
HAL Id: hal-00443576
https://hal.science/hal-00443576

Preprint submitted on 30 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Perfect Random generator : II
René Blacher

To cite this version:

René Blacher. A Perfect Random generator : II. 2009. �hal-00443576�

https://hal.science/hal-00443576
https://hal.archives-ouvertes.fr


A Perfect Random Number Generator : II
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Summary : In this report one explicates the new method to generate
random numbers whose the randomness is proved. One transforms data result-
ing from electronic files or provided by machines or software methods. This
method can be applied directly in computers in the same way that the function
”random”. It can be also applied with the machines and the chips or software
methods. In this report, one shows that ont one can use only the Fibonnacci
functions. Moreover, one obtains new results about two other methods already
obtained in a previous report.

Key Words : Central limit theorem, Or exclusive, Fibonacci sequence,
Random numbers, Random noise, Higher order correlation coefficients.

NOTICE

This report has to be read in relation to the first report which we go published
on this subject ”A perfect random generator I ” : cf [18]. Indeed the first report
is very long. As a matter of fact, this new report is also a summary of the
results of this first report with a simpler presentation and some new results.

Then, in order to read well these two reports, the best way is to read this
report, and when it is necessary, to refer to the corresponding part of report I.
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Chapter 1

Introduction

1.1 General presentation of the matter

In this report, we present a new method to obtain IID sequences xn of random
numbers 1. This method can be used as well with machines as directly on a
computer alone.

1.1.1 Presentation of the result

To have random number two methods exists :
1) Use of pseudo-random generators
2) Use of random noise.

These two methods have different defects.
1) For the best of them, the pseudo-random generators seem nondeterminist

only during a certain time. This can be long enough for the cryptographic gen-
erators, but it is with the current means of calculations. Moreover in simulation,
the pseudo-random generators must be tested for each application : cf [2] page
151.

2) If random noises are used, bias and dependences can appear : cf [3]. One
tries to remove them by mathematical transformations. But these methods have
defects. They remove bias and the linear correlation, but not necessarily the
dependence.
On the other hand, these random noises can be produced by machines or chips.
In this case, that thus require additional material which can suffer from mal-
functions extremely difficult to detect : cf [1] page 3.

Now, for some applications, a maximum quality is essential (Nuclear power,
medical, cryptography). It is thus necessary to have generators without defects.

1By abuse of language, we will call ”IID sequence” (Independent Identically Distributed)
the sequences of random numbers.
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But, up to now no completely reliable solution had been proposed .
To set straight this situation, Marsaglia has created a Cd-Rom of random

numbers by using sequences of numbers provided by Rap music. However, it
does not have proved that the sequence obtained is really random.

However, there exists simple means of obtaining random sequences whose
the quality is sure.

One can obtain perfect generators by using random noises, for example those
produced by the machines or by software-based generators. In this case, one
transforms these noises in a more effective way. Indeed, one uses assumptions
much weaker than those of the current methods

One can also obtain perfect generators usable directly on computer (without
the use of machines). In this case, one uses the electronic files as random noises
(like Marsaglia uses Rap music). Then they are transformed by the same method
that we use for the machines.

Then, our technique can be applied with all the current methods.

One can thus obtain sequences of real numbers which are proved random,
which is a completely new result.

1.1.2 Summary of the method

Currently, when one uses random noise, bias and dependences are removed.
In this aim, one supposes that theses noises check some assumptions. But,
generally, those are not checked. Moreover, for each samples xn there exists
many possibles models Xn such that xn = Xn(ω). That can be problematic.

Our method consists to transform random noises under very weak hypotheses
: we assume only that theses noises are not completely deterministic.

Moreover our results are true for all logical models possible. That suppress
the problem of the model. That allows also to satisfy the mathematical def-
initions of random numbers (these definitions are very difficult to etablish cf
[1]).

Then, the obtained sequences will be always IID.
Now one can apply this method to many noises. So texts can be regarded as

noises which satisfy these assumptions. It is also the case for numerous softwares
which are recorded on computers : systems software for example.

Therefore, one can obtain directly IID sequences by transforming the files
of computers. In this case, it is not necessary to use machines in order to have
true random numbers.

On the contrary some electronics files can be studied logically. Then ob-
tained numbers are surer than thoses obtained by machines which can have also
malfunctions.

One can apply also our methods to noises furnished by machines, by chips,
by mouse or by keyboard: of course, our results are much surer than those of
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current methods.

1.1.3 Definition of randomness

To produce a really random sequence, it is thus necessary to have a definition
of the randomness. It is a subject which was studied much. But, it is extremely
complex. Philosophical questions are even involved. A summary of this study is
in the book of Knuth [1] pages 149-183. One reminds some definitions in section
2.1. In fact, one will understand that no current mathematical definition is really
satisfactory.

Though, one can think to define randomness by the following way.

Definition 1.1.1 : One notes the approximation by ≈ : for x, y ∈ R, one sets
x ≈ y if numerically x is nearly equal to y.

Let L be the Lebesgue measure. A sequence xn ∈ [0, 1] is said random if,
for all Borel set Bo, for all n+1, if the past x1, x2, , xn is given, one can-
not predict the place of xn+1 with a probability very different from that of
the uniform distribution : Pe{xn+1 ∈ Bo|x1, ........, xn} ≈ L(Bo) , where
Pe{xn+1 ∈ Bo|x1, ........, xn} is the empirical conditional probability of Bo when
the past is given.

This type of definition is that which one wishes. Unfortunately, it has a
defect : one does not have specified enough the approximation. On the one
hand, the definition of ≈ is very undetermined mathematically. On the other
hand, one would like a definition closer to the statistics definitions. But it is
difficult to obtain such a definition : cf section 2.1.1.

But these questions of mathematical definition will not obstruct us because
we will circumvent this problem by using sequences which are really samples of
sequences of random variables Xn.

Unfortunately, an infinity of models Xn corresponds to the sequence xn.
Then, there is the problem of the choice of the model Xn. We will avoid this
problem by proving that xn behave as an IID sequence for all the logical possible
models.

1.2 Presentation of the solution

Our method rests on a simple idea: to transform random noises by adapted
transformations.

Like random noises, one can use those provided by the machines. It is what
Vazirani, Neumann, Elias and others (cf [33] [4], [8]) wanted to do, but with too
restrictive assumptions.

One can also use some electronic files. It is what Marsaglia did with the Rap
music (cf [1], [20] ). But he has transformed these data in a too elementary way

7



(cf chapter 3).

Then, one has sequences of random noises yn : one can always assume
yn = Yn(ω) with the following rule.

Notations 1.2.1 When one has a sequence of real numbers which one can re-
gard as one realization of a sequence of random variables, one will always note
with small letters the data and with CAPITAL LETTERS the random variables
which one will suppose defined on a probability space (Ω, A, P ).

When the yn’s mean random noises, to consider that yn = Yn(ω) is a tradi-
tional and normal assumption. It is also true for the yn extracted from certain
electronic files.

1.2.1 Fundamental properties

Into this section, we introduce the properties which are at the heart of our study.
We will use the following notations.

Notations 1.2.2 : The notation Ob(.) is that of the classical ”O(.)” with the
additional condition |Ob(1)| ≤ 1.

The sequences j1, j2, ......, jp , p ∈ N
∗, mean alway finite injective sequences

js ∈ Z, such that j1 = 0. On the other hand, the sequences j′1, j
′
2, ......, j

′
p satisfy

moreover 0 = j′1 < j′2 < ...... < j′p.

The notation P
{
Xn ∈ Bo

∣∣x2, ........, xp
}

means always the conditional prob-
ability that the random variable Xn belongs to the Borel Set Bo given Xn+j2 =
x2,........,Xn+jp = xp.

Let m ∈ N
∗. We set F (m) = {0/m, 1/m, ...., (m − 1)/m} and F ∗(m) =

{0, 1, ...,m − 1}. We note by µm and µ∗
m the uniform measures on F(m) and

F ∗(m) , respectively : µm(k/m) = 1/m.
Let XG be a random variable which has the distribution N(0,1) : XG ∼

N(0, 1). For all b > 0, we set Γ(b) = P{|XG| ≥ b}.

Transformation of Fibonacci

Definition 1.2.3 Let fin be the Fibonacci sequence : fi1 = fi2 = 1, fin+2 =
fin+1 + fin. Let T be a congruence T (x) ≡ ax modulo m such that there exists
n0 > 3 satisfying a = fin0

and m = fin0+1. Then T is said a Fibonacci’s
congruence with parameters a and m (or more simply m),

Notations 1.2.4 Let h ∈ Z and m ∈ N
∗. We define h

m
by the following way

1) h
m ≡ h modulo m.

2) 0 ≤ h
m
< m .

If the choice of m is obvious, we simplify h
m

into h.

Let h ∈ F (m) . We define h
1

by h
1

= mh
m
/m. Often we simplify h

1
into

h.
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In the same way, if the choice of m is obvious, and if T is a congruence :
T (x) ≡ ax+ c modulo m, we set T (x) = T (x)

m
.

The reduction of Fibonacci congruences to their first bits will be very useful
for our study.

Definition 1.2.5 Let q, d ∈ N
∗. Let T be the congruence of Fibonacci modulo

m.
We define the function of Fibonacci T dq : F (m) → F (dq) by T dq = Prdq ◦ T̂

where
1) T̂ (x) = T (mx)/m

2) Prdq (z) = 0, d1d2....dq where z = 0, d1d2... is the writing of z in base d.

If d=2, we simplify T dq in Tq and Prdq in Prq.

To make IID by the functions of Fibonnacci

These functions Tq make independent sequences of random variables Yn ∈ F (m).
Moreover, they make uniform their marginal distributions.

Now because Yn is discrete, one can always regard yn ∈ F (m) as the real-
ization of a sequence of random variables Yn : yn = Yn(ω) such that Yn has a
differentiable density with respect to µm ⊗ ....⊗ µm.

Moreover, assume that this density have a Lipschitz coefficient K0 which is
not too large. That is a logical assumption. As a matter of fact, that is an
assumption which most mathematicians admit: that is especially clear when
they estimate the densities (which they suppose to exist) when N << m where
N is the size of sample.

Now, the conditional probabilities P{Yn|yn+j2 = y2, ..., Yn+jp = yp} have
also a continuous density with a coefficient Lipschitz Kcp

0 which is not too great.
Then, one will prove that, for all interval I,

P
{
Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp

}
= L(I)

[
1 +

O(1)Kcp
0

N(I)

]
(1.1)

where N(I) = card
{
k/m

∣∣ k/m ∈ I, k ∈ N
}
. For example, if m ≥ 2100,

d=2, q = 50, Kcp
0 ≤ 10, then P{Tq(Yn) ∈ I | Yn+j2 = y2, ......, Yn+jp = yp} =

L(I)
[
1 + O(1)10

250

]
.

We set Xn = Tq(Yn). A good choice of the parameters N, m, q will imply
that

P
{
Xn ∈ Bo

∣∣x2, ........, xp
}

= L(Bo)[1 +Ob(1)ǫ] ,

where Xn = Tq(Yn) and where ǫ ≈ 0, not only for intervals I, but also for all
Borel sets Bo :

If ǫ is small enough with respect to N, the size of sample, Xn cannot be
differentiated from an IID sequence : cf section 2.1.4.
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Because the assumption that the Lipschitz coefficient K0 is not too large is
correct, we deduce that the sequence Xn behaves really as an IID sequence.

Now, we are considering a new situation : we are considering the set of all
the possible probabilities for sequences Yn, n=1,2,...,N. We provide it with a
uniform probability, i.e. we want to know what occurs when the probabilities
are randomly chosen.

Then, we shall prove in chapter 6 that, for all intervals Is, s=,..,p, with a
probability larger than 1 − 2pΓ(b) approximately, in this set of probabilities,

P
{
{Xn+j1 ∈ I1} ∩ .... ∩ {Xn+jp ∈ Ip}

}
=

∏p
r=1N(Ir)

mp

[
1 +

O(1).pb√
Infs{NIs}

]

For example suppose m ≥ 2100, q = 50, d=2, b=40. Moreover, we can
assume p ≤ Log2(N). Indeed, the following remark is used.

Remark 1.2.1 One imposes p ≤ Log2(N) because that does not have any
meaning to consider the empirical dependence if p > Log2(N), e.g., if p=5,
and if one has a sample of size 10, that has not meaning to study its dependence
in 32 = 25 cubes of width 1/2.

Then, 1 − 2pΓ(b) ≈ 1 − 2p
10340 and Infs{NIs} ≈ 250. Moreover, because

O(1).pb√
Infs{NIs}

≈ O(1).pb
225 , one will not can differentiate Xn with an IID sequence.

Therefore, Xn is IID with a probability larger than 1− 2Log(N)
10340 in the sets of all

the possible models for the sequence yn. Let us remark also that, if necessary,
one can choose b much greater.

Let us notice that the result is thus true even for a very large number of bad
model Yn associated to yn. It is pointed out that with a sample, one can always
associate a certain number of correct models. The other models will be bad: for
example a model AR(1) is a bad model for an IID sample. However our result
is true with a probability of 1− 2p

10340 . It is thus true even for an infinity of bad
model of yn: it is thus a strong result.

One can still refine this result : in many cases, for example if yn is obtained
from texts, the previous equation holds for all the logical models.

Therefore, Xn is IID for all the logical models of Yn and even for an infinity
of bad models.

That means that
1) Xn is IID in almost all the cases.
2) One avoids the least error in the estimate of Kcp

0 . It is especially useful
if one knows nothing a priori about yn.

3) The functions Tq are functions which make a sequence IID with a great
power.

4) One is sure that Xn is IID: there is no risk of error.
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Also let us notice that thus one answers the problem of the definition of a
random sequence : for every correct model or for almost all the models even
bad Yn, P

{
Xn ∈ Bo

∣∣x2, ........, xp
}

= L(Bo)[1 + Ob(1)ǫ], i.e. Xn cannot be
differentiated with an IID sequence.

In conclusion there is really a method to obtain IID sequences Xn and this
result is proved.

1.3 Other Methods of construction

The first method applies to data having Lipschitz coefficient which are not too
large. It is thus better to use only data which check surely this assumption, for
example text files. Then one uses the CLT which smoothes the probability very
quickly and thus decreases the Lipschitz coefficient. As a matter of fact it is
better to summon these data modulo m, which corresponds to new a theorem
limit, the XORLT (XOR Limit Theorem) which produces a smoothing even
faster.

There are then transformed data which have Lipschitz coefficients not too
large. One thus applies the functions of Fibonnacci Tq to them. The choice of
the parameters is carried out according to the results quoted previously.

The second method consists in standardizing data and then to apply a trans-
formation to them which has characteristics rather similar to those of a permu-
tation. After, the XORLT is used.

Indeed, in this case one is sure that one can apply results to the rate of
convergence of the XORLT which one obtains in section 7.3.4. Indeed, that
one is extremely fast. For example one obtains P

{
Xn ∈ Bo

∣∣x2, ....., xp
}

=
L(Bo)[1 +Ob(1)ǫ where ǫ = 0(1/250000)!

We have concretely built IID sequences of real by using the method described
here. This sequence can be asked to rene.blacher@imag.fr. Soon one will be able
to obtain it in a website.

We carried out the traditional tests of Diehard with these sequences. All
were checked : cf section 11.2.4.

1.4 Conclusion

The advantages compared to the current methods are clear:
1) It was proven that the numbers obtained are random.
2) There is not to test these numbers, especially in simulation where it had

to be done for each new practical application.
3) The method is applicable directly on the computers: it is as easy as to

use a function ”random”. Moreover, there does not need to add a machine or
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an additional chip to the computer.
4) If one uses the random noises (Machines, chips, software programs), one

removes all the dependence, which generally the current methods do not do.
Moreover that can remove certain dysfunctions of the machines.

A more detailed comparison with the current methods is carried out in sec-
tion 2.2.2.

12



Chapter 2

Quality of obtained

sequences

2.1 Criteria of randomness

2.1.1 Mathematical definitions

To determine the quality of a generator, one needs a definition of the randomness
of a sequence of real numbers xn. Many studies were made to have reasonable
definitions: there is a good summary of these studies in chapter 3-5 of Knuth :
cf [1]. In this section 2.1.1, we summarize the study of Knuth.

The common wish when one tries to obtain random sequences, it is to ob-
tain a sequences of real numbers xn which can be regarded as a sample of an
IID sequence of random variables Xn. Then, one could propose the following
definition.

Definition 2.1.1 : Let xn, n=1,2,....,N, be a sequence of real numbers in [0,1].
Then, xn is random if there exists an IID sequence of random variables Xn ∈
[0, 1] defined on a probability space (Ω, A, P ) such that xn = Xn(ω) where ω ∈ Ω.

But there is a problem with this definition : for example, xn can be increas-
ing. Of course, it is possible only with a negligible probability. But it is possible.
Then, Franklin proposed another definition.

Definition 2.1.2 : Let xn, n=1,2,....,N, be a sequence of real numbers in [0,1].
Then, xn is random if it has each property that is shared by all samples of an
IID sequence of random variables from uniform distribution.

This definition is not precise and one could even deduce from it that no
really random sequence exists (cf [1], Knuth page 149).

One must thus define differently what is a random sequence (or IID se-
quence). Also, the following definitions were introduced.

13



Definition 2.1.3 : For all finite sequence of intervals Is ⊂ [0, 1], we denote by

Pe the empirical probability : Pe = (1/N4)
∑N4

n=1 1I1(xn)1I2(xn+1).....1Ip
(xn+p)

where N4 = N − p.

The sequence {xn} is said p-distributed if |Pe − L(I)| ≤ N
−1/2
4 for all I =

I1 ⊗ I2 ⊗ ...⊗ Ip .

Definition 2.1.4 The sequence xn is random if it is p-distributed for all p ≤
Log2(N4) .

Unfortunately, this definition does not take into account the randomness of
subsequences xt1 , xt2 , ......xtm . However, it is known that one cannot extend this
definition to all the transformations s → ts which define these subsequences :
for example, this definition cannot be satisfied by the sequences xts increasing.
It is necessary thus that the application s → ts is too not complicated. Also
Knuth proposes the following definition.

Definition 2.1.5 : The sequence xn is random with respect to a set of algo-
rithms A, if for all sequence xt1 , xt2 , ......xtm , determined by A, it is p-distributed
for all p ≤ Log2(N).

These definitions summarize those given by Knuth, [1] page 108. In fact
he has especially studied the infinite case. But because in practice, there are
always samples of finite size, we are limited to this case.

This type of definition was the subject of many studies. In 1966, Knuth had
thought that definition 3 defines the randomness perfectly: cf [1] page 163. It
seems that he changed opinion since. In any case, none of these definitions is
fully satisfactory. Knuth speaks philosophical debate on this subject. Thus, he
points out that, according to certain principles, all the finite sequences can be
regarded like determinist (cf pages 167-168 [1]).

2.1.2 Statistical definitions

Now, the definitions above are not satisfactory statistically. Indeed, it is known

that if xn is really an IID sample, N1/2(Pe−L(I))
σ has approximatively the nor-

mal distribution where σ is the variance associated to Pe. That means that it
is possible that the event |Pe − L(I)| > N−1/2 occurs. This property is thus
different from the definition 2.1.5 de Knuth.

Therefore, one specifies statistically the definitions 2.1.4 and 2.1.5 in the
following way.

Definition 2.1.6 : Let P ′
e = (1/N4)

∑N4

n=1 1Bo1(xn)1Bo2(xn+1).....1Bop
(xn+p)

where the Boi’s are Borel sets.
It is said that xn is random if, for all the sequences xts defined by a set of

algorithms A, for all suitable p, for all Bo = Bo1 ⊗ ...... ⊗ Bop, it checks all
the tests associated to N1/2|P ′

e−L(Bo)| with the same frequency as a really IID
sequence would do it.

14



By ”same frequency”, we understand that a really IID sequence will not
check all the associated tests, but will check them only with a certain probability.
For example, if all the tests to 1 percent was checked that would be abnormal.

Moreover in this definition, we use Borel sets rather than interval, because
if not, there is an important gap (cf page 24 of [18] ).

Remark that it is known that one will always find Borel sets which does not
check tests of randomness even for a really IID sequence. This fact is not an-
noying: this case is envisaged by the use of the terms ”with the same frequency ”.

On the other hand, it is not obvious that one has forgets not any dependence
in the previous definitions. Also, to avoid gaps, we introduced definition 1.1.1
which we remind now.

Definition 2.1.7 : It is said that xn is random if Pe{xn+1 ∈ Bo|x1, ........, xn} ≈
L(Bo), where Pe{xn+1 ∈ Bo|x1, ........, xn}.

This definition seems a priori a good definition of the randomness. Indeed,
it says that, knowing the past, one cannot predict the future with a probability
too different from that of the uniform distribution. Intuitively, it is understood
well that it is well the independence of the Xn which one defines thus.

Besides, it is this condition which one wishes for the random sequences in
much books. However, in these books, one does not adopt this definition. In-
deed, the definition 2.1.7 is imprecise : one does not have specified the approx-
imation.

In fact, it is also the case in the definition 2.1.6 where one does not have
specified the frequency. However, that will pose problems as for the definition
of Franklin. It would thus be necessary to specify our definitions and to make
a theoretical study.

However that will not be necessary because we have avoided this problem
by using sequences which are really samples of random variables.

2.1.3 Use of random variables

Then, we use really random variables. It is this technique used with machines
by Von Neumann, Vazirani, and others ones : cf [4], [33], [8]. They assume
that xn is the realization of a sequence (not IID) of random variables and they
transforms {Xn}. But they obtain often the randomness under assumptions
whose one is not sure that they are checked : in this case, xn is provided by
physical phenomena in machines generating random numbers. Unfortunately,
the intruments of measurements distort the physical phenomenon and induce
bias and dependences.

As a matter of fact, it is necessary to choose a correct model for Xn. But it
is difficult.

At first, we know that one cannot choose definition 2.1.1 as definition of
randomness. For example, an increasing sequence xn can check xn = Xn(ω)
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where Xn is IID (with a very negligible probability). As a matter of fact, this
definition is not a problem solely when it is known a priori that the sequence
Xn is IID like the case of a mechanical roulette or a mechanical lotto. In this
case, one starts from a machine and one extracts a sample from it.

But this technique is not thus appropriate inevitably when one starts from
a real sequence yn (cf counterexample of increasing sequences).

To a sequence of real, it corresponds an infinity of models. Even if xn can
be regarded as a sample of an IID sequence Xn, it can be also logically regarded
as the realization of an infinity of other models Xa

n (thus not IID).
The question thus should be asked: if one associates a model to a sequence

xn which criteria make that it possible to be sure that this model is correct?
Generally, the following facts are admitted:

1) There never exists single model: a model is always related so that one
wants to make of it.

2) Even when the goal is fixed, there are always several possible models,
which all can be as valid the ones as the others.
Then how to be sure that a model is the good? That seems impossible.

A solution of the problem

In order to resolve the problem of the definition of the random sequence, one
can transform them : {XT

n } = F({Xn}) as Von Neumann, Vazirani, etc.
But we use transformations which have good properties on a group of models.

Indeed, one can admit that some sets of model contain always a correct model.
For example, when all the xn are different, one can admit that Xn has a dif-

ferentiable density with a Lipschitz coefficient K0 not too large. This hypothesis
is usually admitted by the statisticians especially those which use functional es-
timate.

Under this assumption, the transformations defined by Fibonacci functions
Tq have good properties. Indeed, if a sequence yn has models with continuous
density and a Lipschitz coefficient K0, it will check

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)K0

N(I)

]
.

Then, one is sure that Tq(Zn) could be regarded reasonably as an IID sequence
if K0 is small enough and q not too large (i.e. N(I) great).

The problem of other models

Then a question is asked : if a model is correct and does not belong to the
models with K0 rather small, is what it will produce the same properties? If
it produces another one, it will be a contradiction. There will be two possible
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logical conclusions. It seems impossible. However, it is not obvious 1. The
problem of the choice of the definitions is found again.

A total answer

Now, by using the Fibonacci functions, one avoids the problem. In section 6.4.3,
one proves mathematically that, for almost all the models, Tq(Xn) behaves as
an IID sequence . Indeed, one has

P
{
{Tq(Xn+j1) ∈ I1}∩....∩{Tq(Xn+jp) ∈ Ip}

}
=

∏p
r=1N(Ir)

mp

[
1+

O(1).pb√
Infs{NIs}

]

It is a very satisfactory result. Indeed, it is wellknown that if one uses all
the possible models without a priori, there will be an majority of bad models.
Here, we find of it only a negligible number : it is already extraordinary.

Moreover, there is another result. One indeed finds that for some data, for
example those resulting from texts, ALL the logical models associated with yn
will check (cf chapter 6.4)

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 + ǫ

]
.

One could better wish with difficulty like results. It is a very strong result
which resolves the problem of definition.

2.1.4 Empirical properties

We remark that in the previous equation, there remain ǫ. We will see now that
it is not annoying if it is rather small with respect to N, the size of sample.

Choice of the parameters

One thus chooses the parameters q, m and N according to the sample size. In
this paragraph, we will clarify this point.

Let us suppose that we have a really IID sequence with uniform distribution
on [0,1/2] and [1/2,0] and with a probability such as P{[0, 1/2]} = 0, 501. Then,
this sequence has not the uniform distribution on [0,1]. However, if we have a
sample with size 10, we will absoluetely not understand it. To understand this
difference, one will need samples with size larger than 1000.

One will thus solve the problem of the choice of ǫ in the same way: according
to N , the wished size of the sample, one will choose ǫ and thus Tq. Let us
translate that mathematically.

1For example to say that, it would be to affirm that there is no characteristic of the English
language such as there is a connection between the units T−1(Ik) and English texts : cf section
6.4
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Let us note by Pe the empirical probability of an interval I associated with
a sequence x∗n = X∗

n(ω), n=1,2,....,N. Then, if X∗
n is a sequence of IID random

variables with uniform distribution, if N is big enough,

P{N1/2|Pe − L(I)| > σb} ≈ Γ(b) ,

where σ2 = L(I)[1 − L(I)] .
Now, if X∗

n checks only P{X∗
n ∈ I|x∗2, ........, x∗p} = L(I) + Ob(1)ǫ, one can

prove that
P{N1/2|Pe − L(I)| > σb} ≤ Γ

{
b[1 − η(ǫ)]

}
,

where η(ǫ) ≥ 0 and η(ǫ) → 0 as ǫ→ 0.
For example, let us suppose that we built Tq so that η(ǫ) = 0.1. In this case,

for b=1,5

P{N1/2|Pe − L(I)| > σ.1.5} ≤ 0, 134 under IID hypothsesis,

P{N1/2|Pe −L(I)| > σ.1.5} ≤ 0, 148 if P{Xn ∈ I|x2, ..., xp} = L(I) +Ob(1)ǫ.

However, it is known that if there is a really IID sequence, Pe is close to L(I)
with a certain probability: it is completely possible that Pe is enough different
from L(I), but the probability that occurs is weak.

Now, if P{Xn ∈ I|x2, ..., xp} = L(I) + Ob(1)ǫ, it is also possible that Pe is
enough different from L(I), but that is not likely much more to occur than in
really IID case.

With such a result, it will be thus difficult to differentiate the x∗n from a
really IID sample.

Of course, if it is necessary, one can impose η(ǫ) smaller : for example,
η(ǫ) = 0.01. In this case,

P{N1/2|Pe −L(I)| > σ.1.5} ≤ 0, 135 if P{Xn ∈ I|x2, ..., xp} = L(I) +Ob(1)ǫ.

This type of result holds again for I1 ⊗ ....⊗ Ip where the Ii’s are intervals.
Moreover, one obtains a similar result for the empirical conditional probability
PCe = Pe{xn ∈ I|x2, ..., xp} :

P
{
N1/2

∣∣PCe − L(I)
∣∣ > b.σCp

}
≤ Γ

(
b[1 − η′(ǫ)]

)
,

where η′(ǫ) → 0 as ǫ→ 0.

Case of Borel sets

Then, we can obtain P{Xn ∈ I|x1, ......, xp} = L(I) +Ob(1)ǫ for the intervals I,
by using the properties of Tq. Then, for all Borel set Bo,

P{Xn ∈ Bo|x2, ........, xp} = L(Bo) +Ob(1)2qǫ .

It is thus enough to choose q not too large and ǫ enough small so that 2qǫ is
also enough small.
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Relations about B0(n′)

The previous results being true for all Borel sets, one deduced equivalents results
about the bits b0(n′) provided by the writing of x(n) bases 2 :

P{B0(n′) = b|b2, ........, bp} = 1/2 +Ob(1)ǫ′ .

In practice ǫ′ = Ob(1)α√
qN

will be chosen where α ≤ 0.02 and where qN is the

size of sequence b0(n′).

Checking of definitions

It is thus proven that, that the model B0(n′) built from ANY logical models of
the data a(j) - or except maybe for a negligible minority (according to the case)
- cannot be differentiated from a sequence of IID random variables.

In particular, it satisfies the properties

P{B0(n) = b | B0(n+ js) = bs, s = 2, .., p} = 1/2 +
Ob(1)α√
Nq

,

P{N1/2|PCe − 1/2)| > σCp x} ≤ Γ
(
x[1 − η]

)
,

which correspond theoretically and empirically to the definition 2.1.7 of the
randomness.

It satisfies also

P{N1/2|Pe − 1/2p| > σpx} ≤ Γ
(
x[1 − η]

)
,

which corresponds empirically to the definition 2.1.6 of the randomness.

Then all definitions of a random sequences are satisfied : the sequence b0(n′)
cannot be differentiated from a sample of IID random variables.

2.2 Comparison with the current generators

2.2.1 Various current techniques

Generators using algorithms

1) Pseudo Random generator for simulation .
2) Pseudo Random generator for cryptography.
3) Irrational numbers : for example π and e.

For these generators, it is admited that it will never provide really random
sequence : ”Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin” : John Von Neumann (1951).
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These generators will certainly not check the definitions of randomness given
by Knuth. One cannot thus mathematically regard them as random sequences.
Then, the pseudo-random generators must be tested for each application : cf
[2] page 151.

Generators using random noises

1) Hardware-based random bit generators : they exploit the randomness which
occurs in some physical phenomena :e.g. quantum phenomena. They use ma-
chine or chips.
2) Processes upon which software random bit generators may be based include
1) the system clock; 2) elapsed time between keystrokes or mouse movement; 3)
content of input/output buffers.

A true random bit generator requires a naturally occuring sources of ran-
domness. Designing a hardware device or software program to exploit this ran-
domness and produce a bit sequence that is free of biases and correlation is a
difficult task. Moreover, random bit generators based on natural sources of ran-
domness are subject to influence by external factors, and also to malfunctions.
It is imperative that such devices be tested periodically (cf [3] ). Moreover, it
is impossible to reproduce calculations exactly a second time when cheking out
a program.

The major defect of all these systems is that there can be correlations and
bias in the generated sequences. The underlying physical process can be ran-
dom. But there are many measuring devices between the digital part of the
computer and the physical device. These intruments can thus introduce bias
and correlations (cf [5] ch 17.14 Bias and Correlation).

One removes these bias and these linear correlations by various mathematical
transformations like that of Neuman or Vazirani ([4] [33]). One can also use hash
functions (cf 17.14, [5] ).

However, the linear correlation are only one of the possible correlation. There
exists correlations of higher order (quadratic cubic, etc : cf [10]). If there
are bits, the correlation of higher order are the multilinear correlation between
3,4,5,..... bits. If one does not remove the correlation of higher order, one will
not have independence.

Therefore, a priori the sequences of numbers built by the current
methods to remove the linear correlation are not IID. It is a serious
defect of the hardware device or software.

Tables of random numbers

One can obtain such tables by mechanical processes like the lotto or the roulette.
They are the alone tables having results which are guaranteed IID.
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But most of the time, these tables are obtained by the previous methods.
They thus have the defects of them

In any case, these tables have a major defect: they are limited by their size.
A particular case is the CD-Rom of Marsaglia. Indeed, the random bits of

this CD-ROM were made by combining music rap with sources of electronic
white noise and the output of deterministic random number generators.

But, the randomness of the obtained sequence was not proved mathemati-
cally. In this report, we want to know logically if this sequence were random:
cf section 3. This study shows that to have more certainty, it is necessary that
these sequences are built by a certain way

That led us to take up the idea of Marsaglia: to regard certain electronic files
as random noises, but to apply transformations a little more complex to them.
That thus makes it possible to obtain true random numbers with a computer
alone and to do without machines and chips. But, one can also use the numbers
produced by machines

Conclusion

On none of the current generators there is certainty that the obtained sequences
are random: that which approaches more this result is the Cd-Rom of Marsaglia.

However, much of users think that the provided generators are completely
reliable and use them without precaution. All this already led to some scien-
tific errors (cf [1] page 32). Thus, it is necesary to obtain a more reliable solution.

2.2.2 Comparisons

At first, it is proved that the obtained numbers by our method are really ran-
dom. That had been obtained in no other method. Moreover,

A) Comparison with the pseudo-random generators
Our method thus brings obvious concrete advantages. In particular, in cryp-

tography, there is no risks that the system can be broken. In simulation, there
is not to test the numbers obtained.

Remind also that the usual opinion was that no generator built on computer
is random. It is understood that it is an error : the truth is that no generator
built by algorithm is random.

B) Comparison with generators based on natural sources of randomness
B-1) When one directly uses the program on a computer.

1) There does not need to add an additional machine to the computer.
2) There are no possible malfunctions as on the machines. Therefore, there

is not to regularly test them like those.
3) The sequence obtained starting from the electronic files can be reproduced

(it is useful for the checking of calculations).
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B-2) When one uses the program on a source of random noises
1) That removes all the dependences, and maybe even certain effects of the

malfunctions.
2) One can have very long sequences quickly (contrary to the methods using

software).

C) Comparison with the CD-Rom of Marsaglia.
1) The results are proved.
2) The CD-ROM has a limited size.
3) A priori, it is possible that the sequence of the CD-Rom have defects.

2.3 Uses of these results

Direct programming on computer It is enough to transform certain files
recorded on the computers. It is as simple to use as the function ”random”.
Moreover, our generators are perfect. It is thus a method quite superior to the
current generators.

Application to hardware devices One applies our transformations to data
provided by machines or chips. That offers several advantages.

On the one hand any dependence is removed, (and not only linear correla-
tions).

On the other hand, our method can be applied as soon as the data are not
completely deterministic. It is certainly the case for the data provided by the
machines maybe even if they have malfunctions.

It is thus a new method which one proposes to transform the noises pro-
vided by these machines. The advantage, it is that it needs extremely weak
assumptions to be applied.

Application to software methods One can choose as data those provided
by the software methods. As for hardware devices, our method can be applied
under wery weak assumptions. However, it is simpler to use text files than the
system clock for example.

Use of files of IID sequences By using our method, one can develops files
of numbers which are proved IID.

They could thus be placed for public use in the form of files to download,
of files recorded on hard disk, of DVD or of CD-Rom as it is the case for the
CD-Rom of Marsaglia (cf Internet site [20]).

Transformations of b0(n′) From sequences b0(n′) which are proved random,
one can obtain a multitude of others by using any sequences yn provided by
generators which are pseudo-random. Indeed, b0(n′) + yn′ modulo 2 is also IID
(cf theorem 6).
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Software for data external to the computer One can build softwares
allowing to transform the majority of data external to the computer in random
numbers, for example, texts.

Complete construction It is the matter to completely use the method of
programming defined in this report with new data and choice of new parameters.

This method can be used when one wants, for various reasons, to obtain new
sequences xn completely reliable.

Combination of several methods If one wants to avoid any risk of human
error, of machine’s error, of computer’s error or other ones, one can build several
sequences b0(n′) as described above in section 2.3. Indeed, if one summons

modulo 2 : bn =
∑I
s=1 b

s
n, it is enough that only one sequence bsn is random so

that bn is it.
One will thus build them with different data. In this case, one can also use

machines, even different machines. One can even employ the files of random
numbers which exist over the world. That will reduce infinitely the probability
of any potential error, human or different.
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Chapter 3

Cd-Rom of Marsaglia

In this chapter, one will study the method which Marsaglia employed to create
its CD-ROM. Marsaglia mixed digital tracks from rap and classical music selec-
tions. Then the random bits were made by combining three sources of electronic
white noise with the output from a pseudo-random number generator. ”They
seem to pass all tests I have put to them – and I have some very stringent tests,”
Marsaglia says. Then, Marsaglia has studied his CD-Rom by using tests. But,
it is possible to study it by logical reasoning.

In this section we give examples of such reasoning. In order to simplify we
study only the case my′n = gn +myn ∈ F ∗(m) where gn is a pseudo random
sequence and where the yn’s derive from a text 1.

3.1 Theoretical study

3.1.1 Case of 2-dependence

In section 11.2, we understand that the data d(j) which we use can be regarded
as 2 dependent. Then, we study now the case where yn is 2-dependent. Suppose
j′s+1 > j′s and j′s0+1 − j′s0 ≥ 2. Then,

(y′n+j′1
, y′n+j′2

, ....., y′n+j′p
) =

(
(y′n+j′1

, y′n+j′2
, ....., y′n+j′s0

)(y′n+j′s0+1
, ....., y′n+j′p

)
)
,

where (yn+j′1
, yn+j′2

, ....., yn+j′s0
) and (yn+j′s0+1

, ....., yn+j′p) are independent.

Therefore, in order to study the dependence of y′n, it is sufficient to study
the case j′s = s − 1, i.e. the (y′n, y

′
n+1, ....., y

′
n+p−1). Now, one supposes p ≤

log(N)/log(2) : cf remark 1.2.1. For example suppose p ≤ 22. In this case,
if the gn’s produce sequences where (gn, gn+1, ....., gn+22) are independent, the

1Marsaglia has not used texts but Rap music. It is no important. We want only to study
logically the method of Marsaglia. Then, we use texts because we studied them in a detailed
way cf [18].
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(y′n, y
′
n+1, y

′
n+2, ....., y

′
n+22) are independent. Therefore, one can consider that

(y′n+j′1
, y′n+j′2

, ....., y′n+j′p
) are also independent.

Then, it is enough to choose pseudo-random generators such that (gn, gn+1, .
...., gn+22) are independent. In this case, to suppose that the y′n are independent
will be a reasonable assumption.

Therefore the method of Marsaglia can be sufficient to obtain IID sequences
if the parameters and the type of data have been suitably chosen.

However it remains to be checked that the marginal distributions are quite
uniform: the tests of uniformity of the gn means that some tests are checked,
for example for intervals. But is this case for all Borel sets? It is similar for
independence : they are independence for some hypercubes of the gn: what is
it for the others?

3.1.2 Transformation of datas

Now, one can use transformed data. It is what we do for sequence c(j) ∈ F ∗(32)
defined in section 10.1.2 : we set d(j) =

∑r0
r=1 c(r0(j − 1) + r)32r−1.

Size of r0 and conditional dependence

We choose again data resulting from texts. Then, if one finds a ”. ”, there is a
strong probability so that it is followed by a ”space character”.

Therefore, it is possible that it has there some strong dependences between
c(j) and c(j+e) (where c(j) are the letters modulo 32) especially for e=1. But
this dependence decreases very quickly if e increases.

That will mean that the possible concentrations of d(j+1) given d(j) =∑r0
r=1 c(r0(j − 1) + r)32r−1 will be less strong if r0 increases. Indeed, suppose

that d(j − 1) means a piece of text ending in a ”.” . Then, d(j) belongs to the
set of the part of texts starting with a ”space character”.

Then, the behavior of y′n depends on the choice of transformation and of
parameters.

3.1.3 Independence induced by the data

We use again the example of ”.”. We note by po their numerical value. Let
zt ∈ {1, 2, ...,m} be the value of successive ”n” such as yn = po, i.e. yzt

=
po. This sequence zt is random : one can write zt = Zt(ω5) where Zt is a
sequence of variable increasing in a random way, defined on a probability space
(Ω5,A5, P roba5). Then, in order to obtain my′n = gn +myn, we add gzt to
yzt

= po .
In practice, we understand that Zt+1 − Zt is close to an IID sequence (not

necessarily with uniform distribution). It is enough to make some numerical
simulations to realize that (cf section 3.1.4 of [16].
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This result means that my′zt
= gzt +myzt = gzt +mpo, has a behavior close

to an IID sequence because gzt can be regarded as chosen randomly.

3.1.4 Conclusion

The previous study shows that one can improve the result by choosing better
the parameters.

If they are well chosen, there is many reasons to think that yn is IID. But
we have not a certainty : that is difficult to specify mathematically. Maybe a
thorough study would allow to arrive at certainties.

But it is simpler to use transformations Tq whose properties are appropriate
well for the construction of an IID sequence and can be studied more easily. It
is the aim of this report.
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Chapter 4

Basic properties

4.1 Some properties

Let Xn ∈ F (m) be a sequence of random variables. In this section we study
some properties of conditional probabilites when P

{
Xn ∈ Bo|x2, ...., xp

}
=

L(Bo) +Ob(1)ǫ for all Borel set Bo.

Proposition 4.1.1 Let Bo = Bo1⊗Bo2⊗ ........⊗Bop be a Borel set of F (m)p.
Assume that, for all s ∈ {1, 2, ..., p}, for all sequence xt, t=2,3,..,p, and for all
n ∈ N

∗, P
{
Xn ∈ Bos|x2, ...., xp

}
= L(Bos) +Ob(1)ǫ.

Then, for all injective sequence js ∈ Z such that j1 = 0 ,

P



{Xn+j1 ∈ Bo1} ∩ ...... ∩ {Xn+jp ∈ Bop}

ff

=
h

L(Bo1) + Ob(1)ǫ
i

......
h

L(Bop) + Ob(1)ǫ
i

.

In order to prove this proposition the following lemma is needed

Lemma 4.1.1 Let Ys ∈ F (m) , s=1,2,...,N be a sequence of random vari-
ables defined over a probability space (Ω, A, P ). Let f ∈ L1 be a measurable
function defined over Y −(Ω) where Y − = (Y1, Y2, ..., Yn−1, Yn+1, ....., YN ) and
n ∈ {1, 2, ..., N} . Let Bo1 be a Borel set of F(m).

Assume P
{
Yn ∈ Bo1|y1, ...., yn−1, yn+1, ..., yN

}
= L(Bo1) + Ob(1)ǫ for all

(y1, ...., yn−1, yn+1, ..., yN ). Then,

E
{
1Bo1(Yn)f(Y −)

}
= L(Bo1)E

{
f(Y −)

}
+Ob(1)ǫE

{
|f(Y −)|

}
.

Proof Let Q be the distribution of (Y1, Y2, ...., YN ) and let Q− be the dis-
tribution of (Y1, Y2, ..., Yn−1, Yn+1, ....., YN ). Let Q(.|y1, ...., yn−1, yn+1, ..., yN )
be the distribution of Yn given Ys = ys, for s=1,2,...,n-1,n+1,...,N. Let y− =
(y1, ...., yn−1, yn+1, ..., yN ). Then,

E
{
1Bo1(Yn)f(Y −)

}
=

∫
1Bo1(yn)f(y−)Q(dy)

=

∫ ( ∫
1Bo1(yn)Q(dyn|y1, ...., yn−1, yn+1, ..., yN )

)
f(y−)Q−(dy−)
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=

∫
P

{
Yn ∈ Bo1|y1, ...., yn−1, yn+1, ..., yN )

}
f(y−)Q−(dy−)

= L(Bo1)

∫
f(y−)Q−(dy−) +

∫
Ob(1)ǫ

(
y−)

)
f(y−)Q−(dy−),

where |ǫ
(
y−)

)
| ≤ ǫ. We deduce the lemma.

Proof 4.1.2 We prove the proposition 4.1.1

We use the lemma 4.1.1 with N=p, Xn+js = Ys. Moreover, we choose f(Y −) =
1Bo2(Yn+j2).......1Bop

(Yn+jp). Then,

P
{
{Xn+j1 ∈ Bo1} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

=
(
L(Bo1) +Ob(1)ǫ

)
P

{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}
.

Then, we prove the proposition by recurence. �

Now, one obtains a similar resul about conditional probability.

Proposition 4.1.2 Let Bo be a Borel set of F (m)p, Bo = Bo1 ⊗ ..... ⊗ Bop.
Assume that P

{
Xn ∈ Bo1|x2, ...., xp

}
= L(Bo1) +Ob(1)ǫ. Then,

P
{
Xn ∈ Bo1

∣∣∣{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}
}

= L(Bo1) +Ob(1)ǫ.

Proof By using the proof 4.1.2 ,

P
{
Xn+j1 ∈ Bo1

∣∣∣{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}
}

=
P

{
{Xn+j1 ∈ Bo1} ∩ {Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

P
{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

=

(
L(Bo1) +Ob(1)ǫ

)
P

{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

P
{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

= L(Bo1) +Ob(1)ǫ. �

The proof of the following theorem is a consequence of proposition 4.1.1.
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Proposition 4.1.3 The sequence Xn, n=1,2,.....,N, is IID if and only if, for
all p ∈ {1, 2, ..., N − 1}, for all sequence js, for all n ∈ N

∗, for all Borel set Bo,
for all sequence xs, s=1,...,p

P
{
Xn ∈ Bo

∣∣∣Xn+j2 = x2, ...., Xn+jp = xp

}
= L(Bo) .
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Chapter 5

Dependence induced by

linear congruences

We study in this chapter the dependence induced by
(
Tn(x0), T

n+1(x0)
)

when
T a congruence T (x) ≡ ax mod(m) with 0 < a < m and where a and m are
fixed. Then, we study the set E2 =

{
ℓ, T (ℓ) | ℓ ∈ {0, 1, .....,m− 1}

}
.

5.1 Theoretical study

5.1.1 Notations

We will understand that this dependence depends on the continued fraction m
a ,

i.e. it depends on sequences rn and hn defined in the following way.

Notations 5.1.1 Let r0 = m, r1 = a. One denotes by rn the sequence defined
by rn = hn+1rn+1 + rn+2 the Euclidean division of rn by rn+1 when rn+1 6= 0.

One denotes by d the smallest integer such as rd+1 = 0. One sets rd+2 = 0.

Therefore, hn ≥ 1 for all n=1,2,...,d and rd−1 = hdrd + rd+1 = hdrd + 0 =
hdrd.

The full sequence rn is thus the sequence r0 = m, r1 = a, .........., rd+1 = 0,
rd+2 = 0. Then, it is easy to prove the following result.

Proposition 5.1.1 The congruence T (x) ≡ a mod(m) is a Fibonacci conguence
if hn = 1 for n=1,2,...,d, hd = 2 and rd = 1

In this case, rn is the Fibonacci sequence fin, except for the last terms. In
addition, one considers also the following sequences.

Notations 5.1.2 One sets k0 = 0, k1 = 1 and kn+2 = hn+1kn+1 + kn if
n+ 1 ≤ d.
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Remark that if hn = 1 for n=1,2,...,d-1, kn is also the Fibonacci sequence
for n=1,2,...,d.

5.1.2 Theorems

One will understand that dependence depends on the hi: more they are small ,
more the dependence is weak. As hi ≥ 1, the best congruence will satisfy hi = 1
and hd = 2. It will be thus the congruence of Fibonacci.

Theorem 1 Let n ∈ {2, 3...., d}. Then
If n is even , E2∩

{
[0, kn[⊗[0, rn−2[

}
=

{
(kn−1ℓ , rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Moreover the points (kn−1ℓ , rn−1ℓ) are lined up.
If n is odd,

E2∩
{
]0, kn]⊗]0, rn−2]

}
=

{
(kn−2 +kn−1ℓ , rn−2−rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Moreover, the points (kn−2 + kn−1ℓ , rn−2 − rn−1ℓ) are lined up.

That means that the rectangle [0, kn/2] ⊗ [rn−2/2, rn−2[ does not contain
points of E2 if n is even : E2∩

{
[0, kn/2]⊗ [rn−2/2, rn−2[

}
= ∅ . If hn−1 is large,

that will mean that an important rectangle of R
2 is empty of points of E2: that

will mark a breakdown of independence.
Of course, one has equivalent results for rectangles modulo m : R0 = R0

where R0 =
{
[x0, x0 + kn] ⊗ [y0, y0 + rn−2[

}
.

For example suppose n=2. Then, one has a wellknown result. Indeed, m =
r0, r1 = a, k1 = 1 and k2 = h1 = ⌊m/a⌋ ou ⌊x⌋ means the integer part of x.
Thus, the rectangle Rect2 = [0,m/(2a)] ⊗ [m/2,m[ will not contain any point
of E2. However, this rectangle has its surface equal to m2/(4a). Thus if ”a” is
not sufficiently large, i.e if h1 is too large, there is breakdown of independence.

Principal theorem

Now, one takes in account the number of points of E2 contained in rectangles
of the type Rect = [x, x+ L[⊗[y, y + L′[.

Theorem 2 It is supposed that T is invertible. Let Rect be a rectangle of
F ∗(m)2, length Lon ≥ 1, width Lar ≥ 1. Let N(Rect) be the number of points
of E2 which belong to Rect and let SRect

be its surface. One denotes by Log the
Neperian logarithm : Log(e)=1. Then,

∣∣N(Rect) −
SRect

m

∣∣ ≤ (po + 1)[sup(hi) + 1] ,

where po is a function of (Lon, Lar) satisfying 2.0782.Log(min) + 2.00005 ≥ po

where min = Min(Lon, Lar).
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The proof is page 135 of [18] (cf also [13]).
This theorem shows that if sup(hi) is small, the only rectangles where there

is maybe breakdown of independence are the rectangles of the type R0 = [x, x+
kn[⊗[y, y + rn−2[ : cf page 135-140 of [18] .

Then, these rectangles do not contain enough points to make tests if hi is
small. If y = T (x) the breakdown with independence is proved by theorem 1 :
there is hn−1 + 1 lined up points. If hi is small, it is easy to understand that it
is not important.

Thus, in the case of the Fibonacci sequence, all rectangles satisfy the test of
normality. In fact, it is even statistically too. It is not important. We do not
make use of it like sample of independent couple.

Numerical examples

We confirm by graphs the previous conclusion. We suppose m=21. If a = 13, we
have a Fibonacci congruence : cf figure 5.1. If one chooses a=10, sup(hi) = 20
: cf figure 5.2 . If one chooses a=5, sup(hi) = 5 : cf figure 5.3.
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Figure 5.1: sup(hi) = 1
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Figure 5.2: sup(hi) = 20
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Figure 5.3: sup(hi) = 5 Fig

Conclusion

To avoid any dependence, it is necessary that sup(hi) is small. In the case of
the Fibonacci congruence, independence is checked on all rectangles Rect.

Remark 5.1.1 For the Fibonacci congruence T 2 = ±Id where Id is the identity
(cf page 141 of [18]) One cannot thus apply it to create directly a pseudo-random
sequence.

5.2 Proof of theorem 1

In this section, the congruences are conguences modulo m. Now the first lemma
is obvious.

Lemma 5.2.1 For n=3,4,...,d+1, kn+1 > kn > kn−1 . Moreover kn+2 =
hn+1kn+1 + kn is the Euclidean division of kn+2 by kn+1.

Now, we prove the following results.

Lemma 5.2.2 Let n=0,1,2,...,d. If n is even, kna = m − rn. If n is odd,
kna = rn.

Proof : We prove this lemma by recurrence. For n=0, kna = 0 = 0 =
m−m = m− r0. For n=1, kna = a = a = r1.

We suppose that it is true for n.
One supposes n even. Then, kn+1a ≡ ahnkn + akn−1 ≡ −hnrn + rn−1 = rn+1.
One supposes n odd. Then, kn+1a ≡ ahnkn + akn−1 ≡ hnrn− rn−1 = −rn+1 ≡
m− rn+1. Therefore, kn+1a = m− rn+1. �

Lemma 5.2.3 Let n=2,3,...,d+1. Let t ∈ {1, 2, ..., kn − 1}. If n ≥ 2 is even,
rn−1 ≤ at < m− rn . If n ≥ 3 is odd, m− rn−1 ≥ at > rn.

Moreover, if n ≥ 2 is even, kna = m− rn. If n ≥ 3 is odd, kna = rn.

33



Proof : The second assertion is lemma 5.2.2. Now, we prove the first
assertion by recurrence.

One supposes n=2. Then, m = r0 = h1r1 + r2 = h1a + r2. Moreover,
k2 = h1. If 1 ≤ t < h1 = k2, r1 = a ≤ at < h1a = m− r2.

If h1 = k2 = 1, {1, 2, ..., k2−1} = ∅. In this case, we study t ∈ {1, 2, ..., k3−1}
where k3 = h2k2 + k1 = h2 + 1. Then, 1 ≤ t ≤ h2. Then, at ≡ tak2 ≡ −tr2.

Moreover, m − r2 ≥ m − tr2 ≥ m − h2r2 = r0 − h2r2 = r0 − (r1 − r3) =
r3 + (r0 − r1) > r3.
Therefore, because at ≡ m− tr2, at = m− tr2 .
Therefore, m− r2 ≥ at > r3 .

One supposes that the first assertion is true for n where 2 ≤ n ≤ d.

Let 0 < t′ < kn+1. Let t′ = fkn + e be the Euclidean division of t’ by kn :
e < kn.

Then, f ≤ hn . If not, t′ ≥ (hn + 1)kn + e ≥ hnkn + kn−1 = kn+1.

One supposes n even.
In this case, rn−1 ≤ at < m− rn for t ∈ {1, 2, ..., kn − 1}.
Moreover, at′ ≡ fakn + ae ≡ f(m− rn) + ae ≡ −frn + ae.

First, one supposes e = 0. Then, f ≥ 1.
Moreover, because n ≥ 2, m−rn ≥ m−frn ≥ m−hnrn = m− (rn−1−rn+1) =
r0 − rn−1 + rn+1 ≥ r0 − r1 + rn+1 > rn+1 .
Therefore, because at′ ≡ −frn, at′ = m− frn .
Therefore, m− rn ≥ at′ > rn+1 .

Now, one supposes f < hn and e > 0 .
By recurrence, m − rn ≥ ae ≥ ae − frn ≥ rn−1 − frn ≥ rn−1 − (hn − 1)rn =
rn + rn+1 > rn+1.
Therefore, because at′ ≡ −frn + ae, at′ = ae− frn .
Therefore, m− rn ≥ at′ > rn+1 .

One supposes f = hn, e 6= kn−1 and e > 0.
If e 6= kn−1, ae 6= kn−1a. Indeed, if not, a(e− kn−1) = 0. For example, if
e− kn−1 > 0, kn > e− kn−1 > 0. Then, because our recurence, a(e− kn−1) >
rn−1 > 0 : it is impossible.

Now, if n = 2, kn−1a = k1a = a = r1 = rn−1.
Moreover, if n > 2, n ≥ 4. Then, by recurence kn−1a = rn−1.
Then, if e 6= kn−1, ae 6= kn−1a = rn−1. Then, ae > rn−1.

Moreover, m− rn ≥ ae ≥ ae− frn > rn−1 − frn ≥ rn−1 − hnrn = rn+1.
Therefore, because at′ ≡ −frn + ae, at′ = ae− frn .
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Therefore, m− rn ≥ at′ > rn+1 .

One supposes f = hn and e = kn−1. Then, t′ = hnkn + kn−1 = kn+1. It is
opposite to the assumption.

Then, in all the cases, for t′ ∈ {1, 2, ...., kn+1 − 1}, m − rn ≥ at′ > rn+1.
Therefore, the lemma is true for n+1 if n is even. Then, it is also true for
n+1=3.

One supposes n odd with n ≥ 3. One proves the recurrence by the same
way as if n is even. Then the lemma is true for n+1. �

Lemma 5.2.4 The following inequalities holds : kd+1 ≤ m.

Proof If t ∈ {1, 2, ..., kd+1 − 1}, by lemma 5.2.3, rd ≤ at < m − rd+1 or
m− rd ≥ at > rd+1, i.e. rd ≤ at < m or m− rd ≥ at > 0 where rd > 0. Then,
0 < at < m or m > at > 0.

Then, if kd+1 > m, there exists t0 ∈ {1, 2, ..., kd+1 − 1} such that t0 = m,
i.e. at0 = am = 0. It is impossible. �

Lemma 5.2.5 Let t, t′ ∈ {1, 2, ..., kd+1 − 1} such that at = at′. Then, t=t’.

Proof Suppose t > t′. Then, a(t − t′) ≡ 0 and a(t− t′) = 0. Then, by
lemma 5.2.3, rd ≤ a(t− t′) < m− rd+1 or m− rd ≥ a(t− t′) > rd+1 = 0 where
rd > 0. Then, 0 < a(t− t′). It is a contradiction. �

Lemma 5.2.6 Let n=1,2,...,d. Let Hn = h1k1 + h2k2 + h3k3 + ....... + hnkn.
Then, Hn = kn+1 + kn − 1

The proof is basic.

Lemma 5.2.7 Let n=1,2,3,...,d-1 . Let Ln =
{
t
∣∣t = 0, 1, 2, ....,Hn

}
. Then,

for all n ≥ 1, Ln+1 =
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Proof Let l ∈ Ln , l ≤ Hn. Let g ≤ hn+1. Therefore, if t = l + gkn+1, t ≤
Hn +hn+1kn+1 = Hn+1. Therefore,

{
t = l+ gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
⊂ Ln+1 .

Reciprocally, let t ∈ Ln+1 and let t = fkn+1 + e , e < kn+1 be the Euclidean
division of t by kn+1.
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We know that Hn = kn+1 + kn − 1 ≥ kn+1. Therefore, e ≤ Hn. Therefore,
e ∈ Ln.

Therefore, if f ≤ hn+1 , t = fkn+1 + e ∈
{
t = l+ gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Moreover, if f > hn+1 + 1 , t = fkn+1 + e ≥ (hn+1 + 2)kn+1 + e ≥
hn+1kn+1 + 2kn+1 = Hn+1 −Hn + 2kn+1 = Hn+1 − kn+1 − kn + 1 + 2kn+1 =
Hn+1 + kn+1 − kn + 1 ≥ Hn+1 + 1 . Therefore, t /∈ Ln+1.

Then, suppose f = hn+1 + 1. Then, t = fkn+1 + e = (hn+1 + 1)kn+1 + e =
hn+1kn+1+kn+1+e = Hn+1−Hn+kn+1+e = Hn+1−kn+1−kn+1+kn+1+e =
Hn+1 − kn + 1 + e.
Because t ∈ Ln+1 and t = Hn+1 − kn + 1 + e, e + 1 − kn ≤ 0. Therefore,
e ≤ kn − 1.
Therefore, t = fkn+1 + e = hn+1kn+1 + kn+1 + e,
where kn+1 + e ≤ kn+1 + kn − 1 = Hn

Therefore, t = hn+1kn+1 + e′ where e′ ≤ Hn.
Therefore, t ∈

{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Therefore, Ln+1 ⊂
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Therefore, Ln+1 =
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
. �.

Lemma 5.2.8 Let Fn =
{
at

∣∣t = 0, 1, 2, ....,Hn

}
.

Let En =
{
at + km

∣∣t = 0, 1, 2, ....,Hn, k ∈ Z
}

. We set En = {ons |s ∈ Z}
where on0 = 0 et ons+1 > ons for all s ∈ Z.

Then, for all s ∈ Z, ons+1 − ons = rn or ons+1 − ons = rn+1.

Proof We prove this lemma by recurrence.
Suppose n=1. Then, r1 = a, H1 = h1k1 = k2 = h1. Therefore,

F1 =
{
at

∣∣t = 0, 1, 2, ..., h1

}
=

{
0, a, 2a, ..., h1a

}
=

{
0, r1, 2r1, ..., h1r1 = m−r2

}
.

Therefore, the lemma is true for n=1.

Suppose that the lemma is true for n.
Then, En+1 =

{
at + km

∣∣t = 0, 1, 2, ....,Hn+1, k ∈ Z
}
, where Hn+1 =

h1k1 + h2k2 + h3k3 + .......+ hn+1kn+1 = Hn + hn+1kn+1.

Because t ∈ {0, 1, 2, ....,Hn+1}, t ∈ Ln+1. By lemma 5.2.7, si t ∈ Ln+1,
t = l + gkn+1 where g ≤ hn+1. By lemma 5.2.2, at ≡ a(l + gkn+1) ≡ al +
(−1)n+2grn+1 ≡ al + (−1)ngrn+1 .

Therefore,
En+1 =

{
at+ km

∣∣t ∈ Ln+1, k ∈ Z
}

=
{
at+ km

∣∣t = l + gkn+1, l ∈ Ln, g ≤ hn+1, k ∈ Z
}

=
{
al + (−1)ngrn+1 + km

∣∣l ∈ Ln, g ≤ hn+1, k ∈ Z
}
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=
{
f + (−1)ngrn+1 + km

∣∣f ∈ Fn, g ≤ hn+1, k ∈ Z
}

=
{
ons + (−1)ngrn+1 + km

∣∣s ∈ Z, g ≤ hn+1, k ∈ Z
}
.

Suppose that n is even.
Then, ons + (−1)ngrn+1 = ons + grn+1 ≤ ons + rn − rn+2 because grn+1 ≤
hn+1rn+1 = rn − rn+2 .

Use the recurrence. Suppose ons+1 − ons = rn . Then, ons + (−1)ngrn+1 ≤
ons + rn − rn+2 = ons+1 − rn+2.
Therefore,
{on+1
t | ons ≤ on+1

t < ons+1} = {ons < ons + rn+1 < .... < ons + hn+1rn+1 < ons+1} .

Therefore, on+1
t+1 − on+1

t = rn+1 or rn+2 if ons ≤ on+1
t < on+1

t+1 ≤ ons+1.

Suppose ons+1 − ons = rn+1. Then, s is fixed .
Let T = min{t = 0, 1, ..., |ons+t+1−ons+t = rn}. Therefore, ons+T+1−ons+T = rn.
Let O = ∪Tt=0{ons+t + grn+1 | 0 ≤ g ≤ hn+1}.
Then, O = {ons , ons+1, ....., o

n
s+T−1} ∪ {ons+T + grn+1| 0 ≤ g ≤ hn+1}.

Therefore, O = {o′s, o′s+1, ....., o
′
s+K} where o′s′+1 − o′s′ = rn+1. Moreover,

ons+T+1 − o′s+K = rn − hn+1rn+1 = rn+2.

Therefore, if on+1
t′ and on+1

t′+1 ∈ {on+1
t | ons ≤ on+1

t ≤ ons+T+1}, on+1
t′+1−on+1

t′ = rn+1

or rn+2.

Suppose that n is odd. One proves this result by the same way as when n is
even. �

Proof 5.2.9 Now one proves theorem 1.

Suppose that n is even.
Then, kn−1a = rn−1, 2kn−1a = 2rn−1, ......hn−1kn−1a = hn−1rn−1 = rn−rn−2.

Now, akn−1ℓ = ℓrn−1 = ℓrn−1 for ℓ = 0, 1, 2, ...., hn−1.
Therefore,{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
=

{
(kn−1ℓ, akn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂

E2 .
Moreover, rn−2 = hn−1rn−1 + rn. On the other hand, by lemma 5.2.8 , all

the points of E2 = (t, at), t ≤ Hn−1, have ordinates distant of rn or rn−1.
Therefore, if there is other points of E2 ∩

{
[0, Hn−1] ⊗ [0, rn−2[

}
that the

points
{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
, there exists ℓ0 ∈ {1, 2, ...., hn−1}

and (x1, y1) ∈ E2 ∩
{
[0, Hn−1] ⊗ [0, rn−2]

}
such that rn−1ℓ0 − y1 = rn.

Because Hn−1 = kn + kn−1 − 1 < kn+1 ≤ kd+1, by lemma 5.2.5, there exists
an only t ∈ {1, ....,Hn−1}, such that at = y1 : t = x1. Because y1 6= 0, there
exists an only t ∈ {0, 1, ....,Hn−1}, such that at = y1.

37



Now, rn−1ℓ0−y1 = aℓ0kn−1−at = rn = −akn. Then, aℓ0kn−1−−akn = at.
Then, a(ℓ0kn−1 + kn) = at.

Because rd−1 = hdrd with rd−1 > rd, hd ≥ 2. Moreover, d ≥ n ≥ 2. Then,
d− 1 > 0. Then, kd−1 > 0.

Then, by lemma 5.2.4, 2kn − kn−2 ≤ 2kd < 2kd + kd−1 ≤ hdkd + kd−1 =
kd+1 ≤ m. Then, 0 < ℓ0kn−1 + kn < kd+1.

Then, by lemma 5.2.4, 0 < kn−1 + kn ≤ ℓ0kn−1 + kn ≤ hn−1kn−1 + kn ≤
kn − kn−2 + kn = 2kn − kn−2 ≤ 2kd < 2kd + kd−1 ≤ hdkd + kd−1 = kd+1 ≤ m.
Then, 0 < ℓ0kn−1 + kn < kd+1.

Now 0 < t ≤ Hn−1 = kn + kn−1 − 1 < kd + kd−1 ≤ kd+1. Moreover,
0 < ℓ0kn−1 + kn < kd+1.

Then, because a(ℓ0kn−1 + kn) = at, by lemma 5.2.5, t = ℓ0kn−1 + kn.
Then, t = ℓ0kn−1 + kn ≥ kn−1 + kn > Hn−1. It is a contradiction.

Therefore, there is not other points of E2 ∩
{
[0, Hn−1] ⊗ [0, rn−2[

}
that{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Therefore, there is not other points of E2∩
{
[0, kn[⊗[0, rn−2[

}
that the points{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Therefore,

E2 ∩
{
[0, kn[⊗[0, rn−2[

}
=

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

According to what precedes,

{
(kn−1ℓ, akn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
=

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

is located on the straight line y = (rn−1/kn−1)x if n is even.

Suppose that n is odd. One proves this result by the same way as when n is
even. �
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Chapter 6

Randomization by the

functions of Fibonacci

6.1 Study of the problem

In this section, we assume that our data yn are provided by texts. Then, one
will understand how one can make IID the yn thanks to the Fibonacci functions
T dq = Prdq ◦ T̂ (cf Definition 1.2.5) (if d=2, one simplifies T dq in Tq).

6.1.1 Some Notations

In this chapter, the following notations are used.

Notations 6.1.1 In this chapter 6, q, d ∈ N
∗. Moreover, m is an element of

the Fibonacci sequence : m = fin0
. Then, we set m = dQ where Q ∈ R+ .

Moreover, Yn ∈ F (m) is a sequence of random variables defined on a probability
space (Ω,A, P ) and Xn = T dq (Yn) .

Notations 6.1.2 Let k ∈ {0, 1, ...., dq−1}. We set Ik = [k/dq, (k+1)/dq[. We
define the interval [ck/m, c

′
k/m[ with ck, c

′
k ∈ F ∗(m) by [ck/m, c

′
k/m[∩F (m) =

[k/dq, (k + 1)/dq[∩F (m). We set N(Ik) = c′k − ck.
More generally, we denote by I the intervals I = [k/dq, k′/dq[. Then, we de-

fine [c/m, c′/m[ with c, c′ ∈ F ∗(m) by [c/m, c′/m[∩F (m) = [k/dq, k′/dq[∩F (m).

Then, N(Ik) is the number of t/m ∈ F (m) such that k/dq ≤ t/m < (k+ 1)/dq.

Notations 6.1.3 Let xs ∈ F (m). We set pxs
= P

{
T (mYn)/m) = xs

}
.

Of course, P
{
Xn = k/dq

}
= P

{
T (mYn)/m ∈ [ck/m, c

′
k/m[

}
=

∑
xs∈[ck/m,c′k/m[ pxs .

Moreover, the following lemma holds.

Lemma 6.1.1 With the previous notations, (ck − 1)/m < k/dq ≤ ck/m and
(c′k − 1)/m < (k + 1)/dq ≤ c′k/m.
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Lemma 6.1.2 Let 1/dq = h0/m + r where 0 ≤ r < 1/m and h0 ∈ N. Then,
N(Ik) = h0 or N(Ik) = h0 + 1. Moreover, m/dq = h0 + e where 0 ≤ e < 1.

6.1.2 Sequence of real numbers regarded as IID

We show now that about any sequence of real numbers can be regarded as the
permutation of an IID sequence.

Proposition 6.1.1 Let zn , n = 1, 2, ..., n0 be a sequence of integers zn ∈
F ∗(m) such that all the zn’s are different.

Then, there exists a permutation φ such that z′n = zφ(n), n = 1, 2, ..., n0, can
be regarded as an IID sample having a distribution MZ .

Proof One can associate to zn a continuous distribution function F which is
the smoothest possible and which have a density function which is the smoothest
possible.

Let xn = x(n) be an IID sample with the distribution associated to F. For
any function f, f(xn) is a priori an IID sample. But it is necessary to be careful:
it is better than f is not too complicated. For example f(xn) can be increasing.

To avoid it, we denote by rx and rz the number of order of x(n) and z(n) =
zn, respectively : rx(n) and rz(n) are the permutations of {1, 2, ...., n0} such
that xr−1

x (1) < xr−1
x (2) < .... < xr−1

x (n0)
and zr−1

z (1) < zr−1
z (2) < .... < zr−1

z (n0)
.

Then, there exists a continuous function f such that f(xr−1
x (n)) = zr−1

z (n) for
n = 1, 2, ...., n0. One can force this function to be smoothest possible with a
Lipschitz coefficient not too large. Moreover, if it is not smooth enough, one
can also use another IID sample {x1

n}.
Then, the following conjecture is applied.

Conjecture 6.1.2 Let xn be an IID sample. One suppose that, for all function
which is smooth enough with a Lipschitz coefficient not too large, f(xn) can be
regarded as an IID sample.

For this function f , f(xn) can be regarded as an IID sample which has the
same law as f(X1).

Now, {f(xn) | n = 1, 2, ..., n0} = {zn | n = 1, 2, ..., n0}. Then, there exists a
permutation φ such that zφ(n) = f(xn) for n = 1, 2, ..., n0. Then, zφ(n) can be
regarded as an IID sample. �.

Remark 6.1.3 Conjecture 6.1.2 is very likely. However it implies to choose a
function according to the sample in order to deduce from it that the transformed
sample is IID : it is always delicate. In fact it would be necessary to explicate
all that. But it would be too long in this report.

But one understands well the meaning of this conjecture and one understands
that it is very reasonable. Moreover, we have carries out many simulations which
all, confirm it.
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Now what means this result? It means that the sample z′n = f(xn) behaves
like a sample IID of law MZ . However if z′n is an IID sample, that means that,
for almost all the permutations ψ, z′ψ(n) is a priori IID. Thus for almost all the

permutations ψ′, zψ′(n) is IID.

It is thus enough to check that it is indeed the case for various permutations
chosen randomly. One thus tests the independence of the obtained sample.

For example, we choose a sample of the sequence not satisfying the CLT
of Ibragimov-Linnik page 384 of [21]. Then, we have estimated multilinear
correlation coefficients for various dimentions p : with a empirical variance
equal to 39.57, the following values have been obtained :

p=2 - 0.0019 0.0032 -0.0009 -0.0062 0.0041 0.0036 0.0102
p=3 0.0014 0.0005 -0.0094 -0.0052 0.0034 -0.0087 -0.0027
p=4 -0.0057 -0.0041 -0.0013 0.0124 -0.0074 0.0033 0.0051

We have also used classical Diehard tests (cf [1] , [2] ). All confirm indepen-
dence. Moreover, if one takes subsamples, those are also independent and have
the same law MZ .

Now, one would like to apply the CLT. For studying this problem, we will
apply proposition 6.1.1 to the sums.

Corollary 6.1.4 Let
∑
n∈F zn where F ⊂ {1, 2, ...., n0}. Then

∑
n∈F zn =∑

n∈F ′ z′n , where z′n = zψ(n) is an IID sample which has the distribution MZ

and where F ′ = ψ(F ) and ψ = φ−1.

Corollary 6.1.5 For all sets F” = ψ′(F ′), except a negligible minority,
∑
n∈F” z

′
n

behaves as the sum of an IID sample which has this same distribution MZ .

Corollary 6.1.6 Let H be a measurable function. For all sets F” = ψ′(F ′),
except a negligible minority,

∑
n∈F”H(z′n) behaves as the sum of IID samples

which have a same distribution MHZ .

Corollary 6.1.7 For almost all the sets F, 1
card(F )

∑
n∈F zn ≈ L where L does

not depend on F.

Now, let us suppose that F is chosen randomly. Then, one can admit that
F’ is also chosen randomly.

Thus each time one has a sum over a set chosen randomly, one carries
out a sum of a sample of an IID sequence of random variable Z ′

n. Then,
1

card(F )

∑
n∈F Z

′
n → E{Z ′

1}.

41



Let us notice immediately that these results does not means that all the CLT
can be regarded as a sum of IID sample. In no case, the sum Z1 + .....+ Zn is
necessarly close to a normal law.

Now suppose that one uses the sample f(x(n)) = z(φ(n)). One separates it
into several subsequences with the same size and one sums these subsequences.
Then, the empirical distribution of those sums will be close to a normal law.

In figure 6.1, we have transformed by a permutation MATLAB chosen ran-
domly a sample of size 900000 of the sequence not satisfying the CLT (cf page
384 of [21]). Then, one has it separated in 9000 successive subsequences which
one has summed. It is understood that the distribution is close to a normal law.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

Figure 6.1: Sums of subsamples chosen randomly

In the same way, if sums of the zn are chosen randomly, the sample consi-
tuted by these sums shows that one has a distribution close to a normal law.

But these results do not mean inevitably that the exact distribution of a
sum chosen randomly will be close to the normal law. By example, let us
choose independent samples of the type zψ(1) + ....+ zψ(n1), n1 < n0, where the
subsamples zψ(1), ..., zψ(n1) are all built with the same permutation ψ. Suppose
that the sequence Zn has the distribution of the example not checking the CLT
(page 384 of [21]).

Then these samples of sums will behave like a nonnormal samples. An esti-
mate of the law obtained by these sample is in figure 6.2.

These results can appear strange. They thus should be explained.
1) If a sequence Zn does not satisfy the CLT, it is anyway possible that samples
extracted of a sequence Zk+n2

, Z2k+n2
, ..., Znk+n2

do not satisfies the CLT, i.e.
Zk+n2 + Z2k+n2 + ....+ Znk+n2 has not a distribution close to the normal law.
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Figure 6.2: Law of a subsample chosen randomly

In this case, it is plausible that samples of type zψ(1)+n2
, zψ(2)+n2

...zψ(n)+n2

do not satisfy the CLT (where ψ is a permutation, for example of {1, 2, ...., kn}).
Then, Zψ(1)+n2

+ Zψ(2)+n2
+ ....+ Zψ(n)+n2

has not a distribution close to the
normal law.
2) But, by proposition 6.1.1, we know that if n0 = kn1, the sample z′1+ ....+z′n1

,
z′n1+1 + .... + z′2n1

, ...... , z′(k−1)n1+1 + .... + z′kn1
can be regarded as a sample

with a distribution close to the normal law.
Indeed, it is possible that Z ′

1 + ....+Z ′
n1

has not a normal distribution. But
the Z ′

n1+1 + .... + Z ′
2n1

, ...... , Z ′
(k−1)n1+1 + .... + Z ′

kn1
have not the same dis-

tribution. Because that, they behave indeed as samples with normal law.

Then, when one uses sums zψ(1)+n2
, zψ(2)+n2

...zψ(n)+n2
, they can regarded

by two different ways : we have to choose which is the good one.
In subsection 6.1.3 below, what we want, it is to use P{Xn = k/dq} =

∑
xs∈[ck/m,c′k/m[ pxs where the sets T

−1
([ck, c

′
k[) can be regarded as randomly

chosen. Then, it is about sum randomly chosen : they behave as approximately
normal.

6.1.3 Randomization of Yn

We have P{Xn = k/dq} =
∑
xs∈[ck/m,c′k/m[ pxs

. Now, there is no logical con-

nection between text and the distribution of the points of {a1, a2, ....} = T̂−1(I)
where I is an interval. These two events are logically independent. Indeed,
the sequence {a1, a2, ....} = T̂−1(I) is built by a specific and relatively simple
mathematical application whereas the data yn are the realization of a sequence
of random variables Yn and thus unpredictable in an exact way. Moreover the
sequence {a1, a2, ....} is well distributed in F(m). It is reasonable to think that
this set is independent of sequences obtained starting from text. One can thus
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regard this set as randomly chosen.

That means that
∑
xs∈[ck/m,c′k/m[ pxs

can be regarded as a sum
∑
s∈F pxs

where the set F is a Borel set chosen randomly. According to the corollary 6.1.7,
that means that, for all k, (dq/m)

∑
xs∈[k/dq,(k+1)/dq [ pxs

converges to the same
limit L.

One is all the more sure of this result that only a negligible minority of
the possible sets F will not check this property: because there is only dq ”k”
possible, it is thus enough to choose m enough large compared to dq.

At last,
∑
k

∑
xs∈[k/dq,(k+1)/dq [ pxs = 1. Therefore,

∑
xs∈[k/dq,(k+1)/dq [ pxs ≈

1/dq.

Example In figure 6.3, one supposes card
(
[c, c′[∩F ∗(m)

)
= 10. One under-

stands that {a′1, a′2, ...., a′10} is about uniformly distributed in [-4,4]. We obtain,
P{Xn = k/dq} ≈ 1/dq .
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Figure 6.3: Example : Normal curve

6.2 Empirical Probability

Unidimensional case

Let us be interested with a sample x∗n = Tq(yn), n = 1, 2, ...., n0, where all the
yn are distinct. Let pexs = Pe

{
T (mYn)/m = xs

}
where Pe is the empirical

probability. Then, one has

Pe
{
Tq(Yn) ∈ [c/m, c′/m[

}
=

∑

xs∈[c/m,c′/m[

pexs
.

There is no logical connection between the set J =

[Newton’s theory ]
[of gravitation was]
[ soon accepted wit]
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[hout question, and ]
[it remained unques]
[tioned until the begin]
[ning of this century. ]
....................................

and the sets Hs =

[whgkudf ly cuqhjg]
[aamxgusdggbxckmp]
[x;cbkutcc ze xycyc x]
[qtdxucdzlcxy yx vyxy]
[ory of Relativity in 190]
[xwtex pez! i yi qy yqhfg]
.........................................

Thus a priori, the probability that [Newton′stheory] ∈ H is approximatively
of card(H)/3218 if yn ∈ {0, 1, ...., 31} 1.

Now, there is no logical connection between the yn and the setA = {a1, a2, ....}.
Then, the set {a1, ....., ac′−c} is well chosen randomly. Then, by corollary 6.1.7,
1
n0

∑n0

n=1 1{a1,.....,ac′−c}(yn) →
N(A)
m where NA = c′ − c.

Finally, Pe
{
Xn ∈ [k/dq, (k + 1)/dq[

}
≈ 1/dq for any k.

One can also understand this result by a more classical way : cf section 6.2
of [18]

Now, because the subsample of the yn such that yn ∈ A can be regarded as
IID (cf corollary 6.1.6), 1√

n0σNA

∑n0

n=1

[
1{a1,.....,ac′−c}(yn)−NA/m

]
has asymp-

totically a standard normal distribution where σ2
NA

= NA/m− (NA/m)2.

One has checked these results by testing them with the the sequence d(j),
j=1,2,... : cf section 10.1 . All the tests conclude to the uniformity

In figure 6.4 , we have the histogram for the sequence d(j). The figure
6.5 which represents the histogram for a pseudo-random sequence of uniform
distribution.

Multidimensional case

For t=1,2,...,p, we set It =
[
ct

m ,
c′t
m

[
where ct, c

′
t ∈ F ∗(m). We set At =

T̂−1(It) = {at1, ....., atc′t−ct
} for t=1,2,...,p.

132 corresponds to 26 letters, punctuation, signs and space

45



0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Figure 6.4: Histogram of f(1,j)
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Figure 6.5: Histogram of uniform data

There is no logical connection between the sets J and Hs. Then, the prob-
ability that {[Newton’s theory ], [of gravitation was], [ soon accepted wit]} ⊂
H1 ⊗ H2 ⊗ H3 is approximatively equal to

∏3
t=1

[
card(Ht)/3218

]
. This result

can be understood by simulation.

Because there is always no connection between parts of texts (yn+j1 , ....., yn+jp)
and the sets A1 ⊗ .... ⊗ Ap, it is thus logical that sums on the various possible
sets A1⊗ ....⊗Ap (where p ≤ Log(n0)/log(2) ), behave as sums over sets chosen
randomly, i.e.

Pe

{{
Xn+j1 ∈ I1

}
∩....∩

{
Xn+jp ∈ Ip

}}
=

∑

x1
s1

∈I1
....

∑

xp
sp∈Ip

pex1
s1
,..,xp

sp
≈

p∏

t=1

L(It) ,

where pex1
s1
,..,xp

sp
= Pe

{
{T (mYn+j1)/m = x1

s1} ∩ .... ∩ {T (mYn+jp)/m = xpsp
}
}
.

6.3 Theoretical probability

Let us choose a random vector (Xn+j1 , Xn+j2 , ...., Xn+jp). We set px1
s1
,..,xp

sp
=

P
{
(T (mYn+j1)/m = x1

s1) ∩ ... ∩ (T (mYn+jp)/m = xpsp
)
}
.
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Probabilities chosen randomly As for empirical probabilities P
{{
Xn+j1 ∈

I1
}
∩....∩

{
Xn+jp ∈ Ip

}}
is equal to a sum of px1

s1
,..,xp

sp
. Because yn means texts

and is independent with sets T−1
q (I1) ⊗ ....⊗ T−1

q (Ip), the sums are about sets
randomly chosen. Therefore the px1

s1
,..,xp

sp
’s can be regarded as an IID sample

of random variables which have a distribution MZ .

Model Because n0 << m, there are many possibles models associated to the
sample yn, n = 1, 2, .., n0. As a matter of fact there in an infinity of them.
Then, because there are several possible correct models meaning this text, we
will study the various possible probabilities px1

s1
,..,xp

sp
.

One will provide the set of the px1
s1
,..,xp

sp
of a measure which is a probability

: i.e. the set of the possible probabilities px1
s1
,..,xp

sp
is itself the realization of a

probability space.

For example, one can choose px1
s1
,..,xp

sp
=

p′
x1

s1
,..,x

p
sp

Pm
i1=1 ....

Pm
ip=1 p

′
i1/m,...,ip/m

where

the p′
x1

s1
,..,xp

sp
’s are a sample of a sequence of IID random variables P ′

x1
s1
,..,xp

sp

defined on a probability space (Ωp1,Ap
1, P roba

p
1) and which have a distribution

M.
With a such model, we have proved in [18] section 8.4.2, that with a proba-

bility very close to 1,

P
{{
X1 ∈ I1

}
∩ ..... ∩

{
Xp ∈ Ip

}}
≈

∏
s(c

′
s − cs)

mp

[
1 +

Ob(1).bσM

EM
√∏

sN(Is)

]
.

Remark 6.3.1 This approximation is not the same as 1
n0

∑n0

n=1 1{a1,..,ac′−c}(yn)

= NA/m +
Ob(1).bσNA√

n0
because in this last one, the empirical approximation is

involved.

As a matter of fact with this probability P ′
x1

s1
,..,xp

sp
, p is fixed. If p is changed,

one changes space of measure.

The problem of marginals distributions

If the model defined on spaces (Ωp1,Ap
1, P roba

p
1) is chosen (cf [18] page 217

section 8.4.2), there is a problem : one does not take account of the marginal
probabilities.

If p=2, in space (Ω2
1,A2

1, P roba
2
1) those sums will be already sums of proba-

bilities taken randomly. That means that, with this measure, the marginal prob-
abilities px1

s1
=

∑
x2

s2

px1
s1
,x2

s2
in their vast majority will have a priori uniform

distribution. One thus does not take in account that the px1
s1

are probabilities

in two dimensions with marginal laws, i.e. with constraints.
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It is thus a result which seems not to correspond to reality, for example if
P ′
x1

s1
,..,xp

sp
has continuous densities.

Anyway, this is not very important: measures of spaces (Ωp1,Ap
1, P roba

p
1)

are only measures giving an idea of the numbers of models close to a sequence
IID. Moreover, that does not change anything with the ultimate result : only a
negligible minority of models does not check

P
{{
X1 ∈ I1

}
∩ ..... ∩

{
Xp ∈ Ip

}}
≈

∏
s(c

′
s − cs)

mp

[
1 +Ob(1)ǫ

]

where |ǫ| << 1.

6.3.1 Two dimensional case

If one wants to take account of the marginal laws, it is necessary to con-
sider the probabilities of each Yn+jt , i.e the probabilities of the marginal laws.
Then it should be considered that the sums are taken randomly: for example∑
xs1

=x0
s1
,xs2

∈A2
pxs1

,xs2
≈ px0

s1
.

Now, it is necessary to define associated probability spaces. One thus chooses
probability spaces (Ωxs1

,Axs1
, P robaxs1

) for each xs1 : one uses product space

(Ω2,A2, P roba2) =
( ∏

xs1

Ωxs1
, T

( ∏

xs1

Axs1

)
,
∏

xs1

Probaxs1

)

where T
( ∏

xs1
Axs1

)
is the σ-algebra generated by

∏
xs1

Axs1
.

One takes also into account the probability space (Ω1,A1, P roba1) associated
with the first marginal law and finally one uses product space (Ω,A, P roba) =
(Ω1,A1, P roba1) ⊗ (Ω2,A2, P roba2).

Let us notice that it poses the problem then to know if one chooses to take
the sums

∑
xs1=x0

s1
,xs2∈A2

pxs1
,xs2

or
∑
xs1∈A1,xs2=x0

s2

pxs1
,xs2

. As a matter of

fact for the results which we try to obtain, we will understand that does not
have importance.

Hypothesis 6.3.1 Suppose that

px1
s1
,x2

s2
=

p′x1
s1

p′
x1

s1
,x2

s2
Pm

i2=1 p
′
x1

s1
,i2/m∑m

i1=1 p
′
i1/m

.

We assume that the p′x1
s1

’s are a sample of an IID sequence of random vari-

ables P ′
x1

s1

. We assume also that, for each x1
s1 , the p′x1

s1
,x2

s2

’s are a sample of

an IID sequence of random variables P ′
x1

s1
,x2

s2

. Then, p′x1
s1
,x2

s2

= P ′
x1

s1
,x2

s2

(ω) and

p′x1
s1

= P ′
x1

s1

(ω) where ω ∈ Ω.

48



One supposes that P ′
x1

s1

and, for each x1
s1 , P

′
x1

s1
,x2

s2

have the distribution M.

Let EM and σ2
M be the associated expectation and variance.

Hypothesis 6.3.2 We assume that It =
[
kt/d

q, (kt + 1)/dq
[
. Let N(It) be the

number of r/m ∈ F (m) such that kt/d
q ≤ r/m < (kt+1)/dq. Let ct, c

′
t ∈ F ∗(m)

such that It ∩ F (m) = [ct/m, c
′
t/m[∩F (m).

We suppose m enough large compared to dq and to h0. We suppose dq >> 1.
We suppose that b and σM are not too large and that EM is not too small.

We shall need the following notations.

Notations 6.3.1 Let b > 0. Let Γ′
1(b) = Maxn≥h0

(
Proba

{
|Sn| ≥ b

})
where

Sn =
Pn

i1=1 P
′
i1/m

σM
√
n

.

Remark that Γ′
1(b) = Maxn≥h0

(
Proba

{
|S′
n| ≥ b

})
where S′

n =

Pn
i1=1 P

′
x1

s1
,i2/m

σM
√
n

and x1
s1 ∈ F (m). Moreover, Γ′

1(b) ≈ Γ(b) because m/dq is large enough.

Then, one has the following proposition.

Proposition 6.3.1 Under the hypotheses 6.3.1 and 6.3.2, with a probability
larger than 1 − 4Γ′

1(b),

P
{
{X1 ∈ I1} ∩ {X2 ∈ I2}

}
=
N(I1)N(I2)

m2
[1 +Ob(1).ǫ′(2)] ,

where ǫ′(2) ≈ 2bσM

EM

√
h0

.

Proof At First,

∑

x1
s1

∈I1

∑

x2
s2

∈I2

px1
s1
,x2

s2
=

∑

x1
s1

∈I1

∑

x2
s2

∈I2

p′x1
s1

p′
x1

s1
,x2

s2
Pm

i2=1 p
′
x1

s1
,i2/m∑m

i1=1 p
′
i1/m

=
∑

x1
s1

∈I1

p′x1
s1

P

x2
s2

∈I2
p′

x1
s1

,x2
s2

Pm
i2=1 p

′
x1

s1
,i2/m∑m

i1=1 p
′
i1/m

.

We use the CLT. Then, with a probability larger than 1 − Γ′
1(b),

1

N(I2)

∑

x2
s2

∈I2

p′x1
s1
,x2

s2
= EM +

Ob(1).bσM√
N(I2)

.

Moreover, with a probability larger than 1 − Γ′
1(b),

1

m

m∑

i2=1

p′x1
s1
,i2/m

= EM +
Ob(1).bσM√

m
.
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Then, with a probability larger than 1 − 2Γ′
1(b),

p′x1
s1

∑
x2

s2
∈I2 p

′
x1

s1
,x2

s2∑m
i2=1 p

′
x1

s1
,i2/m

= p′x1
s1

N(I2)

m

EM + Ob(1).bσM√
N(I2)

EM + Ob(1).bσM√
m

=
N(I2)p

′
x1

s1

m

1 + Ob(1).bσM

EM

√
N(I2)

1 + Ob(1).bσM

EM
√
m

=
N(I2)p

′
x1

s1

m
[1 +Ob(1).ǫ2] ,

where ǫ2 ≈ bσM

EM

√
N(I2)

+ bσM

EM
√
m

.

Moreover, with a probability larger than 1 − 2Γ′
1(b),

1

N(I1)

∑

x1
s1

∈I1

p′x1
s1

= EM +
Ob(1).bσM√

N(I1)
,

1

m

m∑

i1=1

p′i1/m = EM +
Ob(1).bσM√

m
.

Then,

∑
x1

s1
∈I1 p

′
x1

s1∑m
i1=1 p

′
i1/m

=
N(I1)

m

EM + Ob(1).bσM√
N(I1)

EM + Ob(1).bσM√
m

=
N(I1)

m
[1 +Ob(1).ǫ1] ,

where ǫ1 ≈ bσM

EM

√
N(I1)

+ bσM

EM
√
m

.

Moreover,

1

N(I1)

∑

x1
s1

∈I1

Ob(1)p′x1
s1

=
Ob(1)

N(I1)

∑

x1
s1

∈I1

p′x1
s1

= Ob(1)
[
EM +

Ob(1).bσM√
N(I1)

]
.

Then, with a probability larger than 1 − 2Γ′
1(b),

∑
x1

s1
∈I1 Ob(1)p′x1

s1∑m
i1=1 p

′
i1/m

=
Ob(1)N(I1)

m

EM + Ob(1).bσM√
N(I1)

EM + Ob(1).bσM√
m

=
Ob(1)N(I1)

m
[1+Ob(1).ǫ1] .

Then, with a probability larger than 1 − 4Γ′
1(b),

∑

x1
s1

∈I1

∑

x2
s2

∈I2

px1
s1
,x2

s2
=

∑

x1
s1

∈I1

p′x1
s1

P

x2
s2

∈I2
p′

x1
s1

,x2
s2

Pm
i2=1 p

′
x1

s1
,i2/m∑m

i1=1 p
′
i1/m

=
∑

x1
s1

∈I1

N(I2)p
′
x1

s1

m [1 +Ob(1).ǫ2]∑m
i1=1 p

′
i1/m
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=
N(I1)N(I2)

m2
[1 +Ob(1).ǫ1][1 +Ob(1).ǫ2] =

N(I1)N(I2)

m2
[1 +Ob(1).ǫ′(2)]

where ǫ′(2) ≈ bσM

EM

√
N(I1)

+ bσM

EM
√
m

+ bσM

EM

√
N(I2)

+ bσM

EM
√
m

≈ 2bσM

EM

√
h0

. �

The form of this result resolve the problem of knowing if one chooses ini-
tially the sums

∑
xs1

=x0
s1
,xs2

∈A2
pxs1

,xs2
or

∑
xs1

∈A1,xs2
=x0

s2

pxs1
,xs2

. Whatever

the chosen sum, the result remains the same one : ǫ′(2) ≈ 2bσM

EM

√
h0

.

We have regarded the probabilities associated with (Xn+j1 , Xn+j2) when n
and the sequence js are fixed. But we will need also a definite probability space
for any n and all j2. Then, we shall use the following assumptions.

Hypothesis 6.3.3 We generalize by natural way the notations of hypothesis
6.3.1. For each n and each j2, we replace the notation of the probability space
(Ω,A, P roba) by (Ω(n,j),A(n,j), P roba(n,j)).

In this case, we denote by (Ω,A, P roba) the probability space (Ω,A, P roba) =∏
n,j(Ω(n,j),A(n,j), P roba(n,j)).

6.3.2 General case

Hypothesis 6.3.4 We generalize by natural way the notations of hypothesis
6.3.1. with probabilities px1

s1
,x2

s2
,...,xp

sp
. Then we generalize the p′x1

s1

and p′x1
s1
,x2

s2

in p′
x1

s1
,x2

s2
,...,xp

sp
which are samples of sequences of IID random variables defined

on the probability spaces (Ω(n,j),A(n,j), P roba(n,j)) and which have the distri-
bution M. We denote by (Ω,A, P roba) the probability space (Ω,A, P roba) =∏
n,j(Ω(n,j),A(n,j), P roba(n,j)).

Then, one generalize easily proposition 6.3.1.

Proposition 6.3.2 Under the hypotheses 6.3.4 and 6.3.2 , with a probability
larger than 1 − 2pΓ′

1(b),

P
{
{X1 ∈ I1} ∩ .. ∩ {Xp ∈ Ip}

}
=

∏p
r=1N(Ir)

mp
[1 +Ob(1).ǫ′(p)] ,

where ǫ′(p) ≈ pbσM

EM

√
h0

.

We deduce the following proposition.

Proposition 6.3.3 Under the hypotheses 6.3.4 and 6.3.2, with a probability
larger than 1 − 2pΓ′

1(b),

P
{
X1 = k1/d

q, ....., Xp = kp/d
q
}
≈ 1

dpq
[1 +Ob(1).ǫ′(p)] .
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Proof We have P
{
X1 = k1/d

q, ....., Xp = kp/d
q
}

= P
{
{X1 ∈ I1} ∩ .. ∩ {Xp ∈ Ip}

}
=

Q

s(c′ks
−cks )

mp [1 +Ob(1).ǫ′(p)] .

Moreover,
∏ c′ks

−cks

m = 1
dpq [1+ǫa] , where ǫa = p.dqOb(1)

m + p(p−1)d2qOb(1)
2m2 +... <<

ǫ′(p) by hypothesis 6.3.2. Then,

P
{
X1 = k1/d

q, ....., Xp = kp/d
q
}

=
1

dpq
[1+ǫa][1+Ob(1).ǫ′(p)] ≈

1

dpq
[1+Ob(1).ǫ′(p)] .�

Now, we study the Borel sets of F (dq)⊗p : Bo = ∪(k1,...,kp)∈Θ{(k1/d
q, ..., kp/d

q)} =

∪(k1,...,kp)∈Θ{Ik1⊗....⊗Ikp
} where Ikt

= [kt/d
q, (kt+1)/dq[. Then, L(Bo) = KΘ

dpq .

We have the following proposition.

Proposition 6.3.4 . Assume that, for all (k1, ..., kp), P
{
X1 = k1/d

q, ....., Xp =

kp/d
q
}

= 1
dpq [1 +Ob(1)ǫ′(p)].

Then, P
{
(Xn+j1 , ...., Xn+jp) ∈ Bo

}
= L(Bo)[1 +Ob(1)ǫ′(p)].

Proof We can write

P
{
(Xn+j1 , ...., Xn+jp) ∈ Bo

}
=

∑

(k1,...,kp)∈Θ

1

dpq
[1+Ob(1)ǫ′(p)] =

KΘ

dpq
[1+Ob(1)ǫ′(p)] .�

Now, one can prove the following result.

Proposition 6.3.5 We assume that the the hypotheses 6.3.4 and 6.3.2 hold.
Let 1 ≤ n ≤ n0. Let PXn

(Bo) = P
{
(Xn+j1 , ...., Xn+jp) ∈ Bo

}
. One supposes

that M is the uniform distribution. Then,

Proba

{
⋂

n+jt,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ 2b.pL(Bo)√
3.dQ−q

}}
≥ 1 − 2p.np0d

pqΓ′
1(b) .

(6.1)

Proof Let {k} = {k1} ⊗ .... ⊗ {kp}. Clearly, |Ob(1)|.pbσM

EM

√
h0

≈ |ǫ′(p)| ≤ 2pbσM

EM

√
dQ−q

.

Then, by the proof of proposition 6.3.3, with a probability larger than 1 −
2pΓ′

1(b),

PXn({k}) = L({k})
[
1 +

Ob(1).2p.bσM

EM .
√
dQ−q

]
.

Then, because σ2
M = 1/12, EM = 1/2,

Proba
{∣∣PXn

({k}) − L({k})
∣∣ > L({k})

[ 2b.p√
3.dQ−q

]}
≤ 2pΓ′

1(b) .
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By proposition 6.3.4,
{

⋂

n+jt,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ L(Bo)
2pbσM

EM
√
dQ−q

}}

⊃
{

⋂

n+jt,{k}

{∣∣PXn
({k}) − L({k})

∣∣ ≤ L({k}) 2pbσM

EM
√
dQ−q

}}
.

There are dpq sets {k}. Moreover, there is at the maximum (n0)
p ”n + jt”

possible. Then,

Proba

{
⋂

n+jt,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ L(Bo)
2b.p√
3.dQ−q

}}

≥ Proba

{
⋂

n+jt,{k}

{∣∣PXn
({k}) − L({k})

∣∣ ≤ L({k}) 2b.p√
3.dQ−q

}}

= 1 − Proba

{
∁

⋂

n+jt,{k}

{∣∣PXn
({k}) − L({k})

∣∣ ≤ L({k}) 2b.p√
3.dQ−q

}}

= 1 − Proba

{
⋃

n+jt,{k}

{∣∣PXn
({k}) − L({k})

∣∣ > L({k}) 2b.p√
3.dQ−q

}}

≥ 1 −
∑

n+jt,{k}
Proba

{∣∣PXn
({k}) − L({k})

∣∣ > L({k}) 2b.p√
3.dQ−q

}

= 1 −
∑

n+jt,{k}
2pΓ′

1(b)

= 1 − 2p.np0d
pqΓ′

1(b) . �

Now, Γ′
1(b) ≈ Γ(b) ≈

√
2√
πb
e−b

2/2 when b is big (cf (28)’ page 56 [31]). Then, if

d=2, 2p(n0)
p2pqΓ′

1(b) ≈ 2
√

2.p(n0)
p2pqe−b2/2

√
πb

≈ 2
√

2.peLog(n0)pelog(2)pqe−b2/2

√
πb

. Then,

we have to impose b ≥
√

2[Log(n0)p+ Log(2)pq] in order that the inequality
6.1 is useful.

We deduce the following properties.

Property 6.3.2 Assume d=2. Then, in order that the inequality 6.1 is useful,
we can impose b =

√
3p[Log(n0) + q].
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Proof Indeed, in this case,

2p(n0)
p2pqΓ′

1(b) ≈
2
√

2.peLog(n0)peLog(2)pqe−b
2/2

√
πb

=
2
√

2.peLog(n0)peLog(2)pqe−1.5.p[Log(n0)+q]

√
3πp[Log(n0) + q]

≤ 2
√

2.p.e−Log(n0)p/2e−pq/2√
3πp[Log(n0) + q]

. �

Now, b has to be not too large.

Property 6.3.3 Assume d=2. Then, in order that the inequality 6.1 is useful,

we can impose ǫ3 = [Log(n0)+q]p
32q

m << 1.

Proof If one chooses b =
√

3p[Log(n0) + q]

2bp√
3 ∗ 2Q−q

≤ 2p
√

3p[Log(n0) + q]√
3 ∗ 2Q−q

=
2
√
p3[Log(n0) + q]√

2Q−q
≤ 2

√
[Log(n0) + q]p32q

m
.

If ǫ3 << 1,

Proba

{
⋂

n+jt,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ 2
√
ǫ3L(Bo)

}
≈ 1 . �

Property 6.3.4 If d=2, in order that the inequality 6.1 is useful, we can im-
pose

1) if one regards all the possible ”p”, [Log(n0)+q](n0)
32q

m << 1,

2) if one regards all the p ≤ pm = ⌊Log(n0)/log(2)⌋, [Log(n0)+q](pm)32q

m << 1.

6.3.3 Continuous density

Consider the vector (Xn+j1 , ..., Xn+jp). We know that

∑

x1
s1

∈
[

c1
m ,

c′1
m

[
.....

∑

xp
sp∈

[
cp
m ,

c′p
m

[
px1

s1
,..,xp

sp

=
∑

(yn+j1 ,....,yn+jp )∈A1⊗....⊗Ap

E
{
1A1⊗....⊗Ap(yn+j1 , ...., yn+jp)

}
.
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Let us suppose that (Yn+j1 , ...., Yn+jp) has a density function with a Lipschitz
coefficient K0 not too large. Suppose that the c′t−ct are large enough. We know

that the sets At = T
−1

(mIt)/m = T
−1(

[ct, c
′
t[
)
/m are well distributed in F(m),

i.e. the sets At have a distribution close to that of {r/N(It)|r = 0, 1, ..., N(It)}
(see below). Then, by applying the traditional methods of integration, it is clear
that

∑

x1
s1

∈I1

.....
∑

xp
sp∈Ip

px1
s1
,..,xp

sp
≈

p∏

t=1

L(It) .

Under this assumption, one thus obtains easily IID sequences. Let us recall that,
when n0 << dp, one often accepts like model a model with continuous density
and a Lipschitz coefficient K0 not too large. That shows that the functions Tq
are a good tool to obtain IID sequences.

Theoretical study

For example if p=1, the following property holds.

Property 6.3.5 Let m >> 1. Let hN be the probability density function of

Y ∈ F (m) with respect to µm :
∫ 1

0
hN (u)µm(du) = 1. Let h′N = (1/c0)hN be

the probability density function such that
∫ 1

0
h′N (u)du = 1.

Let K0 ∈ R+ such that |hN (r)−hN (r′)| ≤ K0|r′−r| and |h′N (r)−h′N (r′)| ≤
K0|r′ − r| when r, r′ ∈ [0, 1].

Then, the following equality holds : P{T (mY )/m ∈ I} = L(I)
[
1 + O(1)K0

N(I)

]
,

where N(I) ≤ m/2.

Proof We need the following lemmas.

Lemma 6.3.6 The following equality holds :

c0 = 1 +
O(1)K0

m
.

Proof The following equalities hold :

1 =
∑

t

∫ (t+1)/m

t/m

h′N (u)du =
∑

t

∫ (t+1)/m

t/m

[
h′N (t/m) +Ob(1)K0/m

]
du

=
1

m

∑

t

h′N (t/m) +
Ob(1)K0

m
=

∫ 1

0

h′N (u)µm(du) +
Ob(1)K0

m
.

Then,
∫ 1

0
h′N (u)µm(du) = 1 + Ob(1)K0

m . Therefore,

1 =

∫ 1

0

hN (u)µm(du) = c0

∫ 1

0

h′N (u)µm(du) = c0

[
1 +

Ob(1)K0

m

]
. �
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Lemma 6.3.7 The following equality holds : 1
N(I)

∑
r hN (r/N(I)) = 1+ 2Ob(1)K0

N(I)
.

Proof The following equalities hold :

1 =
∑

r

∫ (r+1)/N(I)

r/N(I)

h′N (u)du =
∑

r

∫ (r+1)/N(I)

r/N(I)

[
h′N (r/N(I))+Ob(1)K0/N(I)

]
du

=
1

N(I)

∑

r

h′N (r/N(I)) +
Ob(1)K0

N(I)
.

Therefore c0 = 1
N(I)

∑
r hN (r/N(I)) + Ob(1)c0K0

N(I) .

Therefore, by lemma 6.3.6,

c0 = 1 +
O(1)K0

m
=

1

N(I)

∑

r

hN (r/N(I)) +
Ob(1)[1 + O(1)K0

m ]K0

N(I)
.

Because m >> 1 and N(I) ≤ m/2, we deduce the lemma. �

Then, the following property holds.

Property 6.3.8 Let I = [c/m, c′/m[. Let gN (k) = hN
(
T

−1
(k)/m

)
. Assume

again that T is a Fibonacci congruence. The following approximation holds

1

N(I)

c′−1∑

k=c

gN (k) = 1 +
6Ob(1)K0

N(I)
.

Proof Let kn, n=1,2,..,c’-c, be a permutation of I ∩ F (m) = {c/m, (c+ 1)/m,

...., (c′ − 1)/m} such that T
−1

(k1) < T
−1

(k2) < T
−1

(k3) < ...... < T
−1

(kc
′−c).

Then, for all numerical simulations which we executed, one has always obtained

|T−1
(kr)/m− r/N(I)| ≤ 4/N(I) .

We deduce that |gN (kr) − hN (r/N(I))| ≤ 4K0/N(I).

Therefore, by lemma 6.3.7,

1

N(I)

c′−1∑

k=c

gN (k) =
1

N(I)

∑

r

gN (kr)
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=
1

N(I)

∑

r

hN (r/N(I)) +
1

N(I)

∑

r

[
gN (kr) − hN (r/N(I))

]

=
1

N(I)

∑

r

hN (r/N(I)) +
4Ob(1)K0

N(I)
= 1 +

2Ob(1)K0

N(I)
+

4Ob(1)K0

N(I)
. �

Remark 6.3.9 The only result which is not proven mathematically is

|T−1(kr)/m− r/N(I)| ≤ 4/N(I) .

It is enough to prove this result in order that property 6.3.5 is fully proven. We
point out that, by our numerical study, this result seems sure.

Proof of property 6.3.5 By the previous equalities,

P{T (Y )/m ∈ I} =
1

m

∑

k

gN (k) =
N(I)

m

[
1 +

6Ob(1)K0

N(I)

]

= L(I)
[
1 +

Ob(1)

m

][
1 +

6Ob(1)K0

N(I)

]
= L(I)

[
1 +

O(1)K0

N(I)

]
. �

Remark 6.3.10 One can easily generalize the proof of property 6.3.5 to the
two-dimensional case. For example, if p=2, by proposition A.0.1,

P
{(
T (mY1)/m, T (mY2)/m

)
∈ I1 ⊗ I2

}
= L(I1)L(I2)

[
1 +

O(1)K0

Infs[N(Is)]

]
.

Remark 6.3.11 The previous results can be proved in another manner. In this
case, there is a less fine approximation : cf property 7.1.21 of [18].

Numerical results

All the results which we have obtained confirm the previous result. For example,

when hN (y) ≈ 10.e−[10(y−0.5)]2/(2σ2)

2πσ2 , we have obtained the following tables where
m= 2178309 and I = [541231,1905574[ , ǫ = N(I)/m− P{X ∈ I}.

σ2 ǫ
1/4 0.0000042
1/2 0.0000028
1 0.0000016
1/16 0.0000225
1/128 0.0001511
1/1024 0.0003016
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Many other numerical results are in [18] section 7.1.2. All the results which
we have obtained confirm the property 6.3.5.

6.3.4 General numerical results

In [18] , we have studied the case where the probability density function of

Y with respect to µm is written in a form : h(y)
[
1 + η(y)

co

]
, where η(y) is a

sample of a white noise independent of h and where
∫
h(y)µm(dy) ≈ 1. We have

obtained equivalent result. Here we recall some results when h is a normal or
uniform density.

Normal case

We assume that h(y) ≈ 10.e−[10(y−0.5)]2/(2σ2)
√

2πσ2
, co ≥ 10. Then, we have proved

that P
{

m
√
σ|ǫGI |

0.0485
√
N(I)

≥ b
}
≈ Γ(b) where ǫGI = N(I)/m− P{X ∈ I}. This result

thus gives us a probable increase of |ǫGI |.

Example 6.3.12 Suppose that we do not have more than 106 possible intervals
I. We know that Γ(6) ≤ 10−9.Then, if N(I) is not too small, one can assume

|ǫGI | ≤
0.291

√
N(I)

m
√
σ

. (6.2)

For example, suppose m= 267914296 , a= 165580141. We choose intervals
I length L(I) = (1/5)10−j for j =1,...,6 . Choose standard deviations σ = 1/2,
1/4, 1/8, 1/40.

For each j, one calculated each ǫGI for 50 intervals Is, s=1,2,..,50 length
(1/5)10−j . Then, one obtains the following table of Maxs{0.5 ∗ 106|ǫGI | | Is, σ}
on these 50 terms.

L(I) \ σ 1/2 1/4 1/8 1/40
(1/5)10−1 0.0708 0.0837 -0.0321 0.5361
(1/5)10−2 0.1096 -0.0114 -0.1507 -0.1077
(1/5)10−3 0.0067 0.0328 0.0097 -0.1834
(1/5)10−4 -0.0008 0.0004 0.0046 0.0083
(1/5)10−5 -0.0008 -0.0014 0.0025 -0.0152
(1/5)10−6 -0.0000 -0.0010 0.0010 0.0013
(1/5)10−7 -0.0006 0.0002 -0.0032 -0.0044

We have other various numerical results : a more complete study has been
done in section 7.1 of [18]
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Uniform distribution

Here we study the model PY {Y = k/m} = 1
m

[
1 + uk

]
where uk is a sample of

an IID sequence Uk with variance σ2
U .

Let I be an interval. We set ǫI = N(I)/m − P{X ∈ I}. Let NIel =

Supk

∣∣∣card
[
F (m) ∩ [k/2q, (k + 1)/2q[

]∣∣∣ = ⌊m/2q⌋ + 1. Then, for all interval Ik,

generally,

P
{ m|ǫIk

|
σU

√
NIel

≥ bq

}
≤ 4−q .

Because there are only 2q intervals Ik = [k/2q, (k + 1)/2q[, one can admit

|ǫIk
| ≤ bqσU

√
NIel

m
. (6.3)

For example for datas h(n) used section 11.1.1, if m ≥ 1.4 ∗ 1031, σU ≤ 1
and if q=84, one choose bq = 15, NIel ≈ 7520. Then, one can suppose

|ǫIk
| ≤ 9.3

1029
.

A more complete study has been done in section 7.2 of [18]

6.3.5 Other congruences

Similar results are obtained with other congruences. But the approximations
are less good. For example we proved the following result in section 4.1.1 of
[18].

Proposition 6.3.6 Let (d, p) ∈ {2, 3, ...., }2. Let T (x) ≡ dpx mod m = d2p− 1.
Let Z ∈ F (m) be a random variable. Let f be the density of Z with respect

to µm. Let K0 > 0 such that, for all z, z′ ∈ F (m), |f(z) − f(z′)| ≤ K0|z − z′|.
Then,

P
{
T (Z)/m ∈ I

}
=
N(I)

m
+
O(6K0)

dp
.

6.3.6 Remarks

Remark 6.3.13 The previous results were obtained by considering that one
chose randomly a measure in the set of the possible probabilities. But, for that ,
one needs that the probabilities of the Xn are not concentrated in a small number
of points. If not, the majority of the pxs

will be equal to 0 and could not thus be
regarded as chosen randomly. Of course, it is one of the exception envisaged in
section 5.4 of [18]. But it is better to remove this case.

At first, it is necessary that one has a sample of yn which all are different.
In this aim, it is enough that m is large with respect to n0.

Moreover, it is better that a priori all the possible values of F (m)p can exist
in a sample. For p=1, it is reasonably the case when one adds modulo m a
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pseudo-random sequence gn of period m : my′n = gn +myn. For p=2, one can

use two generators g1
2n′ and g2

2n′+1 : if n=2n’, my′2n′ = g1
2n′ +my2n′

Remark 6.3.14 We can make this study without supposing that T is the con-
gruence of Fibonacci. But, the conclusion does not hold when T is the identity
and that the curve of the probabilities have the shape of a normal curve. It is
natural : contrary to the congruence of Fibonacci, there is a dependence between
T and text : if yn means an extract of texts, T (yn) means the same extract of
text. It is the same when T (x) ≡ dpx modulo d2p − 1 (cf proposition 6.3.6).

Remark 6.3.15 There exists another method to prove our conclusions: it should
be considered that the probabilities are fixed and the ai are taken randomly : cf
section 8.3 of [18].

6.4 Study of models

A more detailed study of models is in chapter 13 of [18].

6.4.1 Continuous densities

Let us suppose that one has a sample resulting from texts, yn, n = 1, 2, ...., n0,
yn ∈ F (m) where n0 << m. We suppose yn 6= yn′ if n 6= n′. Generally,
that occurs always if m is great enough with respect to n0. This assumption
involves that, for all subsequence yt(n) and for all p, (yt(n), ...., yt(n+p−1)) 6=
(yt(n′), ...., yt(n′+p−1)) if n 6= n′.

One can always regard yn ∈ F (m) as the realization of a sequence of random
variables Yn : yn = Yn(ω) such that Yn has a a differentiable density with respect
to µm⊗ ....⊗µm. One assume also that this density have a Lipschitz coefficient
K0 which is not too large.

It is a logical assumption. In fact it is an assumption which most mathe-
maticians admit when N << m : that is especially clear when they estimate
the densities.

We have studied numerous examples which corroborate this hypothesis : cf
[18].

Now, in the case where densities are continuous, the conditional densi-
ties are also continuous. Then, the conditional probabilities P{Yn|yn+j2 =
y2, ..., Yn+jp = yp} has a continuous density fy2,...,yp

with a coefficient Lipschitz
Kcp

0 which is not too great. Then, by the same technique as for property 6.3.5,
one obtains

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)Kcp
0

N(I)

]
,

where h0 is chosen big enough : N(I) ≥ h0.
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6.4.2 Another group of models

In order to prove the previous equation, we used K0. But it is enough to read
the proofs of property 6.3.5 in order to understand that it would be possible to
use the coefficients of Lipschitz Kr associated with each interval [r/N(I), (r +
1)/N(I)[ to obtain the same type of results.

In this case, it would be enough that
∑
rK

r is not too large. It is felt well
intuitively that this kind of conditions is satisfied by our models.

Admittedly, it is easier to understand for the classical densities of (Y1, ....., YN ).
But what interests us, are the conditional probabilities. Then to understand
that the property ”

∑
rK

r not too large” is checked for the conditional den-
sities, simplest way is to remember that the conditional density fy2,,yp(y1) is
equal to the product of the marginal densities f2(y2, y3, ., yp) and of the density
of dependence (cf [10] or proposition 14.3.2 of [18] ) :

fy2,...,yp(y1) = fdep(y1; y2, y3, ...., yp)f2(y2, y3, ...., yp) .

Then, one confirms this assumption with simulations by using this equality.

Therefore, this kind of conditions on
∑
rK

r seems checked by our models.
That makes our end result even surer.

6.4.3 General case

The use of the previous models is interesting because that yn behaves well like
a sample of one of these possible models Yn. We thus do not make any error
while putting to us under these assumptions. Our calculations are thus right.
That implies that the bits b4(n′) obtained by our construction in section 10.1.4
behave well like IID sequences.

But it is probable that there do not need even to suppose to be under the
assumptions of these models: it is probable that, for any logical model, one will
still obtain

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} ≈ L(I) .

A very strong result

Indeed, we understood that if one provides the set of possible probabilities with
the measure defined in section 6.3, our results are checked for almost all the
possible probabilities.

There is thus a slight restriction which is normal: in the set of ALL the
models, there will be an infinity of them which will not be appropriate. However,
it is already extraordinary that the result is true for almost all the possible
models.

In order to understand it, let us take for example a sample really IID yn.
One wants to associate with yn a model Yn. Clearly, among all the possible
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models, there is an infinity of good models and an infinity of bad ones. One can
even think that there is much more bad models than goods.

In section 6.3, it is the opposite: in the set of all the possible models, almost
all will be good. It is a very strong result.

A result checked by all the logical models

As a matter of fact, one can remove the bad models : one can admit that
P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} ≈ L(I) will be checked for all the
logical possible models.

Indeed, there is no connection between the T
−1

(mIk) and texts. Therefore,
if a model was bad, that would mean that there is a logical connection between
the T−1

q (Ik) and text. One can thus a priori exclude a such model.

Thus our result holds with all the possible logical models, those where there
is no connection between text and the T−1

q (I).

Now, it is obtained that P
{
Y1 ∈ T−1

q (I)
}
≈ (c′−c)

m

[
1 + Ob(1).b√

3N(I)

]
for all the

logical models. Then the question is put: which value to choose for b?
In order to know that, it is necessary to go back to the themself texts : i.e.

it is necessary to study the associated empirical probabilities.

We thus estimated b for various texts and for various T−1
q (I).

If p=1, all the numerical studies that we have made show that, for intervals I
of the same length, the sets T−1

q (I) contains about the same number of possible
texts : cf [18] section 13.1.2.

Finally, it is found that one can admit - and by far - in all the cases

P
{
Y1 ∈ T−1

q (I)
}

=
(c′ − c)

m

[
1 +

Ob(1).20√
3N(I)

]
. (6.4)

This increase (b=20) is not astonishing. Indeed, according to proposition
6.3.2, it occurs with a probability larger than 1 − 2pΓ′

1(b). Now, if b=20,
Γ′

1(b) ≈ 1.12/1088. Then, a priori, in order to find a case where that is not
true, it would be necessary to use a such large number of texts that it is impos-
sible to realize.

In any case it is even not sure that one can find cases where this equality
is not checked empirically. Indeed, one does not use texts representing samples
which have a fixed law. What one uses, it is, on the one hand, sequences which
have the logic of the English language, and on the other hand, sets which have
simple mathematical properties. Anyway, we never have encounter such a case.
It is thus possible logically that it has no text not checking the equation 6.4.
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If p=2, sets T−1
q (I1) and T−1

q (I2) behave like randomly selected compared
to the text.

If p > 2, we have obtained results equivalent for p ≤ log(n0)
log(2) :

P
{{
Y1 ∈ T−1

q (I1)
}
∩.....∩

{
Yp ∈ T−1

q (Ip)
}}

≈
∏
s(c

′
s − cs)

mp

[
1+

Ob(1).20.p√
3.Inf{N(Is)}

]
.

Anyway a such value of b is not important because the equation

P{Xn ∈ I | Xn+j2 = x2, ..., Xn+jp = xp} = L(I)[1 +Ob(1)ǫ]

is too strong. Indeed it is enough that

P{Xn ∈ I | Xn+j2 = x2, ..., Xn+jp = xp} = L(I) +Ob(1)ǫ

where ǫ = α√
N

when N is the size of sample and 0 < α ≤ 0.02. Indeed, in

this case one cannot differentiate Xn with an IID sequence : cf section 2.1.4 or
example in section 11.2.3.

Then, the equation

P{Xn ∈ I | Xn+j2 = x2, ..., Xn+jp = xp} = L(I)[1 +Ob(1)ǫ]

is too strong.
Therefore a very strong connection between text and the sets T−1(Ik) would

be necessary in order not to obtain this kind of equation. It is not therefore
advisable to worry about the value of b.

Conditional probabilities

The fact that there is no connection between text and the sets T−1
q (k/dq) =

{a1, ...., ac′−c} applies to the conditional probabilities. Indeed, there is always
no logical connection between text and the sets T−1

q (I) = {a1, ...., ac′−c} in the
conditional probabilities:

P{Xn ∈ I | Yn+j2 = y2, ..., Yn+jp = yp}

=
P

{ {
Yn ∈ T−1

q (I)
}
∩ {Yn+j2 = y2} ∩ .... ∩ {Yn+jp = yp}

}

P
{

∩ {Yn+j2 = y2} ∩ .... ∩ {Yn+jp = yp}
} .

Therefore, the conditional probabilities behave well as sums on sets taken ran-
domly, i.e.

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp}

=
∑

s

P{Yn = as | Yn+j2 = y2, ..., Yn+jp = yp} ≈ L(I) .
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Chapter 7

Limit Theorems

7.1 Central Limit Theorem

The Central Limit Theorem (CLT) produces the limit distribution of (X1 +
....Xn)/σ when Xn is a sequence of random variables such that E{Xn} = 0 and
σ2 is the variance.

It has been proved under various hypotheses of asymptotical independence.,
in particular under the strong mixing condition or under martingale assumptions
: cf [21] and [28]. Now, these condition are too strong for most of datas. Then,
some authors have introduce weaker hypotheses : Versik Ornstein ([22], [23]),
Cogburn [25] Rosenblatt [26], Pinskers [7], Doukhan-Louhichi [27]. But theses
assumptions are still strong in order to be used with data.

Fortunately, another look is possible : in [11] , one can use higher order cor-
relation coefficients (cf Lancaster [9], Blacher [10]). Then, in [11] we have turned
the convergence of moments into an equivalent conditions on these coefficients.
For example we have proved the following theorem.

Theorem 3 Assume that the Xn have the same distribution with variance σ2

and that there exists bo > 0 such that |Xn| ≤ bo. Assume that
∑n
s=1

∑
r 6=s

[
E{(Xs)

2(Xr)
2} − E{(Xs)

2}E{(Xr)
2}

]

n2
→ 0 .

Let µp = E{(XG)p} where XG ∼ N(0, 1). Then, for all p ∈ N
∗,

E

{(X1 +X2 + .........+Xn√
(N2 + σ2)n

)p}
→ µp as n→ ∞

if and only if, for all p ∈ N
∗,

p!

∑n
t1=1

∑n
t2=t1+1 ....

∑n
tp=tp−1+1 E{Xt1Xt2 ......Xtp}
np/2

→ (N2)
pµp .
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From this type of results we have deduced CLT with minimal assumptions whose
the conditions are close to strong mixing assumptions.

In this aim, one decomposes X1 +X2 + .........+Xn in X1 +X2 + .........+Xu,
Xu+1 +Xu+2 + .........+Xu+t and Xu+t+1 +Xu+t+2 + .........+Xu+t+u where
u=u(n) and t=t(n).

Notations 7.1.1 We denote by κ(n) ∈ N, an increasing sequence such that
κ(1) = 0, κ(n) ≤ n and κ(n)/n→ 0 . We define the sequences u(n) and t(n) by
: u(1)=1, u(n) = max

{
m ∈ N

∗∣∣2m + κ(m) ≤ n
}
, and t(1)=0, t(n) = n-2u(n)

if n ≥ 2.

Notations 7.1.2 Let σ(u)2 = E{(X1 +X2 + .........+Xu)
2} . One sets

Su =
X1 +X2 + .........+Xu

σ(u)
, ξu =

Xu+1 +Xu+2 + .........+Xu+t

σ(u)

and S′
u =

Xu+t+1 +Xu+t+2 + .........+Xu+t+u

σ(u)
.

Then, one can define almost minimal assumptions for the convergence of
moments.

Notations 7.1.3 : Let k ∈ N
∗. We define conditions HmS(k) and HmI(k) by

the following way :
HmS(k) : ∀p ∈ N , p < k + 1 , E

{
(Su)

p
}
− E

{
(S′
u)
p
}
→ 0 as n→ ∞.

HmI(k) : ∀(p, q) ∈ (N∗)2 , p+ q < k + 1 ,

E
{
(Su)

p(S′
u)
q
}
− E

{
(Su)

p
}
E

{
(S′
u)
q
}
→ 0

as n→ ∞.

Equivalent conditions can be defined for the convergence in distribution.

Notations 7.1.4 : We define condition HS and HI by the following way.

HS : ∀k ∈ N,∀j ∈ N, P{Ak,j} − P{Bk,j} → 0 as n→ ∞ ,

HI : ∀k ∈ N,∀(j, j′) ∈ N
2, P{Ak,j ∩Bk,j′} − P{Ak,j}P{Bk,j′} → 0

as n → ∞, where Ak,j =
{
Su ∈ Ik,j

}
and Bk,j =

{
S′
u ∈ Ik,j

}
with Ik,j =[

j.4−k, (j + 1)4−k
[}

.

Then the following CLT holds : cf [14] [15].

Theorem 4 We assume that HmS(∞) and HmI(∞) hold. We assume also

that, for all p ∈ N
∗, E{(ξu)p} → 0 as n→ ∞. Then, Sn

D→ N(0, 1) .

Theorem 5 We assume that HS , HI , HmS(4) and HmI(4) hold. We assume

also that E{(Su)2} − E{(S′
u)

2} → 0 and E{ξ2u} → 0 as n → ∞. Then, Sn
D→

N(0, 1) .

It is this CLT that we use with our datas (cf chapter 9).
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7.2 XOR Limit Theorem

Our secund limit theorem is based on the property of XOR. But it holds also
modulo m. Then, by misusing of language, we call this this result ”XOR Limit
Theorem” (XORLT). The XORLT is much more general than the CLT. Then,
one can use with many type of datas, in particular with the most part of elec-
tronic files.

7.2.1 Presentation

The XORLT relates to sums α(n)(X1 + X2 + .... + Xn)/σ(n), in particular
X1 +X2 + ....+Xn (in this section, h ≡ h modulo 1).

Definition 7.2.1 Let (X1
n, X

2
n, .....X

p
n) ∈ R

p be a sequence of random vectors.
For s=1,...,p, let σs(n)2 = E{(Xs

1 + ....+Xs
n)

2}. Then, we set

Ssn =
Xs

1 + ....+Xs
n

σs(n)
.

The XOR limit theorem holds for (X1
n, X

2
n, .....X

p
n) if there exists p sequences

αs(n) → ∞ as n → ∞ , such that (α1(n)S1
n, ....., αp(n)Spn) has asymptotically

the uniform distribution on [0, 1[p.

As a matter of fact, we have always obtained that X1 +X2 + ....+Xn has
asymptotically the uniform distribution on [0, 1[. In order to understand that,
we recall the following theorem (cf theorem 4 [18]).

Theorem 6 Let X and Y be two independent random vectors, X, Y ∈ F ∗(m)p.
Assume that X has the uniform distribution. Then, X + Y ∈ F ∗(m)p has also
the uniform distribution.

For example assume that X1 ∈ [0, 1[ has the uniform distribution and that
X1 is independent of (X2, ...., Xn). Then X1 +X2 + ....+Xn has the uniform
distribution on [0,1[.

This result is general : if the CLT is satisfied, then the XORLT is satisfied.

Proposition 7.2.1 : Let Xn be a sequence of random variables such that

E{Xn} = 0 and Sn = X1+....+Xn

σ(n)

D→ S with E{S2} = 1. Assume that S has

a probability density function f with respect to the Lebesgue measure such that
|f(x) − f(x′)| ≤ K0|x− x′|.

Then, there exists a sequence α(n) → ∞ as n → ∞ such that, for all
0 ≤ t ≤ 1, P

{
α(n)Sn ∈ [0, t[

}
→ t as n→ ∞ .

The proof is in proposition 5.2.3 of [18]. Remark that analog results hold
also for random vectors (Sn1 , S

n
2 , ...., S

n
p ) ∈ R

p .

In general, α(n)σ(n) = 1, i.e. (X1 + ....Xn) has asymptotically the uniform
distribution on [0, 1[ . Indeed let µ′

n(
k

mσ(n) ) = 1
mσ(n) for all k ∈ Z . Then,
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µ′
n([0, 1]) → 1 as n→ ∞. Now the following XORLT holds (cf proposition 5.2.4

of [18]).

Proposition 7.2.2 Let (Sn1 , S
n
2 , ...., S

n
p ) ∈ R

p be a random vector such that
E{(Ssn)2} = 1 for s=1,2,...,p.

Let µA be a measure on R : one assumes that µA = µ1⊗....⊗µp where µs = µ
the Lebesgue measure for s=1,...,p or where µs = µ′

n for s=1,..,p. Assume that
(Sn1 , S

n
2 , ...., S

n
p ) has a probability density function fn with respect to µA such

that |fn(x1, ..., xp) − fn(x
′
1, .., x

′
p)| ≤ K0max(|xs − x′s|).

Let α(n) be a sequence such that α(n) → ∞ as n→ ∞.
Then α(n)(Sn1 , S

n
2 , ...., S

n
p ) has asymptotically the uniform distribution over

[0, 1[p.

Now, the condition ” ∃K0 : |fn(x)− fn(x′)| ≤ K0|x−x′| ∀ n ∈ N
∗ ” is not

a necessary condition of the CLT. Then, in some cases, the hypotheses of propo-
sition 7.2.2 seem stronger than those of the CLT. But the reciprocal assertion
is true too : e.g. the XORLT holds if Xs = X1 for all s : X1 + ....+Xn = nX1

.
Moreover, proposition 7.2.2 suggests that if the CLT holds, then,X1 + ....+Xn

has asymptotically the uniform distribution. Anyway, under the assumptions of
datas studied in this report, we have never found a single case where it is not
verified.

7.3 Examples

In this section, we compare limit distributions. In these examples we shall note
the strength of the XORLT.

Let S2
n ∈ R

2 such that S2
n
D→ S2

0 where S2
0 ∼ N2(0, C) when C is a covariance

matrix. One knows that g(S2
n)

D→ g(S2
0) if g is continuous with PS2

0
probability 1

(cf [29] page 24). Then, S2
n
D→ S2

0 . Moreover, we shall note that the dependence

of S2
0 does not exist any more for S2

0 . We shall deduce the XORLT for σ(n)S2
n.

Example 7.3.1 Let X and Y be two independent random variable with distri-
bution N(0,1). Let Z = X+aY√

1+a2
where a ∈ R.

Test of the linear correlation coefficient Under the previous hypotheses,
Z has the N(0,1) distribution. Moreover the linear correlation coefficient of X
and Z is ρ = (1 + a2)−1/2. For example, ρ = 0.701 si a=1.

let ρn be the empirical linear correlation coefficient associated to a sample
(Xs, Zs). Let ρUn be the empirical linear correlation coefficient associated to the
sample (Xs, Zs).
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Then, ρn et ρUn allow us to estimate the linear correlation coefficients of
(X0, Z0) and (X0, Z0).

Let N be the size of the sample. The following results have been obtained

ρ N ρn ρUn ρn ρUn
0.7071 1000 0.7063 -0.0607 0.6941 0.0367
0.4472 1000 0.4597 0.0017 0.4488 -0.0260
0.2425 1000 0.2472 0.0054 0.2167 -0.0252
0.7071 5000 0.7034 -0.0294 0.6996 -0.0012
0.4472 5000 0.4536 0.0002 0.4436 -0.0270
0.2425 5000 0.2351 0.0075 0.2290 0.0216
0.7071 10000 0.7108 0.0061 0.7107 0.0010
0.4472 10000 0.4469 -0.0020 0.4454 -0.0049
0.2425 10000 0.2675 0.0099 0.2478 0.0101
0.7071 100000 0.7074 -0.0011 0.7056 -0.0007
0.4472 100000 0.4433 -0.0013 0.4467 0.0002
0.2425 100000 0.2466 -0.0037 0.2445 -0.0015

Then ρUn is smaller than ρn. As a matter of fact, if we do tests, we can even
consider that ρUn is the estimate of the correlation coefficient equal to 0.

Chi squared independence test We test the independence of Xn and Zn
by the chi squared independence test.

Assume that the linear correlation coefficient is equal to 0.7071. We use a
partition (15,15). The chi-squared statistics has asymptotically the distribution
N(0,1) (cf [1] page 44) :

√
2χ2 −

√
2d− 1 where d is the degree of freedom :

(15-1)(15-1). With this statistics, we obtained the following numerical results.

1.1256 -0.1246 2.0030 -0.8977 -0.7952 0.6594 -0.7758
-0.3079 0.5618 -0.3380 -1.2630 -0.5369 -1.0617 0.9458
-1.6506 -0.3484 0.9821 -0.8853 -0.1215 -0.5373 1.0599

As a matter of fact (X,Z) is enough close to an independent vector.

Conclusion Under the previous hypotheses,

(X1 + ......+Xn, Z1 + ......+ Zn) → σ(n)(X,Z) .

Now (X,Z) is already close to an independent vector. Then, it will thus be even

more true for σ(n)(X,Z) because the multiplication by σ(n) modulo 1 makes
uniform the distribution as soon as σ(n) is enough big.
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In conclusion, the fact that (X, Z) is already almost independent shows the
rate of the convergence of the XORLT.

7.3.1 Example using datas of this paper

In section 5.3.3 of [16] we have studied an example using the datas G(j) and
H(j) defined in section 11. We note that the estimated density are close to the
normal or uniform density.

As a matter of fact, we studied numerically various examples using data of
the type ”text”, ”computer programs”, ”mathematical reports”, etc., we always
found that X1 +X2 + ....+Xn has asymptotically the uniform distribution.

We obtained results similar in several dimensions: for the data used in this re-
port, we always found that (X1,1 +X2,1 + ....+Xn,1, X1,2 +X2,2 + ....+Xn,2)
has asymptotically the uniform distribution on [0, 1]p for p=2. We obtained
similar results for p=3,4,5,6.

7.3.2 Other theoretical study

One can confirm that it is more practical to use the XORLT than the CLT by
another theoretical study : one can compare the the conditional densities of the
sequences G(j) and H(j) (cf section 11.1.1). Indeed, in corollary 5.6.2 of [18] we
have proved the following result.

Proposition 7.3.1 Let f∗g2,g3,..(g/(mS)) be the conditional density of Gi/(mS) =
g/(mS) given Gi+js = gs and let f∗h2,h3,..

{h/m} be the conditional density of
Hi/m = h/m given Hi+js = hs.

Let KfG/(Sm)
and KfH/m

be the Lipschitz coefficients associated to f∗g2,g3,..
and f∗h2,h3,..

.

Then, KfH/m
≤ KfG/(Sm)

S .

7.3.3 Numerical study

In [18], we have studied several examples of the rate of convergence de X1 +
X2 + ..... + Xn and X1 +X2 + .....+Xn when Xs ∈ {0, 1, ..., q}. It is true as
soon as, n ≥ 7 or if q is large enough q ≥ 20. For example, in figures 7.1 and
7.2, we obtain curves close to those of the normal or uniform distributions for
non -independent vectors (X1, X2, ....., X8). Then, in [18], we notice that the
graphs are about the ones of a normal distribution or a uniform distribution
except when the probabilities are concentrated near a small number of points :
cf figures 7.3 and 7.4.

We have studied numerically the rate of convergence of the XORLT when
the CLT is satisfied. Then, we assume Y = X1+....+Xn

σ
√
n

∼ N(0, 1). Then,

X1 + ....+Xn = σ
√
nY ∼ N(0, nσ2).
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Figure 7.1: Normal convergence
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Figure 7.2: Uniform convergence
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Figure 7.3: Normal convergence
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Figure 7.4: Uniform convergence
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Here we study the distribution of X1 + ....+Xn when n=10 with the vari-
ances 1/50, 1/200 : cf figure 7.5, 7.6. We understand that we are enough near
of the uniform distribution if σ2 is not too big.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 7.5: n=10, σ2 = 50
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1.8

Figure 7.6: n=10, σ2 = 200

For the data used in the construction of b1(n′) in section 11.2, we can think
that a sum of 10 terms is sufficient so that our hypotheses are satisfied.

7.3.4 Rate of convergence in the XORLT

In this section we understand that, in some cases, the convergence to the uniform
distribution can be very fast.
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Figure 7.7: n=10, σ2 = 200

Notations 7.3.1 Let Xi, i=1,2,...,S, be a sequence of independent random
variables with values in {0, 1, ..., N − 1}. For all s ∈ {1, 2, ..., S}, we set p”sxs

n
=

P{Xs = xsn}.

Hypotheses

We assume that p”ixn
= P”ixn

(ω7) where p”ixn
= (1/N)[1 + riN (vixn

− viN )] and
where vixn

= V ixn
(ω7) is a realization of an IID sequence defined by the following

way.

Hypothesis 7.3.1 For all i ∈ {1, 2, ..., S}, we assume that vixn
is a realiza-

tion of an IID sequence of random variables V ixn
defined on a probability space

(Ω7,A7, P roba7) such that −1 ≤ V ixn
≤ N − 1, E{V ixn

} = 0, and all the V txnt
’s,

t=1,..,S, nt = 1, .., N , are independent.
Then, we set viN = (1/N)

∑
xs
vixs

et V iN = (1/N)
∑
xs
V ixs

.

Then, the following results holds

Lemma 7.3.2 There exists a sequence of random variables 0 < RiN ≤ 1 such

that −1 ≤ RiN (V ixn
− V in) ≤ N − 1 and RiN

P→ 1 as N → ∞.

Proof : One can write −1 − e ≤ V ixn
− V iN ≤ N − 1 + e where e > 0. Then,

one can write −1 ≤ RiN (V ixn
− V iN ) ≤ N − 1 where 0 < RiN ≤ 1. By the CLT,

V iN
P→ 0. Therefore, RiN

P→ 1. �

Then, we can define probabilities.

Proposition 7.3.2 For all xn ∈ F ∗(N), we set P”ixn
= (1/N)[1 + RiN (V ixn

−
V iN )]. Then, 0 ≤ P”ixn

≤ 1 and
∑
xn
P”ixn

= 1
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Proof : We have
∑
xn
P”ixn

=
∑
xn

(1/N) + (RiN/N)
∑
xn

(V ixn
− V iN )] = 1. �

Then, we assume that the following hypothesis holds.

Hypothesis 7.3.2 For all i ∈ {1, 2, ..., S}, we assume that p”ixn
is the realiza-

tion of the sequence of random variables P”ixn
defined over (Ω7,A7, P roba7) by

p”ixn
= P”ixn

(ω7).

Then, we have the rate of convergence of XORLT.

Theorem 7 Assume that, for all s ∈ {1, 2, ..., S}, the variance of V s1 is σ2
Vs

.
Then, with a probability greater than 1 − Γ(b) approximately,

P{X1 + ...+XS = y} =
1

N

[
1 +

b.Ob(1)σV1
....σVS√

NS−1

]
.

Remark 7.3.3 If P ix has a distribution similar to that of P ix =
P ′i

x
PN

t=1 P
′i
t

when

P ′i
x has the uniform distribution, then σ2

Vr
= O(1). For example, one can choose

σ2
Vr

≤ 1.

Proof of theorem 7

At first, the following proposition holds.

Lemma 7.3.4 The following equality holds :

P{X1 + ...+XS = y} = 1
N +

r1N .....r
S
N

NS

∑
x1+...+xS=y(v

1
x1

− v1
N )........(vSxS

− vSN ).

Proof At first, P{X1 +X2 + ....+XS = y} =
∑
x1+...+xS=y p”

1
x1
......p”SxS

=

(1/NS)
∑
x1+...+xS=y[1 + r1N (v1

x1
− v1

N )].......[1 + rSN (vSx1
− vSN )].

Now, [1 + r1N (v1
x1

− v1
N )].......[1 + rSN (vSxS

− vSN )]

= 1 +
[
r1N (v1

x1
− v1

N ) + .....+ rSN (vSxn
− vSN )

]

+.............................................................................
+

∑
i1<i2<....<iq

ri1N (vi1xi1
− vi1N )ri2N (vi2xi2

− vi2N )........r
iq
N (v

iq
xiq

− v
iq
N )

+.............................................................................
+r1N (v1

x1
− v1

N )r2N (v2
x2

− v2
N ).........................rSN (vSxS

− vSN ).

We deduce the proposition by using the following lemma (7.3.5). �

Lemma 7.3.5 Suppose q < S. Then,∑
x1+....+xS=y

[∑
i1<i2<....<iq

ri1N (vi1xi1
− vi1N )........r

iq
N (v

iq
xiq

− v
iq
N )

]
= 0.
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Proof We have∑
x1+....+xS=y

[∑
i1<i2<....<iq

ri1N (vi1xi1
− vi1N )........r

iq
N (v

iq
xiq

− v
iq
N )

]
= 0

=
∑
i1<i2<....<iq

[∑
x1+....+xS=y r

i1
N (vi1xi1

− vi1N )........r
iq
N (v

iq
xiq

− v
iq
N )

]
.

For example, if iq < S,∑
x1+....+xS=y(v

i1
xi1

− vi1N )........(v
iq
xiq

− v
iq
N )

=
∑
xi1

∑
xi2

....
∑
xiS−1

∑
xS=y−x1+....−xS−1

(vi1xi1
− vi1N )........(v

iq
xiq

− v
iq
N )

=
∑
xi1

∑
xi2

....
∑
xiS−1

(vi1xi1
− vi1N )........(v

iq
xiq

− v
iq
N )

=
∑[ [ ∑

xi1
(vi1xi1

− vi1N )
]
......

[ ∑
xiq

(v
iq
xiq

− v
iq
N )

] ]

= 0 because
∑
xi1

vi1xi1
= Nvi1N . �

Proposition 7.3.3 Under the hypothesis 7.3.1,

P

xi1
+....+xiS

=y V
1

xi1
V 2

xi2
....V S

xiS

N(S−1)/2

has asymptotically a distribution N(0, σ2
V1
......σ2

VS
).

Proof We apply theorem 3 with Xts = V 1
i1
....V S−1

iS−1
V S
y−i1−.....−iS−1

and

n = NS−1.

The first relation of theorem 3 is obvious. For example, if S=3, this relation is
equivalent to the convergence of (1/N4)

∑
r 6=s

[
E{(Xs)

2(Xr)
2}−E{(Xs)

2}E{(Xr)
2}

]
,

which is equivalent to the convergence of∣∣∣ P

(i,j)6=(i′,j′)

[
E{(V 1

i V
2

j V
3

y−i−j
)2(V 1

i′V
2

j′V
3

y−i′−j′
)2}−E{(V 1

i V
2

j V
3

y−i−j
)2}E{(V 1

i′V
2

j′V
3

y−i′−j′
)2}

]∣∣∣
N4 .

Now, in order that E{(V 1
i V

2
j V

3
y−i−j)

2(V 1
i′V

2
j′V

3
y−i′−j′)

2} 6= E{(V 1
i V

2
j V

3
y−i−j)

2}
E{(V 1

i′V
2
j′V

3
y−i′−j′)

2}, it is necessary that i = i′ or j = j′. Therefore, at the

maximum, there is 2N3 such V 1
i V

2
j V

3
y−i−jV

1
i′V

2
j′V

3
y−i′−j′ . Then, there exists a

constant C2
3 such that

2C2
3

N is greater than∣∣∣ P

(i,j)6=(i′,j′)

[
E{(V 1

i V
2

j V
3

y−i−j
)2(V 1

i′V
2

j′V
3

y−i′−j′
)2}−E{(V 1

i V
2

j V
3

y−i−j
)2}E{(V 1

i′V
2

j′V
3

y−i′−j′
)2}

]∣∣∣
N4 .

Now we study the condition p!

P

t1<t2<.....<tp
E{Xt1Xt2 ......Xtp}

(NS−1)p/2 → (N2)
pµp .

First, assume S=2 : in this case, Xt1 = V 1
x1

n
V 2
y−x1

n

. Then, E{Xt1 .....Xtp} =

E{V 1
x1

n1

V 2
y−x1

n1

.....V 1
x1

np
V 2
y−x1

np

} = E{V 1
x1

n1

}..........E{V 1
x1

np
}E{V 2

y−x1
n1

.....V 2
y−x1

np

} =

0 because the x1
n are all dissimilar.
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Assume S=3 : in this case, Xt1 = V 1
x1

n1

V 2
x2

n2

V 3
y−x1

n1
−x2

n2

. Then, one can write

E{Xt1Xt2 ......Xtp}

= E{V 1
xn1

.....V 1
xnp

}E{V 2
x′

n1
.......V 2

x′
np
}E{V 3

y−xn1−x′
n1

........V 3
y−xnp−x′

np

} .

If p=2, E{Xt1Xt2} = E{V 1
xn1

V 1
xn2

}E{V 2
x′

n1
V 2
x′

n2
}E{V 3

y−xn1
−x′

n1

V 3
y−xnp−x′

np

}. Be-

cause t1 < t2, xn1 6= xn2 or x′n1
6= x′n2

. Then, E{Xt1Xt2} = 0. If p=3, we have
the same conclusion.

If p=4,
E{Xt1Xt2Xt3Xt4}

= E{V 1
xn1

V 1
xn2

V 1
xn3

V 1
xn4

}E{V 2
x′

n1
V 2
x′

n2
V 2
x′

n3
V 2
x′

n4
}

E{V 3
y−xn1−x′

n1

V 3
y−xn2−x′

n2

V 3
y−xn3−x′

n3

V 3
y−xn4−x′

n4

} .

In order that E{Xt1Xt2Xt3Xt4} 6= 0, it is necessary that, for example, xn1
=

xn2
, xn3

= xn4
, x′n1

= x′n3
and x′n2

= x′n4
. Then, we assume that these relations

hold.
Then, in order that

E{V 1
xn1

V 1
xn2

V 1
xn3

V 1
xn4

}E{V 2
x′

n1
V 2
x′

n2
V 2
x′

n3
V 2
x′

n4
}

E{V 3
y−xn1

−x′
n1

V 3
y−xn2

−x′
n2

V 3
y−xn3

−x′
n3

V 3
y−xn4

−x′
n4

} 6= 0 ,

it is necessary that
OR y − xn1

− x′n1
= y − xn2

− x′n2
and y − xn3

− x′n3
= y − xn4

− x′n4
.

Therefore, x′n1
= x′n2

. Then,Xt1 = V 1
xn1

V 2
x′

n1
V 3
y−xn1

−x′
n1

= V 1
xn2

V 2
x′

n2
V 3
y−xn2

−x′
n2

=

Xt2 : it is impossible.

OR y − xn1
− x′n1

= y − xn3
− x′n3

and y − xn2
− x′n2

= y − xn4
− x′n4

.
Then, xn1 = xn3 : it is impossible.

OR y − xn1
− x′n1

= y − xn4
− x′n4

and y − xn2
− x′n2

= y − xn3
− x′n3

.
Then, xn1

+x′n1
≡ xn3

+x′n2
and xn1

+x′n2
≡ xn3

+x′n1
. Therefore, 2(x′n1

−x′n2
) ≡

0 and 2(xn1
− xn3

) ≡ 0. If N is odd, it is impossible.
If N is even, x′n1

− x′n2
= δ1(N/2) and xn1 − xn3 = δ2(N/2) where δs = 0, -

1 or 1. Therefore, there are
C′

0N
4

N2 possible variables Xt1 = V 1
xn1

V 2
x′

n1
V 3
y−xn1−x′

n1

,

Xt2 = V 1
xn2

V 2
x′

n2
V 3
y−xn2

−x′
n2

,Xt3 = V 1
xn3

V 2
x′

n3
V 3
y−xn3

−x′
n3

,Xt4 = V 1
xn4

V 2
x′

n4
V 3
y−xn4

−x′
n4

such that E{Xt1Xt2Xt3Xt4} 6= 0. Therefore,
∑
t1<t2<t3<t4

E{Xt1Xt2Xt3Xt4}
(N2)2

<
C ′

0N
2

N4
→ 0 .
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One prove the general case by the same way.

Then all conditions of theorem 3 hold. Then,
Pn0

i=1Xn√
N

D→ N(0, σ2
V1
....σ2

VS
) be-

cause E
{
X2
tr

}
= E

{(
V 1
x1

nr
V 2
x2

nr
...V S−1

xS−1
nr

V S
y−x1

nr
−...−xS−1

nr

)2}
=

∏S
r=1 E

{
(V r1 )2

}
.

�

Now, one can assume that
∑
xs

n
vsxs

n
= 0.

Lemma 7.3.6 Assume that the assumptions of proposition 7.3.3 hold. Then,

1√
NS−1

∑

x1
n,x

2
n,.....,x

S−1
n

[ S−1∏

t=1

RtN (V txt
n
− V tN )

]
RSN (V S

y−x1
n−....−xS−1

n

− V SN )

has asymptotically the distribution N(0, σ2
V1
....σ2

VS
).

Proof Assume S=2. Then,

1√
N

∑

x1
n

R1
N (V 1

x1
n
− V 1

N )R2
N (V 2

y−x1
n

− V 2
N )

=
R1
NR

2
N√

N

∑

x1
n

V 1
x1

n
[V 2
y−x1

n

− V 2
N ] − R1

NR
2
NV

1
N√

N

∑

x2
n

[V 2
x2

n
− V 2

N ]

=
R1
NR

2
N√

N

∑

x1
n

V 1
x1

n
[V 2
y−x1

n

− V 2
N ]

=
R1
NR

2
N√

N

∑

x1
n

V 1
x1

n
V 2
y−x1

n

− R1
NR

2
N√

N
V 2
N

∑

x1
n

V 1
x1

n
,

where
R1

NR
2
N√

N

∑
x1

n
V 1
x1

n
V 2
y−x1

n

and 1√
N

∑
x1

n
V 1
x1

n
have asymptotically a normal dis-

tribution (cf proposition 7.3.3). Moreover, V 2
N converges in probability to 0.

Then, 1√
N

∑
x1

n
R1
N (V 1

x1
n
− V 1

N )R2
N (V 2

y−x1
n

− V 2
N ) has asymptotically the dis-

tribution N(0, σ2
V1
σ2
V2

).

In the general case, we prove this proposition by the same way . �

Proof 7.3.7 Now we prove theorem 7
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By proposition 7.3.6,

R1
N .....R

S
N

∑
x1+...+xS=y(V

1
x1

− V 1
N )........(V SxS

− V SN )
√
NS−1

has asymptotically the distributionN(0, σ2
V1
......σ2

VS
). We deduce (cf proposition

7.3.4) that, with a probability greater than 1 − Γ(b) approximately,

ri1N .....r
iS
N

∑
x1+...+xS=y(v

1
x1

− v1
N )........(vSxS

− vSN )

NS
=
b.Ob(1)σV1

......σVS√
NS+1

. �

Problem in some cases

Theorem 7 is only a mathematical theorem with a measure on the set of the
probabilities chosen a priori. This measure is not thus inevitably adapted to
certain assumptions.

It is not difficult to understand that theorem 7 has absurd consequences in
the case of continuous density : cf pages 118-121 of [18].

To avoid this problem, one can transform the random variables : for example
one can multiply each Xt by a suitably chosen number αt modulo 1: X ′

t = αtXt.
For example, one can transform some lines by various Fibonacci congruences or
various Fibonacci functions Tq : cf [18] pages 118-121.

As a matter of fact, the multiplication by αt modulo 1 defines a permutation
if αt is suitably selected. But in this case, one has again the problem of the
choice of the permutations: the permutations too simple are not appropriate.
Is this case here? This problem is not so simple. On the one hand, Knuth ([1])
explains why one cannot use permutations built by algorithm (cf also section
2.1.1). On the other hand, one understands in chapter 6 that the multiplication
corresponding to a Fibonacci congruence is a good permutation.

Now a simpler solution is to use transformation which have the same char-
acteristic as a permutation really random. It is what we do in section 12.

7.3.5 Limit theorems for conditional probabilities

Here, we study G(j) =
∑S
i=1 F (i, j) where the rows F (i,.) are independent : cf

section 11. In that case, the distribution of the sums admitting for probabilities
the conditional probabilities is that one of a sum of independent variables.

Proposition 7.3.4 Let Xi,j , i=1,...,I, j=1,...,p, be a sequence of random vari-
ables. We assume that the rows Xi,. ∈ F (m)p are independent. Then,

P
n

X1,1 + .... + XI,1 ∈ Bo
˛

˛

˛
X1,2 + .... + XI,2 = y2, ..., X1,p + .... + XI,p = yp

o

=
X

xi,j :∀j,x1,j+...+xI,j=yj

η′
{xi,j}

P
n

X1,1 + ... + XI,1 ∈ Bo
˛

˛

˛
Xi,j = xi,j , i = 1, .., I, j = 2, .., p

o

,

where
∑
xi,j :∀j,x1,j+...+xI,j=yj

η′{xi,j} = 1.
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The proof is section 5.7 of [18]. These results show that, in many cases,
P

{
X1,1 + ....+XI,1 ∈ Bo

∣∣X1,2 + ....+XI,2 = y2, ...,X1,p + ....+XI,p = yp
}
→

L(Bo). In particular, results obtained in section 7.3.1 show that this limit is
checked for all the data used to build the random sequences b1(n′).
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Chapter 8

Empirical Theorems

8.1 Empirical Theorems

8.1.1 First theorems

In this section, we use the following notations (cf also property 6.3.3 ).

Notations 8.1.1 Let X0
n ∈ F (m), n ∈ N

∗ be a sequence of random variables
defined on a probability space (Ω,A, P ).

Let js , s=1,2,...,p, js ∈ Z, be an injective sequence such that j1 = 0. Let
d0 =

∣∣min(js|s = 1, 2, .., p)
∣∣. Then, we set Xn = X0

n+d0
.

Notations 8.1.2 Let Bo = Bo1 ⊗ Bo2 ⊗ .... ⊗ Bop ⊂ F (m)p be a Borel set

where L(Bos) ≤ 1/2 for s=1,...,p. We set Ln = E
{

1Bo(Xn)
}

and LN (Bo) =

(1/N)
∑N
n=1 Ln where 1Bo(Xn) = 1Bo1(Xn+j1)1Bo2(Xn+j2)....1Bop

(Xn+jp).

Hypothesis 8.1.1 One supposes that, for all p ∈ N
∗, for all Borel set Bo ⊂

F (m)p, for all injective sequence js, for all n ∈ N
∗,

E
{
1Bo(Xn)

}
= L(Bo) +Ob(1)L(Bo)ǫpBo ,

where ǫpBo = 2
√

[Log(n0)+q]p32q

m =
√

e0p32q

m << 1.

Notations 8.1.3 We set σ2
1 = (1/N)E

{[∑N
n=1

(
1Bo(Xn)−Ln

)]2}
. Moreover,

if Xn is IID, we write σ2
B instead of σ2

1 .

For example, if p=1, σ2
B = L(Bo)[1 − L(Bo)].

Now, we can expound the first empirical theorem.

Theorem 8 Let β1,p =
√
N [LN (Bo)−L(Bo)]

σB
and γ′1,p =

NǫpBo

2A(p)

[
23/2 + 2L(Bo)

]

where A(p) = 1 − (p2 − p+ 1)2−p.
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Let Pe = 1
N

∑N
n=1 1Bo(Xn). Then, the following inequality holds

P

{
√
N

∣∣Pe − L(Bo)
∣∣ ≥ σBx

}
≤ K1

(1 − β1,p/x

1 + γ′1,p
x
)
,

where K1(x) = P
{√

N |Pe−LN (Bo)|
σ1

≥ x
}

.

Remark that if Pe is asymptotically normal,
√
N [Pe−LN (Bo)]

σ1
has asymptoti-

cally the distribution N(0,1).

Now, one can also obtain similar results to theorem 8 if one replaces hypoth-
esis 8.1.1 by the following way.

Hypothesis 8.1.2 Let ǫ > 0. One supposes that, for all Borel set Bo ⊂ F (m),
for all p ∈ N

∗, for all sequence js, for all x2, ....., xp, for all n ∈ N
∗, such that

n > d0,

P
{
X0
n ∈ Bo

∣∣X0
n+j2 = x2, ....., Xn+jp = xp

}
= L(Bo) +Ob(1)ǫ .

Then, one obtains results similar to theorem 8. These results can be specified
when Xn is asymptotically independent. In this case, one uses increases of
∑
dMaxn∈N∗

∣∣∣E
{(

1Bo(Xn) − Ln
)(

1Bo(Xn+d) − Ln+d

)}∣∣∣ : cf chapter 8 of [18].

For example, if Xn is q-dependent the following theorem holds.

Theorem 9 We suppose that Xn is q-dependent. We set ǫp = (1/2+ǫ)p−(1/2)p

and

γ1,p =
1

2A(p)L(Bo)

[
(p2 − p+ 1)

(
ǫp + 2qǫ2p + (1 + 2q)

[
21−pǫp + ǫ2p

])]
.

Then, P

{
√
N

∣∣Pe − L(Bo)
∣∣ ≥ σBx

}
≤ K1

(1 − β1,p/x

1 + γ1,p
x
)
,

On the other hand, results similar can be obtained for empirical conditional
probabilities : cf theorems 8 and 10 of [18].

Theorem 10 We suppose that Xn is q-dependent. We assume that the hypoth-
esis 8.1.2 holds and that the assumptions of theorem 8 of [18] holds.

We set pe = (1/N)
∑N
n=1 1Bo2(Xn+j2)....1Bop(Xn+jp). Then, if N is great

enough, there exists K2 ≈ Γ such that

P

{
√
N

∣∣∣∣∣
Pe
pe

− L(Bo1)

∣∣∣∣∣ > σcp x

}
≤ K2

(1 − β2,p/x

1 + γ2,p
x
)

where β2,p ≈ 0 and γ2,p ≈ 0 if ǫ is small enough and where σ2
cp = N.E

{[
Pe−L(Bo1)pe

L(Bo2)...L(Bop)

]}

when Xn is IID.
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8.1.2 Applications

Now we study how one can apply the previous theorems. We are interested
by the sequence of random bits b1(n′) built in section 11.2 : we assume that
B1(n′), n’=1,....,N’, is a sequence of random bits satisfying

P
{
B1(n′) = b

∣∣ B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
= 1/2 +

Ob(1)α√
N ′

.

Now, the sequence C(j) defined in section 11.2 is Qd-dependent with Qd=22.
Then, B1(n′) is also Q’-dependent. Moreover,
1) ǫp = (1/2 + ǫ)p − (1/2)p ≈ pǫ

2p−1 = 2pǫ
2p ,

2) β1,p ≤
√
N ′ǫp√

A(p)L(Bo)
≈ 2pα

A(p)1/22p/2 ,

3) γ1,p ≈ (p2−p+1)α

2A(p)
√
N ′

[
2p+ (1+4Q′)4p

2p

]
.

We want that B1(n′) behaves like an IID sequence. Thus, we use theorem

8 for Q’-dependent sequences and we increase P
{√

N |Pe−L(Bo)|
σB

≥ x
}

. Let H1

be the hypothesis ”B1(n′) defined in section 11.2 satisfies theorem 8”. Un-
der the assumptions IID and H1, one has the following tables of increases of

P
{√

N
∣∣Pe − L(Bo)

∣∣ ≥ σBx
}

regarded as function of (x,p).

(x,p) (1,1) (1,2) (1,3) (1,4) (1,5) (1,10) (1,15) (1,20)
Under IID 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317
Under H1 0.334 0.359 0.356 0.357 0.346 0.340 0.361 0.380

(x,p) (2,1) (2,2) .(2,3) (2,4) (2,5) (2,10) (2,15) (2,20)
Under IID 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
Under H1 0.049 0.052 0.051 0.052 0.053 0.050 0.061 0.073

Similar results are obtained for theorem 10 : cf section 9.5.2 of [18] .

8.1.3 Proof of theorem 8

At first, one can prove the following lemma.

Lemma 8.1.1 For all n, we set H(n) =
{
m ∈ N

∗∣∣∃(e, e′) : Xn+j(e) = Xm+j(e′)

}

and H∗(n) =
{
m ∈ N

∗∣∣∃(e, e′) : Xn+j(e) = Xm+j(e′), m 6= n
}
. Then,

card
(
H(n)

)
≤ p2 − p+ 1.

Lemma 8.1.2 The following inequalities hold : σ2
B ≥ A(p)L(Bo) ≥ L(Bo)/8.
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Proof One can write

σ2
B = (1/N)

N∑

n=1

∑

m∈H(n)

(
E

{
1Bo(X

′
n)1Bo(X

′
m)

}
− L(Bo)2

)

= (1/N)
N∑

n=1

(
E

{
1Bo(X

′
n)

}
+

∑

m∈H∗(n)

E
{
1Bo(X

′
n)1Bo(X

′
m)

}
−

∑

m∈H(n)

L(Bo)2
)

≥ (1/N)
N∑

n=1

(
E

{
1Bo(X

′
n)

}
−(p2−p+1)L(Bo)2

)
= L(Bo)

(
1−(p2−p+1)L(Bo)

)
.

Now, (p2 − p+ 1)L(Bo) ≤ (p2 − p+ 1)2−p. Moreover,

d(p2 − p+ 1)2−p

dp
= (2p− 1)2−p − Log(2)(p2 − p+ 1)2−p

which has the roots p1 ≈ 0.7888 and p2 ≈ 3.5423

Therefore, (p2 − p+ 1)2−p decreases and converges to 0 if p ≥ 4. Moreover,
(p2 − p + 1)2−p = 3/4 if p=2, 7/8 if p=3, 13/16 if p=4, 21/32 if p=5. Then,
(p2 − p+ 1)L(Bo) ≤ 7/8 . �

Lemma 8.1.3 If m /∈ H(n), E
{
1Bo(Xn)1Bo(Xm)

}
= L(Bo)2 +Ob(1)ǫ3, where

ǫ3 = L(Bo)2
√

e0(2p)32q

m = L(Bo)223/2ǫpBo.

If m ∈ H(n), E
{
1Bo(Xn)1Bo(Xm)

}
= E

{
1Bo(X

′
n)1Bo(X

′
m)

}
+ Ob(1)ǫ4,

where X ′
n is an IID sequence and where ǫ4 = L(Bo)ǫ2pBo = L(Bo)23/2ǫpBo.

Proof If m /∈ H(n), by notation 8.1.1,

E
{
1Bo(Xn)1Bo(Xm)

}
= L(Bo⊗Bo) + L(Bo⊗Bo)

√
e0(2p)32q

m
.

Assume m ∈ H(n). Clearly if n=m or if p=1, equation holds by notation
8.1.1.

Suppose p ≥ 2 and n 6= m. One can assume n < m. Then, there exists
a sequence is, s=1,...,p’, p′ < 2p, and a sequence of Borel sets Bo′s, s=1,...,p’,
such that L(Bo′s) ≤ 1/2 and

1Bo(Xn)1Bo(Xm)

= 1Bo1(Xn)1Bo2(Xn+j2).....1Bop
(Xn+jp)1Bo1(Xm)1Bo2(Xm+j2).....1Bop

(Xn+jp)

= 1Bo′1(Xn)1Bo′2(Xn+i2).......1Bo′p′ (Xn+ip′ ) . (8.1)
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Clearly p ≤ p′ < 2p. Then,

E
{
1Bo(Xn)1Bo(Xm)

}
= E

{
1Bo(X

′
n)1Bo(X

′
m)

}
+ L(Bo)θ

√
e0(p′)32q

m
,

where 0 ≤ θ ≤ 1. �

Lemma 8.1.4 The following equality holds : LnLm = L(Bo)2+Ob(1)ǫ5, where
ǫ5 ≈ 2Ob(1)L(Bo)2ǫpBo.

Proof We have Ln = L(Bo) +Ob(1)L(Bo)ǫpBo. Then,

LnLm =
[
L(Bo) +Ob(1)L(Bo)ǫpBo

][
L(Bo) +Ob(1)L(Bo)ǫpBo

]

= L(Bo)2 + 2L(Bo)2Ob(1)ǫpBo +Ob(1)L(Bo)2(ǫpBo)
2

≈ L(Bo)2
[
1 + 2Ob(1)

√
e0p32q

m

]
. �

Lemma 8.1.5 The following equality holds

σ2
1 = σ2

B

[
1 +Ob(1)2γ′1,p

]
.

Proof Let X ′
n be an IID sequence with uniform distribution. Then,

σ2
1 = (1/N)E

{[ N∑

n=1

(
1Bo(Xn) − Ln

)]2}

= (1/N)E
{ N∑

n=1

N∑

m=1

(
1Bo(Xn) − Ln

)(
1Bo(Xm) − Lm

)}

= (1/N)E
{ N∑

n=1

∑

m∈H(n)

(
1Bo(Xn)1Bo(Xm) − LnLm

)}

+(1/N)E
{ N∑

n=1

∑

m/∈H(n)

(
1Bo(Xn)1Bo(Xm) − LnLm

)}

≈ (1/N)E
{ N∑

n=1

∑

m∈H(n)

(
1Bo(X

′
n)1Bo(X

′
m) +Ob(1)ǫ4 − L(Bo)2 +Ob(1)ǫ5

)}
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+(1/N)E
{ N∑

n=1

∑

m/∈H(n)

(
L(Bo)2 +Ob(1)ǫ3 − L(Bo)2 +Ob(1)ǫ5

)}

= σ2
B + (1/N)E

{ N∑

n=1

∑

m∈H(n)

Ob(1)ǫ4
}

+(1/N)E
{ N∑

n=1

∑

m/∈H(n)

Ob(1)ǫ3
}

+ (1/N)E
{ N∑

n=1

∑

m

Ob(1)ǫ5
}

= σ2
B + (1/N)

N∑

n=1

∑

m∈H(n)

Ob(1)23/2L(Bo)ǫpBo

+(1/N)
N∑

n=1

∑

m/∈H(n)

Ob(1)23/2L(Bo)2ǫpBo

+(1/N)
N∑

n=1

∑

m

Ob(1)2L(Bo)2ǫpBo

= σ2
B + (1/N)

N∑

n=1

∑

m∈H(n)

Ob(1)23/2L(Bo)ǫpBo

+(1/N)

N∑

n=1

∑

m/∈H(n)

Ob(1)23/2L(Bo)ǫpBo

+(1/N)

N∑

n=1

∑

m

Ob(1)2L(Bo)2ǫpBo

= σ2
B +NOb(1)23/2L(Bo)ǫpBo + 2NOb(1)L(Bo)2ǫpBo

= σ2
B + 2A(p)L(Bo)

Ob(1)

2A(p)L(Bo)

[
23/2NL(Bo)ǫpBo + 2NL(Bo)2ǫpBo

]
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= σ2
B + 2A(p)L(Bo)

Ob(1)NǫpBo
2A(p)

[
23/2 + 2L(Bo)

]

= σ2
B

[
1 +Ob(1)2γ′1,pA(p)L(Bo)/σ2

B

]
= σ2

B

[
1 +Ob(1)2γ′1,p

]

(by lemma 8.1.2). �

Now, one proves the following lemma by basic method : cf lemma 9.2.9 of
[18]

Lemma 8.1.6 The following inequality holds :

σ1 ≤ (1 + γ1,p)σB .

Proof 8.1.7 We prove now the theorem 8

The following inequalities hold.

P

{∣∣∣∣∣
√
N

[
Pe − L(Bo)

∣∣∣∣∣ > σBx

}

≤ P

{∣∣∣∣∣
√
N

[
Pe − LN (Bo)

]
∣∣∣∣∣ > σBx−

√
N |LN − L(Bo)|

}

≤ P

{∣∣∣∣∣
√
N

[
Pe − LN (Bo)

]
∣∣∣∣∣ > σBx[1 − β1,p/x]

}

≤ P

{∣∣∣∣∣
√
N

[
Pe − LN (Bo)

]
∣∣∣∣∣ >

1 − β1,p/x

1 + γ”1,p
σ1x

}

= K1

(1 − β1,p/x

1 + γ”1,p
x
)
. �

86



Chapter 9

Study of some files

9.1 Introduction

In this chapter, we study the data resulting from certain electronic files, espe-
cially from texts. By a study of these data based on logic, we will understand
that one will be able to conclude that they behave like asymptotically indepen-
dent sequences (and even Qd-dependent sequences).

In this section, we use a sequence yn which one can regard as a realization
of a sequence of random variables : yn = Yn(ω) for all n=1,...,N .

We do not impose that the Yn are independent or identically distributed.
But it can be useful that the CLT is satisfied.

9.2 Existence of satisfactory datas

9.2.1 Definition

At first, we had to know when a sequence yn can be regarded as a realization
of a sequence of really random variables : yn = Yn(ω) for all i=1,...,N .

First, any sequences of reals numbers can be regarded as a realization of a
sequence of random variable of a certain type (completely deterministic, IID,
etc) : this sequence of random variable is the model. But this model is correct
with a some probability.

Then, to suppose ”yn = Yn(ω)” is a traditional scientific assumption if the yn
represents a physical phenomenon. One wants thus to show in an unquestionable
way that it is also the case when yn is resulting from certain electronic files

As a matter of fact a such sequence is simply a not-determinist sequence :
that is to say, a sequence such that it is impossible to predicte fully yn+p, when,
one knows y1, y2, ......, yn.
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Now, if we want that the CLT holds, we impose that there is an asymptotic
independence. Of course, a such sequence is non-determinist.

9.2.2 Objections

But is what such sequences yn exist? It is a physical question. It is also a
philosophical question. As a matter of fact, some people claimed that there
does not exist finite random sequences : e.g. cf [1] page 167.

It is due partly so that any sample of a sequence of random variables can be
regarded as fully determinist. Indeed the following proposition is obvious.

Proposition 9.2.1 Let xn, n=1,...,N, a sequence of real numbers. Then, there
exists a function g : {1, 2, ..., N} → R such that for all n ∈ N, xn = g(n).

Moreover, there exists p and a function g : R
p → R such that for all

n ∈ {1, 2, ..., N − p}, xn+p = f(xn, xn+1, ..., xn−p+1).

Moreover, some philosophies claim that all is fixed. For example, meteorol-
ogy would be fully determined by all data of earth (all temperatures in all point
of earth, all the atmospheric pressures, etc).

In the same way, actions of the men would be fully determined by the con-
text in which they live and by the cells of their brains. Then, a book is fully
determined before his writing by theses events.

Of course, that involves problems : for example, the quantum theory is re-
jected. In order to reject this theory, one can call upon various reasons: 1) it is
valid only for the infinitely small. 2) It is only a theory 3) It involves inadmis-
sible contradictions for some people (Schrodinger cat).

But, all theses objections are false. In order to prove that, we use a coun-
terexample : one can exhib a finite unpredictable sequence.

9.2.3 A finite random sequence

Let P(x) = (x − x1)(x − x2)....(x − x2N ) where 0 ≤ x1 < x2 < .... < x2N < 1,
xj+1 − xj ≥ 1/4N for j=1,2,...,2N-1. Let z1, z2, ......, zN be a pseudo-random
sequence with values in [0,1] obtainded by a good pseudo-random generator.
Let yi = P (zi) for i=1,2,....,N.

Then, it is no possible to predict yn+p , n ≤ n + p ≤ N if one knows only
y1, y2, ......, yn .

Indeed, even if one knew z1, z2, ......, zn+p, it would not possible because any
polynomial Q such that deg(Q) = 2N and ys = Q(zs) for s=1,2,...,n is a correct
prediction of P. Then, all y∗n+p = Q(zn+p) is a correct prediction of yn+p.

Now there exists an infinite number of possible polynomials Q.
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Then, it is no possible to predict yn+p even if one knew the sequence zn and
if one had an infinite computing power (cf example 9.2.1 of [18]).

Now there is no reasons that the Y ′
ns have the same distribution, (yn =

Yn(ω)). But is is not important because the philosophical objections are that
the sequence is not independent.

Anyway, one can build a sequence y′n where the Y ′
ns have the uniform dis-

tribution : one uses y′n = F−1(yn) , where F is the distribution function of
P(X) when X has the uniform distribution: F−1(P (X)) has also the uniform
distribution.

There is another reason that it no possible to predict yn+p . In order to
estimate P, it would be necessary to compute all the polynomial correlation
coefficient of order smaller than 2N (cf [10]) .

It would thus be necessary to calculate the empirical orthogonal polynomials
PNj of order J smaller than 2N associated with z1, z2, ......, zN . However PNj ≡ 0
if j > N : the empirical polynomials of a order larger than the sample size are
impossible to estimate.

Moreover, it is not surprising that yn is unpredictable : indeed P depends on
more parameters than N. As matter of fact, many simple functions using more
than N parameter zn can be appropriate to obtain unpredictable sequence. For
example if yi = Q(k1, k2, ..., kN , k

′
1, k

′
2, ...., k

′
n, zi) .

Indeed, in order to estimate the k′is and the k′i′s, one has to resolve the N
equations : yi = Q(k1, k2, ..., kN , k

′
1, k

′
2, ...., k

′
n, zi) for i=1,2,...,N, that is there

are more parameters than equations.
Then, all sequence y1, y2, ......, yN which depend more parameters than N

may be an unpredictable sequence.

9.2.4 Consequence 1

Then, the sequence yn is random : a sequence whose it is impossible to predict
the future, it is inevitably random. It is even an independent sequence.

Then, the philosophy which affirms that there does not exists finite random
sequences xn , n=1,...,n, does not corresponds to reality : a sequence which one
cannot predict is obligatorily random. To say the opposite is illogical.

9.2.5 Consequence 2

In order to obtain sequences which satisfy concretely some asymptotical inde-
pendence assumptions, we shall use data which depend a priori on a number of
parameters much many larger than the size of sample.
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9.3 Practical example

The sequence b1(n′) which we have built in section 11.2 has been obtained by
using texts. Concretely, one has used, in various languages dictionary, Ency-
clopaedia, Bible, etc. The dictionaries and the encyclopaedias are very good
examples: the definitions which are consecutive in a dictionary generally repre-
sent independent facts : for example ”decibel” is followed by ”decide” in some
dictionaries. The numbers which correspond to them are thus extracted from
independent random sequences.

9.3.1 Use of text

Now, we show that one can prove by logical reasonings that texts are
asymptotically independent. It is an davantage with respect to sequences
furnished by machines for example. Indeed, this asymptotical independence is
proved.

In the majority of the sequences obtained from texts, it is reasonable to
admit asymptotic independence.

1) The writing of a book depend of a very large number of parameters.
Normally, the number of parameters whose the content of the book depend
will be always larger than the sample size of the example. One thus finds the
argumentation introduced in section 9.2.3.

2) When they write a book many authors do not know what they will write
exactly one page later. Concretely they would not predicte exactly what words
he will use 100 words later. It will be even more difficult for letters. Then the
dependence is weaker between more distant lines. That is, there is asymptotical
independence.

3) Of course, it is more difficult to predict the letters used for the people
who are not the author of the book.

4) Let us take the example of a novel. In fact if the beginning of a novel is
known, there is a very great number of possible alternatives for the continuation
of the history. Even for each alternative, there is a very great number of possible
texts.

5) Not only, it quasi-impossible to predict about a text. But it is even more
difficult to envisage the letters used.

6) To predict logically what is written in a book, it should initially be known
that it is written in a certain language. It is not sure that one can arrive at
this conclusion. Thus, one is unable to even currently decipher some languages.
Could one have deciphered the Egyptian hieroglyphs if the Rosetta Stone had
not been written in several languages?

In addition, it has to be known that this text is written with an alphabet
of 26 letters for example. If the same book is written in Chinese, one has an
alphabet much more important. If this book were written in a rational written
form, but not yet invented by men, it would be still other matter. Then, it is
not at all certain that, even with means of infinite calculations, it is possible to
know that the sequences of numbers obtained has a meaning as a text of English
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language.

Then, in most of texts it is very clear that it is many more difficult to
predict what words will used 200 words later than 100 words later. That is,
there is asymptotical independence (for dictionary or encyclopaedia, there is
Qd-dependence).

All these facts mean that logic implies that the files obtained starting from
texts are asymptotically independent. One thus obtains a result concerning the
first step of our method of construction of the random bits b1(n′). That is
logically surer than if one uses random sequences supposed being provided by
machines always subjected to possible dysfunctions: if certain electronic files are
used, there are certain assumptions which can be admitted because of logical
reasoning.

Remark 9.3.1 Of course, we have tested theses conclusions. All tested texts
conclude to asymptotical independence (and even Qd-dependence).

9.3.2 Other data

One can use other datas in order to obtain the sequences of random numbers :
softwares, mathematical texts, musics , etc. Then, it is necessary to study by
logical reasonning each type of files in order to the obtained sequences are fully
proven random.

Moreover, an important thing is that in conclusion, the XORLT holds. How-
ever probably that arrives in much case since it does not require asymptotic
independence.

Moreover, the number obtained in chapter 11 satisfies all these tests of ran-
domness.

One can use several files, for example, a dictionary and a software. Those
are often completely independent from each other. The sequences of numbers
which they provide are thus also independent.

9.3.3 Conclusion

1) For this type of files, one can assume that yn is a realization of a sequence
of random variable Yn : yn = Yn(ω) where ω ∈ Ω and Yn ∈ {0, 1

κ ,
2
κ , .....,

κ−1
κ }

where κ = 32 . Moreover, there is asymptotical independence, and the CLT
holds : often there is Qd-dependence.
2) By using certain files as sources of noises, there are assumptions much surer
than if machines are used.
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Chapter 10

Building of IID sequences :

1

10.1 General method

10.1.1 Choice of data

Notations of data

It is supposed that one has a sequence of data a(j) translated in number: a(j),
j = 1, 2, ...., N3, a(j) ∈ {0, 1, ...,Ka−1}. One supposes that Ka is small enough.
If it is not the case, one can break up the a(j)’s in order to have Ka small enough.

It is supposed that a(j) can be regarded as a sample of a sequence of random
variables A(j) defined over a probability space (Ω,∆, P ) : a(j) = A(j)(ω) where
ω ∈ Ω.

10.1.2 Description of the method

Shortening of the a(j)’s

Let κ ∈ N
∗. We set c(j) = a(j) mod κ.

Comment One chooses κ in order to obtain a sequence c(j) such as, for all
t ∈ {0, 1, ., κ − 1}, P ′

e{C(j) = t} > 0 where P ′
e is the empirical probability

associated with c(1), c(2), ...., c(N3) .

Choice of the parameters

At first, we need the following notation.
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Notations 10.1.1 For all x ≥ 2, we set mF (x) = fin0−1 where fin0−1 ≤ x <
fin0 (fin : cf definition 1.2.3).

Then, one chooses now q1 and r1 ∈ N
∗ such that

1)
√

(n0)2(pm)32q1

m = ǫ1 << 1

2)
2
√

[Log(n0)+q1](n0)32q1
√
m

= ǫ2 << 1

where m = mF (κr1) and n0 = ⌊N3/r1⌋.

Building of the sequence

a) We set d(j) =
∑r1
r=1 c(r1(j − 1) + r)κr−1 for j = 1, 2, ...., n0.

b) We set e1(j) =
⌊
d(j)[m/κr1 ]

⌋
for j = 1, 2, ...., n0.

c) We set e2(j) = e1(j) + rand0(j) mod m for j = 1, 2, ...., n0 where rand0(j) ∈
F ∗(m) is a pseudo-random generator with period m or k4.m, k4 ∈ N

∗.
d) For j = 1, 2, ...., n0, we set e3(j) = Tq1(e

2(j)/m) .

e) Let 2q1e3(j) = bj1, b
j
2.....b

j
q1 , bjs ∈ {0, 1} , the binary writting of 2q1e3(j).

f) We set b′q1j−r+1 = bjr for j = 1, ..., n0, and r = 1, ..., q1 : b′1 = b1q1 , b
′
2 =

b1q1−1,....., b
′
q1 = b11, b

′
q1+1 = b2q1 , b

′
q1+2 = b2q1−1,......

g) The sequence {b′n} is noted b3(n′).

Remark 10.1.1 Step c) is not albsolutely necessary.

Study of data

It is supposed that the sequence d(j) is not fully deterministic. That can be
checked, for example by logical reasonings as for texts : cf section 9.

One checks that Minj,j′∈{1,...,n0}(|d(j)− d(j′)|) is not too small. If not, one
can choose r1 more large.

10.1.3 Properties

Use of proposition 6.3.5

We study a sequence of random variables E3(j) associated to e3(j).
We use proposition 6.3.5 and properties 6.3.3 and 6.3.2, in the probability

space (Ω,A, P roba) with the the uniform distribution M, associated to E3(j)
and defined in hypothesis 6.3.4. Then, for all n, for all p, for all sequence jt, for

all Borel set Bo, with a probability larger than 1 − 2
√

2e−Log(n0)n0/2e−n0q1/2√
3πn0[Log(n0)+q1]

,

∣∣P
{(
E3(j+j1), ...., E

3(j+jp)
)
∈ Bo

}
−L(Bo)

∣∣ ≤ 2
√

[Log(n0) + q1](n0)32q1L(Bo)√
m

(10.1)
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Then, because,
2
√

[Log(n0)+q1](n0)32q1L(Bo)√
m

= ǫ2 << 1, for all the models

E3(j) except for for a very negilgible probability,
∣∣P

{(
E3(j + j1), ...., E

3(j + jp)
)
∈ Bo

}
− L(Bo)

∣∣ ≤ ǫ2L(Bo) .

As a matter of fact, by property 6.3.3, one can even admit that if the pa-
rameters q1 and r1 are well chosen,

∣∣P
{(
E3(j + j1), ...., E

3(j + jp)
)
∈ Bo

}
− L(Bo)

∣∣ ≤ 2
√
ǫ3L(Bo) ,

for all the logical models E3(j) where, for example, one can impose ǫ3 =
[Log(n0)+q1](n0)

32q1

m ≤ 1/10000 : cf section 6.4 (2
√
ǫ3 = ǫ2).

Use of theorem 8

In this case, p ≤ pm = ⌊Log(n0)/Log(2)⌋ is supposed : if not, it doesn’t make
sens. Now, by lemma 8.1.2, σ2

B ≥ A(p)L(Bo). Then, in theorem 8,

β1,p =

√
n0[L

N (Bo) − L(Bo)]

σB
=

√
n0Ob(1)L(Bo)ǫpBo
A(p)L(Bo)

=

√
n0Ob(1)

[
2

√
[Log(n0)+q1](pm)32q1

√
m

]

[
1 − (p2 − p+ 1)2−p

]

≤

[
2

√
[Log(n0)+q1]n0(pm)32q1

√
m

]

[
1 − (p2 − p+ 1)2−p

] ≤ 2
√

[Log(n0) + q1]/n0[
1 − (p2 − p+ 1)2−p

] ǫ1 .

Moreover, γ′1,p =
n0ǫ

pm
Bo

2A(p)

[
23/2 + 2L(Bo)

]
where ǫpm

Bo =
√

e0(pm)32q1

m . Then

γ′1,p ≤
1

2
[
1 − (p2 − p+ 1)2−p

]
√
e0(n0)2(pm)32q1

m

[
23/2 + 2L(Bo)

]

=

√
e0

[
23/2 + 2L(Bo)

]

2
[
1 − (p2 − p+ 1)2−p

] ǫ1 .

Then,

P

{
√
N

∣∣Pe − L(Bo)
∣∣ ≥ σBx

}
≤ K1

(1 − β1,p/x

1 + γ′1,p
x
)
≈ K1

(
θx

)
,
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where K1(x) = P
{√

N |Pe−LN (Bo)|
σ1

≥ x
}

, Pe = 1
N

∑N
j=1 1Bo(Xn) with the no-

tations of theorem 8 when Xj = E3(j) and where θ ≤ 1, θ ≈ 1 if x ≥ 0.1,
β1,p << 1 and γ′1,p << 1.

Then, it is no possible to differentiate e3(j) and b3(n′) of IID sequences : cf
section 2.1.4. For example we have the following tables of Γ

(
θx

)
≈ K1

(
θx

)
if

n0 is large enough for x=1 and x=2.

θ 0.8 0.9 0.95 0.98 0.99 0.995 0.9975 1 (case IID)
Γ(θ) 0.4237 0.3681 0.3421 0.3271 0.3222 0.3197 0.3185 0.3173

θ 0.8 0.9 0.95 0.98 0.99 0.995 0.9975 1 (case IID)
Γ(2θ) 0.1096 0.0719 0.0574 0.0500 0.0477 0.0466 0.0460 0.0455

10.1.4 Example

By using this technique, we have created a real sequence ξn. This sequence can
be asked to rene.blacher@imag.fr. Soon one will be able to obtain it in a website
1.

This sequence consists of the last ξn which one finds in this sequence :
1.444.240 < n ≤ 1.508.040. Its size is 66000 : N = 66000= 1.508.040- 1.444.240.

One obtains the sequence of bits bs by writing in base 2 these ξn in the form

ξn = bn1 .....b
n
50. Then, we denote b4(n′) the bits obtained by joining the bnr .

Then, one has a sequence of N = 66000 ∗ 50 = 3.300.000 bits b4(n′).

In order to obtain b4(n′), we have used a sequence a(j), j = 1, 2, ...., N3

with N3 = 2.000.000 and 1 ≤ a(j) ≤ 256 obtained from texts : dictionary,
encyclopedia, and Bible.

Then, we transform these sequences of letters in numbers. Now, there are
only 26 letters. But it is necessary to add, the capital letters, the ”:” , ”;” , etc.
There will be many of these 256 numbers which will not appear not or little.
Also, we will write these numbers in base κ = 32 so that each number can have
a probability reasonable to appear.

We choose r1 = 20 (3220 ≈ 1.2677 ∗ 1030), n0 = N3/r1 = 105, m =
mF (1.27 ∗ 1030), q1 = 33 (2q1 = 8.5895 ∗ 109 ≈ 1010). Then log(n0) ≈ 11.513,
log(n0) + 33 ≈ 44.5. Then, one obtains a sequence of 3.300.000 bits which one
denotes by b4(n′). Then,

1) We have (n0)
2(pm)32q1

m ≈ 1010(5.Log(10)/Log(2))31010

1030 ≈ (16.62)3

1010 ≈ 4591
1010 ≈

4.6
107 ≈ (ǫ1)2 << 1. Then, ǫ1 ≈

√
0.46
103 ≈ 0.68

103 .

1In order to know if this website is created, type the words ”Rene Blacher random numbers”
in Google for example
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Then, γ′1,pm
≤

√
e0

[
23/2+2L(Bo)

]

2
[
1−(p2−p+1)2−p

] ǫ1 =
2
√

44.5
[
23/2+2L(Bo)

]

2
[
1−(p2−p+1)2−p

] 0.68
103 ≈ 6.68

[
23/2 +

2L(Bo)
]

0.68
103 ≈ 12.845

103 ≈ 0.012.

2) We have β1,pm ≤ 2

√
[Log(n0)+q1]n0(pm)32q

√
m

1−(p2−p+1)2−p ≈ 2ǫ1
√

[Log(n0)+q1]/n0

1 ≈ 1.36
103

√
44.6
105 =

0.000029.

Then, if x ≥ 1, K1

(
1−β1,p/x
1+γ′

1,p
x
)
≈ Γ

(
θx

)
≈ Γ

(
1−0.000029

1+0.011 x
)

= Γ
(
0.98x

)
=

0.3271 if x=1.
Because in the IID case, Γ(x) = 0.3173, it is no possible to differentiate the

sequence E3(j) or B4(n′) from an IID sequence.

Remark 10.1.2 It is not obliged that β1,p and γ′1,p are very small : cf example
11.2. One can thus moderate these conditions. What is sure, it is that under
these assumptions, nothing can distinguish E3(j) or B4(n′) from an IID se-
quence : cf section 2.1.4 .

3) We have (n0)
32q1

m = 10151010

1030 ≈ 1
105 << 1.

Then ǫBo = 2
√

44.5√
105

= 0.0422 = ǫ2 << 1.

Then, for all n, for all p, for all sequence js,

∣∣P
{(
E3(j + j1), ...., E

3(j + jp)
)
∈ Bo

}
− L(Bo)

∣∣ ≤ 0.0422.L(Bo) ,

∣∣P
{(
B′
n+j1 , ...., B

′
n+jp

)
= (b1, ...., bp)

}
− 1

2p
∣∣ ≤ 0.0422

1

2p
.

Then, E3(j) or B4(n′) are very close to IID sequences.

Use of theorem 10

If one uses the other empirical theorems one obtains equivalents results. For ex-
ample, one can assume that D(j) is Q-dependent cf section 10.4.5 of [18]. Then,

one can use theorem 10, i.e. P
{√

N
∣∣∣Pe

pe
− L(Bo1)

∣∣∣ > σcp x
}
≤ K2

(
1−β2,p/x
1+γ2,p

x
)
.

Then, one obtains the following majorations for P
{√

N
∣∣∣Pe

pe
−L(Bo1)

∣∣∣ > σcp x
}

(cf section 11.2.11 of [18]):
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x=1 x=1.5 x=2 x=2.5 x= 3
Under IID assumption p=1 0.317 0.133 0.045 0.012 0.0027
Under Q-dependence p=1 0.322 0.134 0.047 0.011 0.0028

p=3 0.325 0.136 0.048 0.012 0.0029
p=5 0.328 0.137 0.050 0.013 0.0030
p=10 0.3331 0.139 0.052 0.015 0.0032

10.1.5 Continuous case

Now, the relation

∣∣P
{(
E3(j+j1), ...., E

3(j+jp)
)
∈ Bo

}
−L(Bo)

∣∣ ≤ 2
√

[Log(n0) + q1](n0)3L(Bo)√
h0

holds for all model E1(j) except a tiny minority. Moreover all the logical models
are correct cf section 6.4.

As a matter of fact for all the models which we studied we have found
approximations still better than those which we have just understood previously.
It is the case for the models with continuous density.

Let us choose E2(j) as a sequence of random variables which has a continous
density with a Lipschitz coefficient K0 not too big (it is equivalent that D(j)
has a continous density with a Lipschitz coefficient K1 not too big). Then,
the conditional probabilty of E2(j) given E2(j + j2) = e2, E

2(j + j3) = e3,
........,E2(j + jp) = ep has also a Lipschitz coefficient K ′

0 :
˛

˛

˛
P

n

E2(j) = e0 | E2(j + j2) = e2, ...
o

−P
n

E2(j) = e′0 | E2(j + j2) = e2, ...
o˛

˛

˛
≤ K′

0|e
′
0 − e0| .

Now one can apply property 6.3.5 to conditional probabilities. Then, for all
interval I,

P
{
E3(j) ∈ I | E3(j + j2) = e2, ...

}
= L(I)

[
1 +

O(1)K ′
0

N(I)

]
.

It is clear that under this assumption, the approximation with an IID se-
quence is better: there is a denominator in N(I) instead of

√
N(I). One thus

ensures thus approximations better than those obtained by using the hypothesis
6.3.4. For example

P
{
E3(j) ∈ Ik | E3(j + j2) = e2, ...

}
= L(Ik)

[
1 +

O(1)K02
q1

m

]
.

instead of

P
{
E3(j) ∈ Ik | E3(j + j2) = e2, ...

}
= L(Ik)

[
1 +

Ob(1)e′0
√

2q1√
m

]
,

where e′0 = 2
√

[Log(n0) + q1](n0)3.
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Therefore under reasonable hypotheses, we can prove that we have an ap-
proximation of an IID sequence which is better than that defined in the general
case, for example in equation 10.1.

10.1.6 Conclusion

Now, almost all the models D(j) are good models. Moreover all the logical
models are correct. On the other hand, the models with continous densities are
closer to the IID sequences.
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Chapter 11

Building of an IID sequence

: II

11.1 General method

The building studied here must be associated with a model where the data have
a density admitting a coefficient of Lipschitz not too large (it is known that it
is a correct assumption : cf section 6.4.1).

11.1.1 Description of the method

We use again a sequence of data a(j) translated in number: a(j) , j = 1, 2, ...., N3,
as in section 10.1.

Choice of the parameters

a) We choose α ∈ R+ such that α ≤ 0.02 according to the quality of the desired
approximation 1.
b) One choose S=10.
c) One chooses now r0 = r1 and q0 ∈ N

∗ such that :
c-1) q0/r0 is maximum
c-2) mS/2

q0 ≥ 1001,
c-3) mS = mF ([mF (κr0)]3/4) is sufficiently large but not too (cf remark

11.1.7 of [18] )

c-4)
√
q02q0Γ

−1(aS2 ) ≤ 2α
√
S√

N3

√
r0mS , where aS2 = Γ

(
Γ−1(4−q0)

√
⌊mS/2q0⌋
mS/2q0

+ 2q0

mS

)
≈

1/4q0 .

1As a matter of fact, in function of β1,p : cf theorem 8
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First transformation

a) We transform the sequence of data a(j), j = 1, 2, ...., N3, into a sequence of
random bits e2(j) by the same way as in section 10.1.
b) We set e3S(j) = mTm1 (e2S(j)/m1) , 2 where m1 = mF (κr0).

Remark 11.1.1 One can also use e3S(j) = mTm1 (e2S(j)/m1) only for the first
j ∈ {1, 2, ..., ⌊N3/r0⌋} : cf Remarks 11.1.1 and 11.1.2 of [18]. Moreover, one
can also suppress this step : in this case, one sets e3(j) = e2(j).

It is supposed that sequence E3(j) has asymptotic independence. One checks
this asymptotic independence by logical and numerical studies : e.g. cf chapter
9.

Use of the limit theorems

a) Because e3(j) depends on S, we write e3S(j) instead of e3(j).

b) We denote by e4S(t), t = 1, 2, ..........., N2 , N2 = NS ≤ ⌊N3/r0⌋ , a subse-
quence of e3S(j) obtained by suppressing some subsequences e3S(ρu), e

3
S(ρu+su1),

......,e3S(ρu + sun) in order to ensure independence between the lines defined be-
low. If one does not have independent files, this step is not necessary forcing.

c) We set fS(i, n) = e4S(n+N(i− 1)) for i=1,...,S , n = 1,...,N.

d) If i ∈ 2N, we set f1(i, n) = f(i,N − n+ 1) for i=1,...,S, n = 1,...,N 3.

e) We set gS(n) =
∑S
i=1 fS(i, n) mod mS for n = 1,...,N. This corresponds

to use the CLT.

f) We set hS(n) = gS(n) mod mS for n = 1,...,N. This corresponds to use
the XORLT.

Checking of S

a) One checks by numerical calculations that the curve of the

h 7→ P{HS(n) = h | HS(n+ j2) = h2, ...,HS(n+ jp) = hp}
2cf definition of T m

1
: definition 1.2.5

3Indeed, in section 9.3, it was understood that, for some files (e.g. texts),

P
n

F (i, n) = f
˛

˛

˛
F (i, n − j′2) = f2, ...., F (i, n − j′p) = fp

o

→ P{F (i, n) = f}

as j′
2
→ ∞ when j′

1
= 0 < j′

2
< .... < j′p. In order to have the same result for

P{F (i, n) = f |F (i, n + j′2) = f2, ...., F (i, n + j′p) = fp} → P{F (i, n) = f},

we invert the even lines.
Therefore, logically, when one will summon the lines f1(i, n), it is reasonable to think that

it will be difficult to predict
P

i f1(i, n) knowing elements which are passed or future.
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is enough close to that of the uniformity: it is necessary that the condition of
equation 6.3 is satisfied. In general, it is well the case if S= 10.

If it is not the case, one remakes several times the previous operations with
various S > 10. One chooses smallest S ≥ 10 which is appropriate. It is noted
S0.

b) We set h(n) = hS0(n) for n = 1,...,N.

Use of the Fibonacci function

a) Let m = mS0
= fin3+1 and a = fin3

< m where n3 ∈ N. Let Tq0 be the
Fibonacci function with parameters a, m and q0. We set x(n) = Tq0

(
h(n)/m

)
=

0, bn1 , b
n
2 .....b

n
q0

4 where q0 was defined previously in 11.1.1.

b) We set b′q0n−r+1 = bnr for n=1,..,N and r = 1, 2, ..., q0 (cf also step ”f” section
10.1.2 )

c) The sequence {b′n} is noted b0(n′), n′ = 1, 2, ..., Nq0.

11.1.2 Explanation of the conditions about q0 and r0

Because the various steps of this construction, one can accept the model of the

section 6.3.4 : P{H(n) = h | H(n + js) = hs, s = 2, 3...} = 1
m

[
1 + uk

]
: cf

chapter 7 of [18].
We deduce P

{
X(n) = k/2q0

∣∣X(n + j2) = x2, X(n + j3) = x3, ....
}

=

1/2q0 + Ob(1)ǫIk
, where | ǫIk

| ≤ ǫ = Γ−1(4−q0 )
√
NIel

m : cf sections 11.1.3 and
11.1.4 of [18].

We deduce that, for all sequences of bits bin, for all finite injective sequence
js,

P
{
B0(n′) = bi1

∣∣B0(n′ + j2) = bi2, B
0(n′ + j3) = bi3, ....

}
= 1/2 +Ob(1)ǫ ,

where ǫ = α/
√
q0N when Nq0 is the size of sample {b0(n′)} : cf section 11.1.3

of [18].

Now apply the theorem 9 : P
{√

N
∣∣Pe − (1/2)p

∣∣ ≥ σBx
}
≤ Γ

([ 1−β1,p/x
1+γ1,p

]
x
)
,

where β1,p ≤
√
Nq0ǫp√

A(p)L(Bo)
≈

√
Nq0.2pǫ

A(p)1/22p/2 = 2pα
A(p)1/22p/2 .

Then, β1,p is enough small in order that P
{
(B0(n′), B0(n′ + j2), ...., B

0(n′ +
jp)) = (bi1, ...., bip)

}
is about also close to (1/2)p that it would be it in case

40, bn
1
, bn

2
..... is the binary writting of T (h(n))/m.
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IID. One obtains the same type of results for theorem 10. It is not thus finally
possible to distinguish the sequence b0(n′) from an IID sample.

11.2 Example

In section 11.2 of [18] we study an example : we obtain a sequence of random
bits b1(n′). This sequence can be asked to rene.blacher@imag.fr. Soon one will
be able to obtain it in a website 5.

Currently, this sequence b1(n′) is the first part of the sequence of numbers
ξn : n ≤ 1000000. Its size is N = 1.000.000.

One finds the sequence of bits bs by writing these ξn in binary system in the

form ξn = bn1 b
n
2 ....b

n
50

6.

11.2.1 Choice of random datas

We have used a sequence of data a(j) withN3 = 298.159.056 and 1 ≤ a(j) ≤ 256.
The data result from texts, mathematical texts and file of programming : cf
section 9.3.

In the study of data, our numerical results prove that one can consider that
the sequence C(j) and D(j) are Qd-dependent with Qd=22 and Qd=2 : cf [18].

We choose α = 0.02, S=10, q0 = 57, r0 = 28 and m1 = mF (3228).

11.2.2 Building of a random sequence b1(n′)

We have suppress some sequences {e3(ρu), e3(ρu + 1)......, e3(ρu + n4)} in order
that f(i,n) and f(i’,n’) belongs to different files if i 6= i′. Then, the lines are
independent.

Then, h(n) =
∑10
i=1 f1(i, n) for n= 1,...,N where N = 1.000.000 and x(n) =

0, bn1 b
n
2 ....b

n
57 .

We deduce the sequence b1(n′), n’=1,2,...,57000000, where {b1(n′)} = {bnr }.

11.2.3 Properties of B1(n′)

In section 11.2.10, 11.2.11, 11.2.13 of [18], we study the samples b1(ψ(n)) ,
n = 1, 2, ...., N1, where N1 ≤ N and where ψ : {1, 2, ...., N1} → {1, 2, ...., N} is
an injective function 7.

5In order to know if this website is created, type the words ”Rene Blacher random numbers”
in Google for example

6As a matter of fact, we obtain initially ξn = 257x(n) where x(n) = 0, bn
1
bn
2
....bn

57
. But,

Matlab 2006 does not write numbers which have more 50 bits. Then it is simpler to forget
the last bits bn

51
, ..., bn

57
.

7The worst approximation occurs for the sample of maximum size: N1 = q0N .
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Then, we have used the assumption II :

P
{
B1(n′) = b

∣∣ B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
= 1/2 +

Ob(1)α√
Nq0

,

where α/(Nq0)
1/2 ≈ 2.649/106.

For example, we have studied the empirical aspect by using theorem 10
where one can consider that, the sequence b1(n′) is surely QdB-dependent with
QdB = 57. Various results are obtained in [18] : e.g. one obtains the following

increases for P
{√

N1

∣∣PBe − (1/2)p
∣∣ > σcp x

}
:

x=1 x=1.5 x=2 x=2.5 x= 3
Under IID assumption p=1 0.317 0.133 0.045 0.012 0.0027
Under assumption II p=1 0.401 0.180 0.065 0.019 0.0045

p=3 0.337 0.144 0.050 0.014 0.0031
p=5 0.323 0.137 0.047 0.013 0.0028
p=10 0.319 0.135 0.046 0.013 0.0028

Then, it is difficult to differentiate the sequence b1(n′) from an IID sample.
Indeed, if our data were not IID, that would imply that

√
Nq0

∣∣PBe − (1/2)p
∣∣

would be large. That can certainly occur for some (bi1, bi2, ......., bip) but, as the
previous increases show it, with a probability which is not too different from
that of IID case.

In the previous results, one has increase our approximations by using the
2-dependence which exists for the sequence D(j). For the sequence B1(n′), the
results are much better because we did everything in our building so that it is
identical to a sequence IID.

One could thus have finer increases. For that, it is necessary to calculate γ1
p

where σ2
1 = σ2

B [1 + 2γ1
p ]. In [18] we have estimated σ2

1 and have compared it
with the exact value of σ2

B for p=1,2,3,4,5.
Remark that one obtains the same type of equations with X(n) as with the

B1(n′) : cf section 11.2.13 [18].

11.2.4 Tests

In section 11.2.14 of [18], we are have controled the conclusions of this study by
making tests. We use the classical Diehard tests ([2], [1]) and the Higher order
correlation coefficients tests ([10]). We tested the sequences b1(n′) or x(n).

Results are in accordance with what we waited: for sequences b1(n′) and
x(n), the hypothesis ”randomness” can be accepted by all these tests.
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11.2.5 Conclusion

The inequalities above show that it could be that b1(n′) does not check certain
tests of an IID sequence, but that will occur with hardly more probabilities that
for a sample of a really IID sequence. It is thus not possible to differentiate the
sequence b1(n′) from an IID sample by using these tests.

Thus, it is not possible to differentiate the sequence b1(n′) from an IID sam-
ple by using PBe and PBe /p

B
e . Morever B1(n′) satisfies also the very important

additional property : P
{
B1(n′) = b

∣∣B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
=

1/2 +Ob(1)ǫ.
Then, the sequence b1(n′) satisfy all the conditions which we have indicates

in section 2.1 and also this theoretical property. Then, one can admit that b1(n′)
is an IID sample.

11.3 Continuous case

Let us notice that the use of the CLT smoothes the probabilities of the sums G(j).
One can thus admit that they have a continuous density. It is particularly true
if E3(j) has already a continuous density. Then, this model has to be studied
under the assumption as the density of E3(j) with respect to µm ⊗ .....⊗ µm is
continuous and has a coefficient of Lipschitz which is not too large.

It is known that it is a correct assumption : cf section 6.4.1. Thus, this
method is completely sure : we are sure that the sequence b1(n′) is IID.

This technique could be used with the machines which produce random
numbers very quickly. It remains valid even if there are dysfunctions (provided
that the produced numbers are not completely deterministic or very near to a
completely deterministic model).

In fact, it is supposed that there is asymptotic independence: one can thus
choose sums of S terms Zi,n with S=10, 20 or much if it is necessary. This study
thus applies perfectly to the case of machines not having too great dysfunctions
and quickly producing random numbers.

Let G′
n =

∑
i
Zi,n−E{Zi,n}

σn
where σ2

n = E
{(

[Z1,n − E{Z1,n}] + .... + [ZS,n −
E{ZS,n}]

)2}
. By the CLT, the conditional distribution of G′

n knowing G′
n+j2

=
g2,.....,G

′
n+jp

= g′p has a distribution close to a normal one. This normal law
has a small variance if the linear correlation coefficients are rather close to ±1.

Now it is supposed that, for any n, any p, any sequence js, s=1,2,, p,
P

{
G′
n+j1

= g | G′
n+j2

= g2, ....., G
′
n+jp

= g′p
}

is too not concentrated nearly
one only point. Because the CLT is used, that means effectively that the linear
correlation coefficients are not too close to ±1.

As a matter of fact, what interests us is the conditional probability of the
Hn = Z1,n + ...+ ZS,n : it is not wanted that it is concentrated nearly one only
point. It is thus supposed that P

{
Hn+j1 ∈ I|Hn+j2 = h2, ....,Hn+jp = hp

}
is
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not too different from L(I). It is an assumption easy to check, considering that
one has the asymptotic independence of

(
Hn+j1 , Hn+j2 , .....,Hn+jp

)
(according

to the properties of the XORLT : e.g. cf proposition 7.2.2). Then, one has al-
ready almost the wished equation. In order to be sure that this equation holds,
it is enough to use besides the transformation Tq.

Moreover the curve of probabilities of G′
n is smooth. It is even more the case

for Hn. Then, the same method as that one of property 6.3.5 can be applied to
the random sequence Xn = Tq(Hn) : therefore, one can assume that

P
{
X1 ∈ I | Xn+j2 = x2, ....., Xn+jp = xp

}
=
N(I)

m

[
1 +

O(1)6K ′
0

N(I)

]
,

where most of the time, K ′
0 ≤ 1 (and is even much smaller) and where O(1) ≈ 1.

As one wants to avoid any risk of error, one will admit K ′
0 ≤ 100 (of course this

increase depends on data). It is easy to understand by using theorem 7 that if
S increases K ′

0 decreases very quickly 8. Therefore, generally, this increase is
certainly much too strong. Therefore,

P
{
X1 ∈ Ik | Xn+j2 = x2, ....., Xn+jp = xp

}
= L(Ik)

[
1+

Ob(1)

m

][
1+

O(1)6K ′
0

N(Ik)

]

=
1

2q

[
1 +

O(1)6K ′
02
q

m

]
.

Let Bo = ∪k∈ΘIk. Then,

P
{
X1 ∈ Bo | Xn+j2 = x2, ....., Xn+jp = xp

}
=

∑

k∈Θ

1

2q

[
1 +

O(1)6K ′
02
q

m

]

= L(Bo)
[
1 +

O(1)6K ′
02
q

m

]
.

Then, by proposition 4.3.1 of [18]

P
{
B1 = b|B2 = b2....., Bp

}
=

1

2

[
1 +Ob(1)ǫ

]
,

where ǫ =
12O(1)K′

02
q

m with O(1) ≈ 1.

Donc, by proposition 4.2.2 of [18],

P
{
{Bn+j1 = b1}∩......∩{Bn+jp = bp}

}
=

[
1/2+Ob(1)ǫ/2

]
......

[
1/2+Ob(1)ǫ/2

]

8In theorem 7 independence is assumed. But, clearly, the reasoning remains valid : cf also
section 5.5 of [18]
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≈ 1

2p
+
Ob(1)pǫ

2p
.

Therefore, if one wants to use analog results to those of theorem 8, one will have
to replace L(Bo)ǫpBo by pǫ/2p, therefore to replace ǫpBo by pǫ, considering that
in the case of random bits Bn, L(Bo) = 1/2p. Moreover, by using the same
type of proof as in theorem 8, one understands that one will have to replace

γ′1,p =
n0ǫ

p
Bo

2A(p)

[
23/2 + 2L(Bo)

]
by

γ”1,p =
n0(pǫ)

2A(p)

[
4 + 2L(Bo)

]
.

Therefore, so that Xn cannot be differentiated from an IID sequence, it will
be necessary to impose

n0

2A(p)

12pK ′
02
q

m
[4 + 1] =

30n0p

A(p)

K ′
02
q

m
<< 1 .

Now, by lemma 8.1.2, σ2
B ≥ A(p)L(Bo). Then, in theorem 8,

β1,p =

√
n0[L

N (Bo) − L(Bo)]

σB
≈

√
n0Ob(1)pǫ/2p√
A(p)/2p

≤
√
n0pǫ√
A(p)2p

<< 1 .

For example, with K ′
0 ≤ 100, let us choose p ≤ pm = ⌊Log(n0)/Log(2)⌋ and

n0 = 106. Because log(n0)/log(2) ≈ 19.9, p
A(p) ≤ 3

1/8 = 24. Therefore,

30n0p

A(p)

K ′
02
q

m
<

24 ∗ 30n0

1

100.2q

m
.

Therefore, ifm ≥ 1034, q=60 (260 ≈ 1.153∗1018), n0 = 106, log(n0) = 13.815

24 ∗ 30n0

1

100.2q

m
≤ 720 ∗ 106

1

100 ∗ 1.153 ∗ 1018

1034
≤ 0.83

105
.

Remark 11.3.1 By using the theorem 8 one has used conditions too much
strong if it is supposed that one has the asymptotic independence: in fact, one
will obtain approximations much better concretely than those described by the
previous results.
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Chapter 12

Building of IID sequences :

III

12.1 Third method

In this section one uses the convergence of the XORTL (cf theorem 7). One
does not apply it to a sequence of numbers as f(i,n), n=1,...,N, but to random
numbers of size N, i.e. very large, for example with a sequence of bits of size
100.000.000, these numbers have values in {0, 1, ...., 2100.000.000 − 1}.

12.1.1 Method of construction of the sequence

1) We use again a sequence of data a(j) as in section 10.1. One transforms again
it into a sequence of random bits b3(n′) by the same way as in section 10.1.

These b3(n′) are grouped in S lines which we rewrite bti(n
′), i=1,2,..,S,

n’=1,2,...,J, each one belonging to files independent of the others.
2) One modifies the lines bti(n

′), n′ = 1, 2, ...., J , thanks to transformations hav-
ing a behavior close to that of the permutations. In this aim, one uses other se-
quences of data c1i (n

′) ∈ {1, 2, ...., J}, n′ = 1, 2, ..., J , where i = 1, 2, ...., 3S. Be-
cause we use transformations similar to permutations, we set c1i (n

′) = Permi(n
′)

in order that the notations are clearer.
2-a) One groups them togheter by sets of three successive sequences Permi

t(n
′)

for t=1,2,3, i=1,2,...,S, n′ = 1, 2, ....., J .
2-b) For each line i, for n′ = 1, 2, ...., J , one sets, ri0(n

′) = bti(n
′) and, for

each t=1,2,3, rit(n
′) = bti(Perm

i
t(n

′)) for n′ = 1, 2, ....., J .

2-c) For each line i, we set ri(n
′) = ri0(n

′) + ri1(n
′) + ri2(n

′) + ri3(n
′) modulo

2 for n′ = 1, 2, ....., J .
3) One definite gi as the number with J bits whose writing base 2 is gi =

ri(1)ri(2)....ri(J).

4) We set k =
∑S
i=1 gi, mod M2 +1 where M2 = 2J −1 (calculations algorithms
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are in [18]).

5) Let k = b1, b2, ...., the writing of k base 2. Then, the sequence b1, b2, ...., bJ
is a sequence of random bits.

12.1.2 Properties

One uses the properties of the XORLT : One sets Xi = Gi in order to use
theorem 7. One supposes that σ2

Vr
≤ 1 (cf remark 7.3.3) where V ixn

is the
sequence of random variables defined on probability space (Ω7,A7, P roba7) in
hypothesis 7.3.1 .

Then, by theorem 7, for all y ∈ {0, 1, ...., 2J − 1}, with a probability greater
than 1 − Γ(b) approximately,

P{K = y} ≈ (1/2J)
[
1 +

bOb(1)√
2J(S−1)

]
.

Now, one can write {K = y} = {B1 = b1} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}.
Then, if b0 is large, with a probability infinitely close to 1,

P
{
{B1 = b1} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}

}
= (1/2J)

[
1 +

b0Ob(1)√
2J(S−1)

]
.

12.1.3 Permutations and associated transformations

One uses transformations having a behavior close to that of the permutations.
Of course, one thinks that one could use Matlab permutations for example.
But, it poses a problem: a priori they are not permutations taken randomly.
As a matter of fact, one is in the case envisaged by Knuth ( [1] : cf also defi-
nition 2.1.5) and which it is necessary to avoid. One needs permutations taken
randomly.

For that, one want to use nondeterministic sequences of data to define the
permutations.

For example let us suppose that one wants to permute a sequence x(j) of
size N and that one has data d(j) ∈ {0, 1, ..., N}. One would like to be able to
define a permutation P by P(j)=d(j). But, there is no reason that P is injective.

One can try to remove the j, j’ such that d(j)=d(j’), j 6= j′. But if N is large,
that can be long. Then, it is easier to use these data differently.

Indeed, it is easy to understand that the technique defined in step 2 allows
a mixture of the lines which is as random as it would be the choice of a permu-
tation taken randomly. That is thus adapted perfectly so that we can suppose
that the probabilities of each line are chosen randomly.
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12.1.4 Example

By using the technique defined in section 12.1.1 with S=5, J=25402545, we have
created a real sequence ξn. This sequence can be asked to rene.blacher@imag.fr.
Soon one will be able to obtain it in a website 1.

Curently, this sequence consists of the secund part of the sequence ξn which
we have obtained by the three methods studied in this report : 1000000 < n ≤
1.408.040. Its size is N = 508.040.

One obtains the sequence of bits b2(n), n=1,2,....,20.402.000 by writing in

base 2 these ξn in the form ξn = bn1 .....b
n
50 : {b2(n′)} = {bns } .

Properties

By using theorem 7 (because J(S − 1)/2 ≥ 50.000.000), one understands that
in the set of probabilities provided with the distribution such that σ2

Vr
≤ 1, for

all p, with a probability infinitely close to 1,

P
{
{Bn = b1} ∩ {Bn+j2 = b2} ∩ ... ∩ {Bn+jp = bp}

}
= (1/2p)

[
1 +

Ob(1)

250.000.000

]
.

It is a very good approximation! It allows to obtain very fine results about
empirical probabilities, e.g. β1,p ≤ 1

249.999.983 and γ1,p ≤ 1
249.999.925 and, for

x ≥ 1
21000 ,

P
{√

N1

∣∣PBe − (1/2)p
∣∣ ≥ σBx

}
≤ Γ

[(
1 − 1

249.998.982

)
x
]
.

It is quite clear that with such an approximation, nothing could differenti-
ate such a sequence from an IID sequence if one has sample with size 25.402.545.

Now, the assumptions of theorem 7 are realistic : indeed rit(n
′) = bti(Perm

i
t(n

′))
has the characteristic of permutations chosen randomly. Therefore, probabilities
psgs

assocated to each gs have to be regarded as chosen randomly.
Of course, there will be always models which will not check these assump-

tions. But there will be of it a negligible number with probability Γ(b) intro-
duced into the theorem 7 : i.e. one can suppose that one has an IID sample
which also can not check correct assumptions, but with a probability infintely
negligible.

One must thus admit that the previous properties are well checked, i.e. one
has an extremely fine approximation.

Tests

We have verifed the previous conclusions by making tests : cf [18] section 12.1.10.
We have used the classical Diehard tests cf [2], [1] and the higher order corre-

1In order to know if this website is created, type the words ”Rene Blacher random numbers”
in Google for example
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lation coefficients cf [10]. Results are in accordance with what we waited: the
hypothesis ”randomness” is accepted by all these tests.

12.1.5 Conclusion

We thus have one third method to build IID sequences. The advantage is this
one has extremely strong mathematical properties and behaves exactly like an
IID sequence : it is always possible that the sequence b2(n′) is not good, but
only with a very negligible probability.

12.1.6 Comparison of methods II and III

The method defined in this section 12.1.1 has theoretical results much better
than those defined in the chapter 11.

But, such a quality of the approximation seems useless since one reasons on
samples. In our method defined in chapter 11, we obtained an approximation
theoretically less fine and yet, we saw that one can regard it as sufficient.

The improvement made in this section to the method defined in the chapter
11 seems not to mean much. For example, there exists always a probability

close to 0.045 such as |Pe−(1/2p)|
σ
√
N

≥ 2.

The approximation provided by the method defined in this section 12.1.1
can thus be only one additional guarantee which one can take when one builds
a sequence of random bits bn. It could however to be useful if one wanted to
build functions of the b2(n′) with certain mathematical properties
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Appendix A

Continous case in

dimension 2

We want to prove property 6.3.5 in dimension 2. We keep the notations of
section 6.3.3.

Property A.0.1 Let m >> 1. Let hN be the probability density function of

(Y1, Y2) ∈ F (m)2 with respect to µm⊗µm :
∫ 1

u=0

∫ 1

v=0
hN (u, v)µm(dv)µm(dv) =

1. Let h′N be the probability density function such that
∫ 1

u=0

∫ 1

v=0
h′N (u, v).dudv =

1 and h′N = (1/c0)hN .
Let K0 ∈ R+ such that |hN (r1, r2) − hN (r′1, r

′
2)| ≤ K0Maxs{|r′s − rs|} and

|h′N (r1, r2) − h′N (r′1, r
′
2)| ≤ K0Maxs{|r′s − rs|} when r1, r2, r

′
1, r

′
2 ∈ [0, 1].

Assume again that T is a Fibonacci congruence. Then, the following equality
holds :

P
{(
T (mY1)/m, T (mY2)/m

)
∈ I1 ⊗ I2

}
= L(I1)L(I2)

[
1 +

O(1)K0

Infs[N(Is)]

]
,

where infs[N(Is)] ≤ m/2.

Proof We need the following lemmas.

Lemma A.0.2 The following equality holds :

c0 = 1 +
O(1)K0

m
.

Proof The following equalities hold :

1 =
∑

t,t′

∫ (t+1)/m

u=t/m

∫ (t′+1)/m

v=t′/m

h′N (u, v).dudv

=
∑

t,t′

∫ (t+1)/m

u=t/m

∫ (t′+1)/m

v=t′/m

[
h′N (t/m, t′/m) +Ob(1)K0/m

]
dudv
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=
1

m2

∑

t,t′

h′N (t/m, t′/m) +
Ob(1)K0

m

=

∫ 1

u=0

∫ 1

v=0

h′N (u, v)µm(dv)µm(dv) +
Ob(1)K0

m
.

Then,
∫ 1

u=0

∫ 1

v=0
h′N (u, v).µm(dv)µm(dv) = 1 + Ob(1)K0

m . Therefore,

1 =

∫ 1

u=0

∫ 1

v=0

hN (u, v)µm(dv)µm(dv) = c0

∫ 1

u=0

∫ 1

v=0

h′N (u, v).µm(dv)µm(dv)

= c0

[
1 +

Ob(1)K0

m

]
. �

Lemma A.0.3 The following equality holds :

1

N(I1)N(I2)

∑

r,r′

hN
(
r/N(I1), r

′/N(I2)
)

= 1 +
2Ob(1)K0

infs[N(Is)]
.

Proof The following equalities hold :

1 =
∑

r,r′

∫ (r+1)/N(I1)

u=r/N(I1)

∫ (r′+1)/N(I2)

v=r′/N(I2)

h′N (u, v)dudv

=
∑

r,r′

∫ (r+1)/N(I1)

u=r/N(I1)

∫ (r′+1)/N(I2)

v=r′/N(I2)

[
h′N

(
r/N(I1), r

′/N(I2)
)
+Ob(1)K0Maxs

( 1

N(Is)

) ]
dudv

=
∑

r,r′

∫ (r+1)/N(I1)

u=r/N(I1)

∫ (r′+1)/N(I2)

v=r′/N(I2)

[
h′N

(
r/N(I1), r

′/N(I2)
)

+
Ob(1)K0

infs[N(Is)]

]
dudv

=
1

N(I1)N(I2)

∑

r,r′

h′N
(
r/N(I1), r

′/N(I2)
)

+
Ob(1)K0

infs[N(Is)]
.

Therefore

c0 =
1

N(I1)N(I2)

∑

r,r′

hN
(
r/N(I1), r

′/N(I2)
)

+
Ob(1)c0K0

infs[N(Is)]
.

Therefore, by lemma A.0.2,

c0 = 1+
O(1)K0

m
=

1

N(I1)N(I2)

∑

r,r′

hN
(
r/N(I1), r

′/N(I2)
)
+
Ob(1)[1 + O(1)K0

m ]K0

infs[N(Is)]
.
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Because m >> 1 and Infs[N(Is]) ≤ m/2, we deduce the lemma. �

Then, the following property holds.

Property A.0.4 Let I1 = [c1/m, c
′
1/m[ and I2 = [c2/m, c

′
2/m[. Let gN (k, k′) =

hN
(
T

−1
(k)/m, T

−1
(k′)/m

)
. Then, the following approximation holds

1

N(I1)N(I2))

c′1−1∑

k=c1

c′2−1∑

k′=c2

gN (k, k′) = 1 +
6Ob(1)K0

infs[N(Is)]
.

Proof Let kn, n = 1, 2, .., c′1−c1, and hn, n = 1, 2, .., c′2−c2, be two permutations
of I1∩F (m) = {c1/m, (c1 +1)/m, ...., (c′1−1)/m} and I2∩F (m) = {c2/m, (c2 +

1)/m, ...., (c′2 − 1)/m}, respectively such that T
−1

(k1) < T
−1

(k2) < T
−1

(k3) <

...... < T
−1

(kc
′
1−c1) and T

−1
(h1) < T

−1
(h2) < T

−1
(h3) < ...... < T

−1
(hc

′
2−c2).

Then, for all numerical simulations which we executed, one has always obtained

|T−1
(kr)/m− r/N(I1)| ≤ 4/N(I1)

and therefore
|T−1

(hr)/m− r/N(I2)| ≤ 4/N(I2) .

We deduce that

|gN (kr, hr
′
) − hN

(
r/N(I1), r

′
N (I2)

)
| ≤ 4K0.Maxs

( 1

N(Is)

)
=

4K0

Infs[N(Is)]
.

Therefore, by lemma A.0.3,

1

N(I1)N(I2)

c′1−1∑

k=c1

c′2−1∑

k′=c2

gN (k, k′) =
1

N(I1)N(I2)

∑

r,r′

gN (kr, hr
′
)

=
1

N(I1)N(I2)

∑

r,r′

hN
(
r/N(I1), r

′/N(I2)
)
+

1

N(I1)N(I2)

∑

r,r′

[
gN (kr, hr

′
)−hN

(
r/N(I1), r

′/N(I2)
]

=
1

N(I1)N(I2)

∑

r,r′

hN
(
r/N(I1), r

′/N(I2)
)

+
4Ob(1)K0

infs[N(Is)]

= 1 +
2Ob(1)K0

infs[N(Is)]
+

4Ob(1)K0

infs[N(Is)]
. �

Proof of property A.0.1 By the previous equalities,
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P
{(
T (mY1)/m, T (mY2)/m

)
∈ I1 ⊗ I2

}
=

1

m2

∑

k,k′

gN (k, k′)

=
N(I1)N(I2)

m2

[
1+

6Ob(1)K0

infs[N(Is)]

]
= L(I1)L(I2)

[
1+

Ob(1)

m

][
1+

Ob(1)

m

][
1+

6Ob(1)K0

infs[N(Is)]

]

= L(I1)L(I2)
[
1 +

O(1)K0

Infs[N(Is)]

]
. �
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