ , and verifying the

Generalised Precedence Constraints GPC. Note that, in a

feasible solution, several servers may simultaneously or not

execute the same task. This may be useful to generate less

communications. All the executed tasks in this feasible

solution, however, must respect the Generalized

Dependence Constraints.

2.4. Optimality Condition

 Let T be the total processing time of an application (also

known as the makespan of the application) in a

feasible solution S, with T defined as:)(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 A feasible solution S* of the problem P modelled by a

DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total

processing time T* is minimal. That is, it does not exist any

feasible solution S with a total processing time T such that T

< T*.

2.5. Area Failure

 Finally, we now consider a DSS with possibilities of area

failures. We suppose that the DSS is composed of a set of

areas, noted A={Σ1, …, Σz}. Each area Σi is a subset of

servers of Σ. Each server belongs to one and only one area.

For example in fig.1 we have 2 areas : Area1 =

Σ1={σ1, σ2} and Area2 = Σ2 ={σ3, σ4 }.

 One “area failure” of an area means that all servers of

this area are unavailable. In our problem, only one area

failure at most can occur. We call “failed area” (FA) the

area, in which the area failure occurs, if it occurs. To

simplify, we suppose that a failed area stay in this state until

the end of the execution of the application.

 A solution is “one area failure tolerant” or 1FA tolerant

if at least one copy of each task of the graph is executed on

at least one server outside of the failed area, and the solution

is feasible. Note that, for at least one solution to be feasible

if there is one area failure, it is obvious that all tasks of the

application must be able to be executed on at least two

servers in different areas.

III. THE DSS_1FA ALGORITHM

 The algorithm proposed here, named DSS_1FA, has two

phases: the first one is for the scheduling of original copies

where we use the DSS-OPT algorithm [6] and the second

one is for adding and scheduling additional backups copies

when necessary.

3.1. Scheduling the original copies

 We schedule original copies of tasks in our algorithm

with the DSS-OPT algorithm [6]. The DSS-OPT algorithm

is an extension of CPM/PERT algorithms type to the

distributed servers problem. In its first phase, it computes

the earliest feasible execution date of each task on every

server, and in its second phase it builds a feasible solution

(without server fault) starting from the end of the graph with

the help of the earliest dates computed in the first phase.

 Let P be a DSS scheduling problem, and let G = {I, U,

Π(Σ), ∆(Σ)} be its DAG.

 One can first note that there is an optimal trivial solution

to this DSS scheduling problem. In this trivial solution, all

possible tasks are executed on all possible servers, as soon

as possible, and their results are then broadcasted to all

others servers. This is an obvious waste of processing power

and communication resources, however, and something as

optimal, but less wasteful in terms of used resources, is

usually needed.

 The first phase of the DSS_OPT routine, DSS_LWB(),

goes from the initial tasks to the final ones, computing along

the way the earliest feasible execution dates
r / ib σ and

earliest end date r / ir σ , for all possible executions i/σr of

each task i of problem P.

 The second phase of the DSS_OPT routine determines,

for every task i that does not have any successor in G, i.e.

task i is a “leaf” or final task, the execution i/σr ending at the

earliest possible date r / ir σ . If several executions of task i

end at the same smallest date
r / ib σ , one is chosen,

arbitrarily or using other criteria of convenience, and kept in

the solution. Then, for each kept execution i/σr that has at

least one predecessor in the application, the subset Li of the

executions of its predecessors that satisfy GPC(i/σr) is

established. This subset of executions of predecessors of i

contains at least an execution of each of its predecessors in

G. One execution k/σp of every predecessor task k of task i

is chosen in the subset, arbitrarily or using other criteria of

convenience, and kept in the solution. It is executed at its

earliest possible date
p / kb σ . The examination of the

predecessors is pursued in a recursive manner until the

studied tasks do not present any predecessors in G.

3.2. Adding backup copies

 The ADD_BACKUP_COPIES routine starts from tasks

without any predecessors, similarly to DSS_LWB(), and

proceed from there to the end of the DAG. First, if there is

currently only one copy of a given task, it determines what

is the worst possible delay it may encounter if a failure

occurs on another server, while satisfying its GPC. It also

determines the fastest server (not considering the server

executing the only current copy of this task in the current

solution) able to execute this task, and adds a backup copy

on this server to the solution, again considering the worst

Paper ID=36

4

possible delay resulting from this failure, while satisfying

the GPC of this copy. Else the task has already several

copies in the optimal solution, and the routine determines for

each original copy of this task, what is the worst possible

delay it may encounter if a failure occurs on another server,

while satisfying its GPC.

3.3. DSS_1_AREA_FAILURE algorithm

 The complete DSS_1_AREA_FAILURE algorithm is

the following:

Input: G = {I, U, Π(Σ), ∆(Σ)}

Output: A feasible solution with backup copies

DSS_1FA ()

 DSS_OPT() // first phase

 ADD_BACKUP_COPIES_1FA() // second phase

end DSS_1FA

DSS_OPT()
 DSS_LWB ()

)(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=

 for all tasks i such that SUCC(i) = ∅ do

iL ← { i/σr / σr ∈ Σι and Tr

ri ≤σ/ }

 i/σr ← keepOnefrom(
iL)

 schedule (i/σr)
 end for

end DSS_OPT

DSS_LWB()

 for each task i where PRED(i) = ∅ do

 for each server σr such that σr ∈ Σi do

 0/ ←
rib σ

rr iir σ/ / πσ ←

 end for

 mark (i)

 end for

 while there is a non marked task i such that

 all its predecessors k in G are marked do

 for each server σr such that σr ∈ Σi do

))(min(max /,///
)(PRED

/ rppp

kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

rrr iii br σσσ π /// +←

 end for
 mark (i)

 end while

end DSS_LWB

schedule(i/σσσσr)

 execute the task i at the date
rib σ/ on the server σr

 if PRED(i) ≠ ∅ then

 for each task k such that k ∈ PRED(i) do

 ri

kL
σ/

← { k/σq / σp ∈ Σκ and

rrppp iikkk bcb σσσσσ π //,/// ≤++ }

 k/σq ← keepOneFrom(ri

kL
σ/

)

 schedule (k/σq)
 end for

 end if

end schedule

keepOneFrom(Li)

 return an execution i/σr of task i in the list of the

 executions Li.

end keepOneFrom.

ADD_BACKUP_COPIES()

 for each task i such that PRED(i) = ∅ do

 if i has only one copy scheduled

 or all copies of i are on servers in the same area

 then

 Let σi be the server executing a copy of i

 Let αi be the area such that σi ∈ αi.
 // compute one backup on the fastest server left

 // outside the area αi of σi, if αi is the failed area

 Let σ r ∉ αi be the fastest server able to execute task i

 Execute a new backup copy of i on σ r at date 0

 end if

 mark (i)

 end for
 while there is a non marked task i such that all its

 predecessors k in G are marked do

 if i has only one copy scheduled

 or all copies of i are on servers in the same area

 then

 Let σi be the server executing the copy of i

 Let αi be the area such that σi ∈ αi.
 // First compute the delayed execution date of // task i on this

 // server, if the failure is on an another area

 find the delayed execution date of the copy of i on σ i

 taking only into account the delayed execution dates of the

 copies and backups of each predecessor of i to verify the GPC
 // Second compute one backup copy on the fastest server left

 // outside area αi, if αi is the failed area

 Let σ r ∉ αi be the fastest server able to execute i

 Execute a backup copy of i on σ r taking only into account the

 delayed execution dates of the copies and backups of each

 predecessor of i to verify the GPC

 else // i has at least two copies scheduled, on servers in separate areas.

 // compute the delayed execution date of the copy of task i on

 // each server, if the failure is on another area

 for each server σ i executing a copy of i do

 Find the delayed execution date of the copy of i on σ i taking only

 into account the delayed execution dates of the copies and

 backups of each predecessor of i to verify the GPC

 end do

 end if

 mark (i)

 end while

end ADD_BACKUP_COPIES

3.4. Numerical example:

 We consider here the problem P definite in figure 1 and

2, the DSS-OPT algorithm uses DSS_LWB to compute the

earliest possible execution date of all tasks on all possible

servers, resulting in the following values b and r (Table 2):

1 b1 r1 2 b2 r2 3 b3 r3

σ1 0 15 σ1 0 19 σ1 11 31

σσσσ2222 0 10 σσσσ2222 0 12 σ2 11 18

σ3 0 20 σ3 0 15 σ3 9 19

σσσσ4444 0 5 σ4 0 8 σσσσ4444 5 14

4 b4 r4 5 b5 r5 6 b6 r6

σ1 16 21 σσσσ1111 16 28 σ1 20 35

σσσσ2222 12 18 σ2 12 32 σ2 ∞ ∞

σ3 15 24 σ3 15 24 σ3 18 30

σ4 18 23 σ4 18 28 σσσσ4444 14 29

7 b7 r7 8 b8 r8 9 b9 r9

σσσσ1111 28 38 σ1 28 46 σ1 ∞ ∞

σ2 30 50 σσσσ2222 30 42 σσσσ2222 44 52

σ3 ∞ ∞ σ3 ∞ ∞ σ3 ∞ ∞

σ4 28 48 σ4 28 38 σ4 48 56

Table 2: The earliest possible execution date of all tasks on all possible

servers for the problem P

It then computes the smallest makespan of any solution to

the P problem :

52)56,,,52min()(minmax /
)(SUCC/

=∞∞==
Σ∈∀∅=∀

r

ir

i
ii

rT σ
σ

In our example, the task 9 does not have any successor. The

list L9 of the executions kept for this task in the solution is

reduced therefore to the execution 9/σ2 . Thus L9= {9/σ2}.

The execution of task 9 on the server σ2 is scheduled at date

44. Next, The tasks 6, 7 and 8 are the predecessors of task

Paper ID=36

5

9. For the task 6, the execution 6/σ4 may satisfy the

Generalised Precedence Constraints relative to 9/σ2.

Therefore, this execution is kept and is scheduled at date 14

(4/6 σb). For task 7, execution 7/σ1 is kept and is scheduled

at date 28…, the table 3 presents the final executions i/σr

kept by the DSS_OPT(P) algorithm, with their date of

execution, in an optimal solution S.

1/σ2 1/σ4 2/σ2 3/σ4 4/σ2 5/σ1 6/σ4 7/σ1 8/σ2 9/σ2

rib σ/
0 0 0 5 12 16 14 28 30 44

rir σ/
10 5 12 14 18 28 29 38 42 50

Table 3: final executions i/σr kept by the DSS_OPT(P) algorithm

We obtain (figure 3) the following optimal scheduling by

DSS_OPT(P) algorithm:

Figure 3: DSS_OPT algorithm scheduler

By adding backup copies using ADD_BACKUP_COPIES

we get the following fault-tolerance scheduling (Figure 4.):

Figure 4: Gantt chart given by DSS_1_AREA_FAILURE

Now we express some proprities on the results found by the

proposed algorithm.

Lemma 1: The feasible solution S calculated by the DSS_OPT

algorithm is optimal if there is no area failure.

Proof: Because all copies of tasks with at least one successor

are scheduled in S only if they ensure, directly or indirectly,

that the final copies receives their data in time in the

solution, else are not used, it follows that the global

makespan of the solution S is the maximal ending date of the

copies of the tasks without any successors.

Because only the copy with the earliest ending date of each

task without any successor, is used in the solution S, it

follows that no possible solution may execute one task

without any successor that will end at an earliest date that

the one in solution S.

Thus the feasible solution S computed by DSS_OPT is

optimal in execution time for the problem without area

failure. QED

Theorem 1: The solution calculated by DSS_1FAULT is

optimal if there is no area failure.

Proof: Because the copies in the DSS_1FAULT solution

come and only come from the DSS_OPT solution, they all

will be executed at the same dates if there is no area failure.

Because of this and of Lemme 1, it then follows that the

solution calculated by DSS_1FAULT is optimal if there is

no area failure. QED

 Also, in the final solution computed by DSS_1FA(), each

task of the DAG has at least two copies (coming from the

DSS_OPT() routine), or one copy (coming from the

DSS_OPT() routine) and one backup copy (build by the

ADD_BACKUP_COPY_1FA() routine) , always executed

on different servers.

 Furthermore, the execution date of each backup copy and

the delayed execution date of each original copy coming

from DSS_OPT is always evaluated by

ADD_BACKUP_COPIES_1FA() taking into account the

delayed execution dates of the copies and the execution

dates of the backups copies of each predecessor, using the

worst possible case of failure of a predecessor, we have:

Theorem 2: The solution calculated by DSS_1FA is feasible

if there is at most one area failure.

 Also, Let α be the area that contains the servers failures.

Because the solution S is feasible when all the servers of one

area are unavailable, this solution is also feasible if only one

or several servers of area α are unavailable, and if all servers

of all others areas are available. Thus:

Theorem 3: Let S be the solution created by DSS_1FA. This

solution S is also fault tolerant to the failure of one or

several servers, if all servers failures occur in the same area.

 The most computationally intensive part of DSS_OPT()

is the first part DSS_LWB(). In this part, for each task i, for

each server executing i, for each predecessor j of i, for each

server executing j, a small computation is done. Thus the

complexity of DSS_LWB() is Ο(n
2
s

2
), where n is the

number of tasks in P, and s is the number of servers in DSS.

Thus, the complexity of the DSS_OPT() algorithm is

Ο(n2
s

2).

 Similarly, in ADD_BACKUP_COPIES_1FA(), for each

task i, for each copy of task i (at most one copy per server),

for each predecessor j of i, for each copy of j (at most one

per server), one small computation is done. Thus the

complexity of ADD_BACKUP_COPIES_1FA() is bounded

by Ο(n2
s

2), where n is the number of tasks in P, and s is the

number of servers in DSS. Thus we have:

Theorem 4: The complexity of the DSS_1FAULT algorithm

is Ο(n
2
s

2
).

IV. NUMERICAL EXPERIMENTS

4.1 Random graph generator

 To evaluate DSS_1FA, we have compared the fault

tolerant solutions it generated on some classical problems

and DAGs to optimal solutions without fault tolerancy. In

our study a semi-random graph generator was implemented

σ1

σ2

σ3

σ4

t
t 5 10 12 14 16 18 28 30 38 42 52 0 44

9/σ2

1/σ2

1/σ4 3/σ4 6/σ4

2/σ2 4/σ2

5/σ1 7/σ1

8/σ2

3B/σ2

5 B/σ4

2B/σ3 4 B/σ3

7 B/σ4

8 B/σ4

9 B/σ1

6 B/σ1

Backup copies Original copies

9/σ2

5 10 12 14 16 18

1/σ2

1/σ4 3/σ4 6/σ4

2/σ2 4/σ2

5/σ1 7/σ1

8/σ2

28 30 38 42 52 0

σ1

σ2

σ3

σ4

t
44

Task 1 executed

on server σ2

Communication time

Task 1 duplicated and

executed on serverσ2

Paper ID=36

6

to generate weighted application DAGs with various

characteristics. This framework first executes the random

graph generator program to construct the application DAGs,

which is followed by the execution of the our scheduling

algorithms to generate output schedules. We consider two

kinds of graphs. The first one is a regular simple two-

dimensional grid DAG (see Figure 5. a.), exhibited by the

numerical applications, with lot of parallelism and very local

communications. The second is the “butterfly” DAG (see

Figure 5. b.) present in applications such as the FFT or

shuffle algorithms, again with lot of parallelism, but a more

complex communication pattern.

 The servers performances are independent random

values for each task of the DAG, and so are the

communication delays. The processing time of a task is a

random value generated between 10 and 30. The

communication delay between the tasks is also a random

value generated between 1 and 10.

a. 2-Dimensional

grid DAGs
(3 lines, 5 columns)

b. 3-dimensional butterfly DAGs

Figure 5: Two different kind of graphs

4.2. Performance Results

 In Figure 6 the DAG used is the 2-Dimensional grid

DAGs. This kind of graph needs two parameters: the

number of lines n and the number of columns m.. Thus a

nm-grid graph has n*m vertices. Here the chosen parameters

are: (20,15), (20,20), (25,25), (30,25), (30,30), and (40,30),

which correspond, respectively to 300, 400, 625, 750, 900,

and 1200 tasks.

 The Figure 7 uses the butterfly DAGs. This kind of

graph needs only one parameters: the butterfly degree n. An

n-dimensional butterfly graph has 2n(n+1) vertices. The

chosen degrees in this numerical tests are: 4, 5, 6, 7, and 8,

which correspond, respectively to 80, 192, 448, 1024, and

2304 tasks.

 In all our simulations, we fixed the number of servers to

12 and the number of areas to 3 and each makespan average

is computed over 20 random DAGs.

Figure 6 : Makespan average for 2-Dimensional grid DAGs

Figure : Makespan average for butterfly DAGs

 In both kinds of DAGs (Figure 6 and Figure 7), it is

found that the makespan average with backup copies is

between 1.5 (usually) and 2 (at most) times the makespan

without backup copies.

 We got similar results when varying a little the number

of servers and number of areas.

 Other experiments with totally random graphs and with

fork-join graphs yielded similar results, so they are not

presented here.

V. ANALYSIS

 The model of failure, as it features at most one area

failure, may seem limiting. However, if the probability of

any area failure is very low, and the probabilities of area

failure are independent, then the probability of two failures

will be much smaller indeed.

 Also, the solution solved by this new algorithm uses the

classical CPM/PERT relaxation, namely that an unbounded

number of tasks may be processed on each server in parallel

without any effect on the tasks’ processing time, in the same

way the classical CPM/PERT method do not consider

resources constraints in order to get earliest execution dates

and detect critical paths. This relaxation is not far from the

reality, if each server is a multiprocessors architecture for

example. Or if each server is a time-shared, multi-users

system with a permanent heavy load coming from other

applications, and the tasks of an application on each server

represent a negligible additional load. Furthermore, even if

the above conditions are not met by the real distributed

system targeted, the results found by our algorithm may be

used as the first step of a list scheduling algorithm, in which

the earliest execution dates of primary and backup copies are

used as priority values to schedule these copies on the

servers of a real-life system. In the same way these

CPM/PERT results are used in some real-life systems as the

priority values of tasks in some list-scheduling algorithms

for real shared-memory or distributed architectures.

 This algorithm has two main advantages:

• when there is no area failure, the DSS_1FA’s solution is

optimal because it uses the optimal solution computed

by DSS-OPT.

• when there is one area failure, the DSS_1FA’s solution

is certain to finish correctly, because every tasks has

two or more scheduled copies on different servers in

different areas in the final solution. If more than one

area failure occur, the solution may still finish, but there

is no guaranty there.

Makespan average for butterfly DAGs

0

50

100

150

200

250

300

0 400 800 1200 1600 2000 2400

number of tasks

M
a
k
e
s
p
a
n

makespan without backup

makespan with backup

Makespan average for Grid DAGs

0

500

1000

1500

2000

0 200 400 600 800 1000 1200

number of tasks

m
a
k
s
p
a
n

makespan without backup

makespan with backup

Paper ID=36

7

 Note also that the solution built gives indications on the

sensibility of an application to one area failure when

compared to the solution without any area failure, because

the makespan in the presence of one area failure is a worst

case analysis.

 Not considering the areas, one can note that the solution

built has fault tolerance to the failure of one individual

server. Furthermore, the solution has fault tolerance to the

failure of several individual servers, provided that the failed

servers are all in the same area.

 Another benefit of our algorithm is in using the

following idea: suppose that we know that some servers are

very likely to have a server failure, for some reason. Even if

they are not formally in the same area, it may be worthwhile

to group them in a new specific artificial area, made of real

areas, to insure that the solution built is able to survive

failures of any number of these servers, by using backups

outside this artificial area.

VI. CONCLUSION AND FUTURE WORKS

 In this paper, we have proposed a polynomial scheduling

algorithm in which tasks with precedence constraints and

communication delays have to be scheduled on an

heterogeneous distributed system environment with one

fault hypothesis. To provide a fault-tolerant capability, we

employed primary and backup copies. But no backup copies

were established for tasks which have more than one

primary copy.

 The result have been a schedule in polynomial time that

gives earliest execution dates to copies of tasks when there

is no failure, and is a good resilient schedule in the case of

one failure. Performance evaluation on some DAGs gave an

increase in case of one server failure in makespan of 1.5 to 2

times the optimal makespan without server failure.

 The execution dates of the original and backup copies

may be used as priority values for list scheduling algorithm

in cases of real-life, limited resources, and systems.

 In our future work, we intend to study the same problem

with sub-networks failures. Also, we intend to consider the

problem of non permanent failures of servers. Finally, we

want to consider the problem of the partial failure of one

server, in which one server is not completely down but loses

the ability to execute some tasks and keeps the ability to

execute at least one other task.

REFERENCES

[1] A. H. Alhusaini, V. K. Prasanna, C.S. Raghavendra., “A Unified

Resource Scheduling Framework for Heterogeneous, Computing

Environments”, Proceedings of the 8th IEEE Heterogeneous

Computing Workshop, Puerto Rico, pp.156-166, 1999.

[2] R.E. Bellman. “Dynamic Programming”. Princeton University Press,

Princeton, New Jersey, 1957.
[3] L. Chen, A. Avizienis. “N-version programming: a fault tolerant

approach to reliability of software operation”, Proceeding of the IEEE

Fault-Tolerant Computing Symposium, pp. 3-9, 1978.
[4] J.-Y. Colin, P. Chrétienne "Scheduling with Small Communication

Delays and Task Duplication", Operations Research, vol. 39, n o 4,

680684, 1991.

[5] J.-Y. Colin , M. Nakechbandi, P. Colin, F. Guinand. “Scheduling

Tasks with communication Delays on Multi-Levels Clusters”,

PDPTA'99 : Parallel and Distributed Techniques and Application,

Las Vegas, U.S.A.. 1999.

[6] J.-Y. Colin , M. Nakechbandi, P. Colin. "A multi-valued DAG model

and an optimal PERT-like Algorithm for the Distribution of
Applications on Heterogeneous, Computing Systems", PDPTA'05,

Las Vegas, Nevada, USA, June, pp. 876-882, 2005.

[7] M.J. Flynn. “Some computer organization and their effectiveness.”,

IEEE Transactions on Computer, pp. 948-960, September, 1972.

[8] M.R. Garey and D.S. Johnson. ”Computers and Intractability, a Guide

to the Theory of NP-Completeness”, W. H. Freeman Company, San

Francisco, 1979.

[9] A. Girault, H. Kalla, and Y. Sorel. J, “A scheduling heuristics for

distributed real-time embedded systems tolerant to processor and

communication media failures”. International Journal of Production

Research, 42(14):2877-2898, 2004.

[10] Yu-Kwong Kwok, and Ishfaq Ahmad, “Static scheduling algorithms

for allocating directed task graphs to multiprocessors”, ACM

Computing Surveys (CSUR), 31 (4): 406 – 471, 1999.

[11] M. Nakechbandi, J.-Y. Colin, C. Delaruelle, “Bounding the makespan

of best pre-scheduling of task graphs with fixed communication
delays and random execution times on a virtual distributed system”,

OPODIS02, Reims; pp. 225-233, 2002.

[12] M. Nakechbandi, J.-Y. Colin, J.B. Gashumba, "An efficient fault-

tolerant scheduling algorithm for precedence constrained tasks in

heterogeneous distributed systems"; CIS2E06 International Joint

Conferences on Computer, Information, and Systems Sciences, and

Engineering, 2006. Published in : Innovations & advanced techniques

in computer & information sciences & engineering, Springer, 06-

2007, pp 301-307, 2007.
[13] M. Nakechbandi, J.-Y. Colin, "An Algorithm and Some Numerical

Experiments for the Scheduling of Tasks with Fault-Tolerancy

Constraints on Heterogeneous Systems" ; Workshop on Optimization

Issues in Grid and Parallel Computing Environments in HPCS.08, pp

326-332, Nicosia, Cyprus, 2008.

[14] P. Palmerini, “On performance of data mining: from algorithms to
management systems for data exploration”, PhD. Thesis: TD-2004-2,

Universit`a Ca’Foscari di Venezia, 2004.

[15] X. Qin and H. Jiang, “A Novel Fault-tolerant Scheduling Algorithm

for Precedence Constrained Tasks in Real-Time Heterogeneous

Systems” , Parallel Computing, vol. 32, no. 5-6, pp. 331-356, 2006.

[16] B. Randell, “System structure for software fault-tolerance”, IEEE

Trans. Software Eng. 1(2,) pp. 220-232, 1975.

[17] Ch. Ruffner, Pedro José Marrón, Kurt Rothermel, “An Enhanced

Application Model for Scheduling in Grid Environments”, TR-2003-

01, University of Stuttgart, Institute of Parallel and Distributed

Systems (IPVS), 2003.

[18] A. Saidane, V. Nicomette, and Y. Deswarte, "The Design of a Generic

Intrusion-TolerantI Architecture for Web Servers", IEEE Transactions

on dependable and secure computing, Vol. 6, NO. 1, January-march,
2009.

[19] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms

for heterogeneous processors”. In 8th Heterogeneous Computing

Workshop (HCW’ 99), pp. 3–14, 1999.

AUTHOR BIOGRAPHIES

Moustafa NAKECHBANDI is Associate Professor at the

University of Le Havre, France. He received the "Doctorat de

3ème cycle" in 1979 and the "Doctorat d'Etat" in 1984, both from

Besançon University (France). His research interests are the

optimization problems relative to parallel computing and the fault-

tolerant scheduling in parallel programs.

Jean-Yves COLIN is Assistant Professor at the University of Le

Havre, France. He received a Ph.D (1989) in Computer Science

from Paris 6 University. His research interests include scheduling

in heterogeneous distributed systems, and optimization of parallel

programs.

