\

Totality in arena games

Pierre Clairambault, Russ Harmer

» To cite this version:

Pierre Clairambault, Russ Harmer. Totality in arena games. Annals of Pure and Applied Logic, 2009,
161 (5), pp.673-689. 10.1016/j.apal.2009.07.016 . hal-00443535

HAL Id: hal-00443535
https://hal.science/hal-00443535
Submitted on 30 Dec 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00443535
https://hal.archives-ouvertes.fr

Totality in arena games

Pierre Clairambault, Russ Harmer*
PPS, CNRS & Université Paris Diderot—Paris 7, Case 7014, 75205 Paris Cedex 13

Abstract

We tackle the problem of preservation of totality by composition in arena games.
We first explain how this problem reduces to a finiteness theorem on what we call
pointer structures, similar to the parity pointer functions of Harmer, Hyland &
Mellies and the interaction sequences of Coquand. We discuss how this theorem
relates to normalization of linear head reduction in simply-typed A-calculus,
leading us to a semantic realizability proof ¢ la Kleene of our theorem. We then
present another proof of a more combinatorial nature. Finally, we discuss the
exact class of strategies to which our theorems apply.

1. Introduction

Over the last fifteen years, game semantics has been extensively used to give
accurate models of a wide variety of primarily sequential programming language
features; see [2, 3, 7, 20, 22, 24] among others, and logics [5, 10, 16, 18, 23].
In this type of model, types/formulae are represented by games for two protag-
onists, Opponent and Player, and programs/proofs by strategies (for Player).
In almost all cases, these models are fully abstract/complete, meaning that all
strategies of the model correspond to something in the language/logic: there is
no “junk”. This approach has enabled a semantic classification of programming
languages according to the particular combinations of constraints they require
on strategies in order to achieve full abstraction.

One particularly important constraint, called innocence, corresponds to the
property of a programming language being applicative/functional. Clearly not
all programming languages satisfy innocence but, in contrast, all logics studied
to date do have this property. Another constraint on strategies, of a rather
different nature, is totality—where the strategy always has a response, no matter
what Opponent does. A general programming language never satisfies this but
mathematical logics always do. A game semantics of a logic should thus consist
of a category of games and total innocent strategies where the fact that total
strategies compose corresponds to normalization/cut elimination of the logic.

*Corresponding author
Email addresses: pierre.clairambault@pps.jussieu.fr (Pierre Clairambault),
russ.harmer@pps. jussieu.fr (Russ Harmer)

Preprint submitted to Elsevier August 10, 2009

In principle then, a logic could be shown to be normalizing by proving that
it has a sound interpretation in such a category of total strategies. However, in
practice, this reasoning is often inverted in that one starts with a logic already
known to be normalizing, interprets it with total strategies (not yet known to
form a category) and uses soundness and completeness to establish that the total
strategies are in fact indeed closed under composition (and so form a category)!
This is done because it can be subtle to establish that a desired class of total
strategies is actually closed under composition, due to the problem of “infinite
chattering” first noticed in CCS [25] and CSP [17]: when two deterministic
processes with a private channel enter a “non-responsive” mode where they
will thereafter only communicate via that private channel, completely ignoring
their other public channels. We find an analogous situation in game semantics
since composition of strategies is defined by precisely such a “communication
by private channel” mechanism (often referred to as “parallel composition plus
hiding”). Thus, even if the composed strategies are both total, they may engage
in infinite chattering whereupon the composite strategy will no longer be total.

To date, game models that directly present the category of total strategies
typically use an extrinsic notion of “winning” [1, 19] to cut down the space
of total strategies to one which is closed under composition. (The alternative
approach of imposing the so-called “copycat condition” also solves this problem
by restricting to an even smaller class of total strategies where one cannot even
conceive of infinite chattering and so all strategies are automatically winning,
irrespective of what ‘winning’ means.) It is important to note that the winning
condition is independent of innocence; one typically starts with a big category
of games and strategies and then identifies a subcategory of total strategies and
simultaneously verifies that innocence is preserved. While satisfactory from the
purely technical point of view of being able to define the model independently
of the logic, one nonetheless feels that this approach could be improved by an
intrinsic analysis of what constitutes the “good” class of total strategies. In
this paper, we provide such an analysis, in particular showing that the class of
total, finite innocent strategies forms a category with no need for any extrinsic
winning condition.

It should be noted that, whereas the original motivation for this work came
from game semantics in the Hyland-Ong/Nickau setting [20, 26], the main object
of study, i.e. pointer structures, is a rather general notion that arises naturally
in various forms of games for logic [5] or programming languages [6, 20|, as the
exponential modalities of linear logic [15] and also in the execution of abstract
machines [8]. Consequently, this paper aims to be largely self-contained: no
particular knowledge of game semantics should be required to understand either
the definition of pointer sequences or the related statements or proofs. Still,
some parts of the paper focus on the relation with game semantics, and may
require some background. During the development, these parts will be clearly
identified. All the necessary background and terminology can be found in [14,
13]. However, the reader unfamiliar with game semantics but interested in
pointer sequences nonetheless should be able to skip these parts in a first reading
without getting lost.

In Section 2, we start from the “infinite chattering” phenomenon in game
semantics and gradually isolate the root cause of this phenomenon, which occurs
in pointer structures. We then state our main results. In Section 3, we first
sketch a rather circuitous proof that exploits normalization of the A-calculus.
This syntactic proof then informs a semantic proof that uses a realizability
argument. By means of contrast, we then present in Section 4 a second proof
(of a slightly more general result) of a purely combinatorial nature that was
inspired by similar arguments of Coquand [5] and Curien [6]. Our results go
beyond simply proving that total, finite innocent strategies compose and, in
Section 5, we discuss how our results apply beyond that basic case. Moreover,
the two (semantic) proofs provide new, and different, insights into the deeper
structure of visible (not just innocent) strategies.

2. Infinite plays and pointer structures

In this section, we reduce the non-compositionality of total strategies in
HO/N game semantics to the existence of infinite plays with certain properties.
We then gradually strip these infinite plays of all unnecessary information, to
get finally to the notion of pointer structures. Note that Subsections 2.1 and
2.2 serve to introduce the definitions of pointer structures to the reader already
familiar with game semantics. As such, it uses notations and terminology which
are not introduced here but can be found in [13]. It should however be possible
to jump directly to the formal definition of pointer structures, in Subsection 2.3.

2.1. Infinite chattering

As pointed out in the introduction, total strategies do not compose. A
paradigmatic example of this fact is § = Az.xx. This A-term is untyped, but
one can nonetheless consider its interpretation as an innocent strategy over the
universal arena U [11]. Then one remarks that [d] is total: it is essentially a
combination of copycat strategies. However, as can be witnessed in Figure 1,
[(6)d] := [4][4] is not total, and even has no response to the initial external
Opponent move. This is closely related to the fact that, in the A-calculus, the
class of normalizing terms is not closed under composition. In this section,
we investigate the consequences of such a situation on the hidden part of the
interaction.

Suppose that 0 : A — B and 7 : B — C are total strategies but that their
composite 0;7 : A — C is not total. This means that there is s € ;7 and s’
an immediate extension of s such that o;7 has no response to s’. If we take
u € o||7 such that u;, ., = s (which exists by the witness property), we notice
that the immediate extension s’ of s yields an immediate extension ug of u.
Suppose (WLOG) that the last move added is in A. Since o is total, it has a
response to this last move. This yields an immediate extension uq of ug, which
is still in o||7 but, since s’ has no extension in o; 7, this last move of u; must
be in B. But then 7 is total as well and yields a extension uy of u; which is still
in o||7. By the same argument as above, it too must be in B.

The reader will easily see what is going on: the process of interaction must
build an infinite play in B, accepted by ¢ and 7, because it can never go back
to either A or C' but cannot stop either. We have just sketched a proof of the
following result:

Proposition 1 (Infinite chattering). Let 0 : A — B and 7 : B — C be total
strategies such that ;7 is not total. Then there is u € o||T such that u;, . is
finite but u;, is infinite.

Let us focus on the generated infinite play u. It has the following remarkable
property: irrespective of the behaviour of the external Opponent, u eventually
becomes both P- and O-visible! provided only that o and 7 both satisfy P-
visibility. This occurs once the interaction has entered the infinite tail in B
whereupon the external Opponent no longer has any influence. A play which
is both P-visible and O-visible will be simply called wvisible. A play such as u,
which satisfies this property only after a while, will be called ultimately visible.

To sum up the above discussion, if the composite o;7 : A — C of P-visible
total strategies 0 : A — B and 7 : B — C' is not itself total, this forces the
existence of an infinite play p which is ultimately visible. We now study the
conditions under which such a play can exist.

2.2. Collapsing Arenas

In the previous subsection, we showed that to guarantee composition of
totality, it suffices to forbid infinite ultimately visible infinite plays. Here, we
argue that, in fact, it suffices to ban such plays in pure arenas (which only take
into account the depth of moves).

For n € N, let I,, be the following arena:

of length n, and I, defined obviously as the projective limit of the sequence
(I)nen, in the category of graphs and graph morphisms?. Then plays on I,
correspond precisely to what we will call pointer structures.

If A is an arena, define a graph morphism p4 : A — I, by sending each node
x to the unique node of I, of the same depth and embedding all edges from x to
y to the unique edge from p4(x) to pa(y). This pa can then be freely extended
to p%, acting on the legal plays L4 of A (defined in [13]):

ﬁA — wa
pi={ ¢ - e
sa o ph(s)p(a)
where p(a) points in the same way as a. This is guaranteed to be possible since
pa is a graph morphism.

LA play is P- (resp. O-)visible iff all its P- (resp. O-)moves point in their P (resp. O-)view.
2], is nothing but the infinitary pure arena.

B=—B)——o0 I3

/q o
/q °
q «fp:r\> o
(

\
tt .
q o

Figure 2: How collapsing creates innocence

The operation of taking p4 amounts to collapsing the arena: all moves at
the same depth are merged. It is immediate to see that all notions on legal plays
which do not depend on equality of moves are preserved by this map. These
include length, depth of moves and visibility. However, notions that depend on
equality of moves need not be preserved in any way. For example, this operation
can create innocence (see Fig. 2) or break it (see Fig. 3). The interest of such a
strong simplification comes from the fact that the hypotheses of our finiteness
theorem do not include any assumption on the equality of moves, thus it suffices
to consider plays on 1.

2.8. Pointer structures

As hinted above, it will suffice to state and prove a finiteness result for plays
on the pure arena I,. However, these objects are relatively simple and do not
require all the background and vocabulary of game semantics. Moreover, as
argued in the introduction, these objects also arise independently of game se-
mantics, e.g. in the execution of abstract machines. Thus, we give an elementary
abstract definition which is the only we will used in the sequel.

In what follows, =5 denotes the even/odd equivalence on integers and N*
will denote N\ {0}. We shall take, as in [15], an axiomatization for the structure
of pointers on plays. We represent a pointer structure by a function

¢:N— NuU{L}.

(B x B)=——0)=—=0 I3

N

e

Figure 3: How collapsing breaks innocence

To each integer we associate the index of the move it points to; or L if the play
is already finished. We have the following axioms on pointer structures that
formalize this intuition:

e Play finished: for all i € N, if ¢(i) = L then, for all j > i, ¢(j) = L
e Pointing back: for all : € N*, if ¢(i) # L then ¢(i) < i

e Inversion of parity: for all i € N* i Z£5 ¢(4)

e Zero: ¢(0) =0

The first axiom allows pointer structures to represent either finite or infinite
plays. If ¢ is a pointer structure, its domain, denoted Dy, is defined as {1, ..., k}
if k& is the smallest integer such that ¢(k+ 1) = L; and as N if no such k exists.
We say that a pointer structure ¢ is finite if Dy is finite.

The value of any pointer function at 0 is supposed to be 0, but it could
instead be any other dummy value. Note in passing that, unlike the usual
convention, even integers correspond here to Opponent moves and odd integers
to Player moves. This is because it seems natural for 0 to represent the initial
Opponent move. We write Ptr be the set of pointer structures.

Pointer structures allow us to define wviews. The definitions (but not the
concepts) differ slightly from the usual ones.

Definition 1. Let ¢ be a pointer structure. Its view function "¢, : Dy — P(N)
and coview function @' : Dy — P(N) are computed in the following mutually
recursive way:

* 9,(0) = ¢'(0) = {0}
hd I_¢J(i +1) = {'L + 1} U L¢_‘(i)
o $'(i) ={i} UTP,(6(d))

Of course, the usual notions of P-view and O-view can easily be recovered

as follows:

s T (i) if i is odd

¢'(i) = @) if ¢ is even

L

6.(i) = " (i) if i is even

R o) ifdis odd
However, we prefer the first formulation because it allows, in the subsequent
development, to reason about views without needing to make the parities of
moves explicit. For example, a visible pointer structure is just a pointer structure
¢ satisfying, for all i € Dy, that ¢(i) € "¢,(7); and an ultimately visible pointer

structure is a pointer structure where there exists an IV € Dy such that, for all
i € Dy such that i > N, ¢(i) € "¢, (4).

2.4. Finiteness theorems

Now, we have the vocabulary to state our main theorem. The reader should
bear in mind that no proof will be given for the moment, the purpose of this
section being to give and study equivalences between different statements of the
theorem. From Section 3, the paper will be devoted to proving it.

Theorem 1 (Weak finiteness theorem). Let ¢ be an ultimately visible pointer
structure. The following statements are equivalent.

(i) there exists an M € N such that, for alli € Dy, |"¢,(i)] < M;
(i) ¢ is finite.

Clearly, if ¢ is finite, its views have finite length. The converse is non-trivial
and, as we will see, is similar in a very precise way to normalization of linear
head reduction for simply-typed A-calculus.

It is worth noticing that the finiteness of views can be decomposed into two
complementary conditions. We call the depth of ¢ the longest pointer chain
which can be extracted from ¢:

dy(0) = 0
dp(1) = 1+dg(o(i))
depth(¢) = Sup de (i)

In a similar way, we define a fork on ¢ to be a pair (v, (¢;):cr) such that
for all i € I, ¢(1);) = to. A fork is conscious iff, for all i < j € I, 1; € "¢ ,(¢;):
there is a sequence 91, ..., of moves of the same polarity, all of which point
to the same move 1)y, and each of the v; see all the previous 7);. The size of a
fork (o, (¥i)icr) is simply the cardinal of I. The memory of ¢ is then defined
as the supremum of all n € N such that ¢ admits a conscious fork of size n.

We have the following equivalence. Note that, unlike the other statements
of this section, it does not depend on Theorem 1.

Proposition 2. The two following statements are equivalent:
(i) there exists an M € N such that, for all i € Dy, |"¢,(i)] < M;
(i) ¢ has finite depth and finite memory.

Proof. (i) = (ii). Let M € N be the bound on the size of views. Then neither
pointer chains nor conscious forks can have size greater than M since this would
create a view of size greater than M.

(i) = (i). Let d be the depth of ¢ and m its memory. Let M be the maximum
size of a tree of depth d with branching degree m, which is always finite®. Then
no view in ¢ is greater than M, otherwise the underlying tree given by the
pointer structure on this view would have either a branching degree greater
than m (which would break the memory condition) or a depth greater than d
(which would break the depth condition). O

As an immediate corollary of this equivalence, we have the following alter-
native statement of Theorem 1.

Corollary 1. Let ¢ be an ultimately visible pointer structure. If ¢ has finite
depth and finite memory then ¢ is finite.

The interest of this reformulation appears when we work with finite arenas.
The structure of the arena then automatically restricts the depths of plays, so
divergent plays must have infinite memory. In this case, restricting to strategies
with finite memory therefore yields a category of games and total strategies.

In [19], Hyland introduced the principle of justice, to ban strategies which
are time wasting, i.e. always repeating the same move while being aware of doing
so. Apart from the fact that, in pointer structures, all moves at the same level
are considered the same, this is really the same as restricting to strategies with
finite memory. Hyland also stated a compactness theorem, saying that innocent
strategies satisfying the principle of justice are finite (in the sense of having a
finite view function). This is our Proposition 2: in finite arenas, where depth
is bounded, it suffices to satisfy the memory condition to get a bound on the
size of views. And of course, in finite arenas, it is equivalent for an innocent
strategy to have bounded views and to have a finite view function.

Let us finally mention a third equivalent formulation of Theorem 1:

mdtl_1

3We even have M = —

Proposition 3. Let ¢ be an ultimately visible pointer structure with finite depth.
If ¢ has forks of arbitrary size then it has conscious forks of arbitrary size.

Proof. Let ¢ be an ultimately visible pointer structure with a finite depth, and
suppose that ¢ has a fork of arbitrary size. Then, it is in particular infinite. By
Corollary 1, it must have infinite memory, i.e. conscious forks of arbitrary size.
Conversely, the present statement implies Corollary 1: if ¢ has finite depth and
finite memory, it has only conscious forks of bounded size. So it only has forks
of bounded size, thus it must be finite by Konig’s lemma. O

Theorem 1 is sufficient for most cases. It allows to show the preservation
of totality for a large class of strategies including the total and finite innocent
strategies, but also any visible nondeterministic strategies whose views always
remain of bounded size. In fact, we can do even better. In section 4, we prove
the following generalization of the weak finiteness theorem:

Theorem 2 (Strong finiteness theorem). Let ¢ be an ultimately visible pointer
structure with no infinite pointer chain. If ¢ has forks of arbitrary size then it
has an infinite conscious fork.

This theorem applies to a further class of innocent strategies, that we call
noetherian, which can have views of unbounded length but no “infinite” views,
i.e. no infinite strictly increasing sequence of views. For example, the strategy
of type nat -> com -> com interpreting

let rec repeat n c =
let z=n in
if z=0 then () else (c; repeat (z-1) c)

is noetherian: it begins by asking for an n then calls its argument ¢ exactly n
times before converging. This strategy normalizes against any n (provided ¢
converges of course) since none of its traces features an infinite conscious fork.

More generally, we show in Section 5 that the total noetherian strategies are
closed under composition. Unlike the case of total bounded strategies, which
only needs the weak finiteness theorem, this result crucially depends on the
strong finiteness theorem, as the above example suggests.

3. Pointer structures and A-calculus

It has long been known [8, 9] that there is a tight connection between the
hyper-lazy reduction strategy called linear head reduction for A-calculus and
the legal plays produced by innocent interaction. This connection establishes
that pointing strings can alternatively be seen as traces of the execution of an
abstract machine called the PAM (Pointer Abstract Machine) that computes
linear head reduction. We are not going to recall the details of the PAM in this
paper because it is very technical and we do not really need it. However, this
connection suggests that we take inspiration from the normalization proof of
simply-typed A-calculus to build a finiteness theorem for pointer structures.

10

To begin with, what kind of A-calculus would pointer structures correspond
to? Since the only arenas are the I,,, we suspect the types would be as follows:

0

n+l = n—o

Thus, all typed A-terms would be unary; only one abstraction and application
would be allowed at each level. A complication is that, as highlighted above, our
pointer structures may witness non-innocent behaviour. Hence, the execution
of these A-terms must be able to cause ruptures of innocence. The simplest way
to do that is to add a nondeterministic choice operator, as we do not care about
completeness.

The resulting typing rules are the following:

Unary A
— ax —da/l
Tx:kFx:k 'k
x:kFM:0 I'EM:kE+1 I'EN:k
lam ——— app
'tXe.M:k+1 I'EMN:0

I'EM:k I'EN:k
'-M+N:k

sum

This calculus is equipped with the following nondeterministic reduction rules.
We will only be interested in head reduction, i.e. we only perform leftmost
reduction.

(Ae.M)N ~ M[N/x] (B)
WMN ~ K ()
M+N ~ M (+1)
M+N ~ N (++)

As this is a simply-typed A-calculus, it is simple to prove normalization of
its head reduction, e.g. with Kleene realizability. For the sake of completeness,
let us sketch the proof. Let A denote the set of closed terms.

Definition 2 (Realizability). We define a relation I C A x N:
e MIF0& M ~*
e MIFk+1<VNIFE, MN ~* K.

Lemma 1 (Adequacy). Suppose x1 : ni,...,Tp : np = M : k. Then for all
Nilkng,...,Nplkny, M[N1/z1,...,Np/zp) IF k.

11

This is proved by induction on the derivation tree of M. Normalization of
head reduction is then an easy consequence: we prove that »X is a realizer of all
k. Thus, since any M such that we can derive - M : k satisfies M I+ k, either
k = 0 and M ~* "X and hence the reduction terminates; or M*H IF O ~~* MK,
but an infinite reduction sequence for M would also be an infinite reduction
sequence for MX, hence the reduction sequence of M terminates.

3.1. Linear head reduction

The above argument seems incompatible with game semantics since innocent
strategies correspond to Bohm trees, i.e. A-terms in 7-long (-normal form,
whereas the mechanism of substitution necessary to express g-reduction does not
preserve the Bohm tree structure. Nevertheless, in this subsection we show how
to deduce normalization of linear head reduction from that of head reduction.
This enables us to use the above result to give a (syntactic) proof of the finiteness
of pointer structures.

As pointed out at the beginning of this section, pointer structures are a
description of the linear head reduction sequence of our unary A-terms. As this
is not so well known, we recall it here. However, this section is rather informal
and mainly serves to introduce the ideas behind the normalization proof for
pointer structures, so we elide treatment of »# and nondeterministic choice. The
interested reader can find an in-depth description in [9)].

In what follows, we need to carefully distinguish the notions of variables and
of particular occurrences of those variables in a term. We choose the following
convention: variables are denoted by x and y while occurrences of z (resp. y)
are denoted by zo,z1,... (resp. yo,y1,...). The head occurrence of a A-term
M is the variable occurrence in head position, determined as follows:

hoc(MN) = hoc(M)
hoc(Ay.M) = hoc(M)
hoc(z;) = x;

Suppose xg is the head occurrence of M, and is an occurrence of a variable x
bound in M. This means that there is a subterm T of M of the form Azx....,
which has also x¢ as head occurrence. Now, suppose T has an argument N in
M, which means that TN is a subterm of M. Note that if it is the case, it can
have only one argument because the calculus is unary. We call N the arqument
of o and call the pair (zg, N) a linear head redex. Reducing this linear head
redex then consists of substituting the occurrence zg by N, leaving all other
occurrences of x and also the argument subterm N unchanged. In summary:

(@0 DN e Oz (N)N

The reader may note that, in this setting, linear head redexes always correspond
to usual [-redexes, even though reduction is not S-reduction. This is not true
in general for linear head reduction, where redexes are only defined up to o-
equivalence [9], but is true here because our types and terms are simpler.

12

This reduction strategy can easily be proved normalizing by reducing it to
head g-reduction. Here is an elegant way to do that which we could not find in
the literature.

Proposition 4. Let M be an unary A-term such that I' = M : k is provable.
If all head B-reduction sequences of M are finite then all linear head reduction
sequences of M are finite.

Proof. Consider the language of A-terms temporarily extended by a term ,
for each term 7', with the reduction rule

~pop T

that applies whenever appears in head position. Suppose there is = M : k
together with an infinite reduction sequence

M ~rgr My ~pgr My ~rur M3 ~raR ..

We reason by induction on the length of the head (-reduction chain of M which
is necessarily finite since M is typed.
We begin by decomposing S-reduction into two steps:

1. Substitution (0) (Ax.M)N ~ 30 M/a:]
2. Unbozxing. (J~') In one step, we remove all boxes in M.

Suppose that M ~»gq M'. We can easily transport the above infinite reduction
sequence as:

LHR LHR LHR LHR
M M, M, M
, LHRVpop ’ LHRVpop , LHRVpop ' LHRVpop
Ml 2 3

The idea is that at each time we reduce, in the upper infinite chain, the same
redex that we reduced initially for M ~»g5 M’, we instead open the box in head
position.

Now we just need to remove the unnecessary steps in the lower reduction
sequence:

LHRVpop LHRVpop LHRVpop LHRVpop
M] M}, M}
571
LHR " LHR " LHR " LHR
M Mo(l) E—— Ma(2) Mo(a)

where 0 : N — N is a strictly increasing function, used to conceal the now
unnecessary unboxing steps.

13

The point is that, if the reduction sequence of M’ is infinite, so is that
of M". Indeed, this is obvious if the number of times the pop rule is used
in the reduction sequence of M’ is finite; but if that is infinite, the number
of linear head reductions must be infinite as well—otherwise, the reduction
sequence would have an infinite tail of pop-reductions which is absurd since a
pop-reduction never creates a pop-redex. So the number of linear head reductions
is infinite in the reduction sequence of M’, but these are precisely the reductions
that remain in the chain of M".

However, we know by the induction hypothesis that the linear head reduction
chain of M" is finite, since M ~»3 M". Note that the base case is trivial since a
normal form for head SB-reduction is also a normal form for linear head reduction.
This concludes the proof. O

Sadly, we cannot transport this argument to pointer structures because of
the dependency on (-reduction. A natural workaround is to use the PAM to
relate formally normalization of linear head reduction to finiteness of pointer
structures. We only sketch the basic idea and, as such, we remain very informal.
The interested reader should see [9] for the precise definitions.

The PAM is a device which, given any A-term, simulates its linear head
reduction sequence by keeping track at each step ¢ of three different kinds of
data: the current head occurrence h;, its argument A; (in the sense introduced
above), and a pointer p; back to the index of the reduction step i’ when Ay
began with an abstraction of the variable of which h; is an occurrence. It was
proved in [8] that, if M and N are two A-terms in 7-long S-normal form, the (p;)
sequence obtained by execution of the PAM on M N corresponds exactly to the
pointers one witnesses in [M]||[IN], where [-] computes the usual interpretation
of A-terms in HO games semantics and || denotes parallel composition.

It is possible to define a reversed version of the PAM which takes as input a
pointer structure ¢ and produces two typed A-terms, M and N, such that ¢ is the
(pi) sequence of the execution of M N by the usual PAM. Clearly, this machine
stops if, and only if, ¢ is finite. Moreover, it can be proved (without induction)
that the machine stops if, and only if, the linear head reduction sequence of M N
is finite. So we have a very strong equivalence between termination of linear
head reduction and finiteness of pointer structures.*

However, the goal here is to provide a semantic finiteness proof for pointer
structures, if possible getting rid of any dependence on the calculus. Thus we
must not look for formal connections of pointer structures with linear head
reduction, but rather for direct normalization arguments in pointer structures,
possibly influenced by the calculus. Hence it is natural to search for direct
normalization arguments for linear head reduction, in no way relying on [-
reduction.

4The details can be found here: http://www.pps.jussieu.fr/~pclairam/games/rpam.pdf

14

8.2. Realizability proof of normalization

It is not so easy to show, independently of S-reduction, that linear head
reduction normalizes. Let us try to explain why. Suppose M and N are two
closed A-terms in 7-long and B-normal form. Necessarily, M has the form M =
(Ax.zM'). We then have the following (linear head) reduction for M N:

(Az.xM')N ~~ (Ax.NM')N

Note that no linear head reduction can affect later the general form of the term:
it will remain for the rest of the reduction of the form (Ax.T)N, for a given
T. Thus, all that is needed to compute the reduction sequence of M N is the
reduction sequence of NM’. However, M’ is no longer necessarily closed: it can
contain free occurrences of z. It is easy to show that, in fact, a term of the
reduction sequence of M N always has the form

2.y Az (... (UV)...) ..)M, M, M,

which is a sequence of abstractions, followed by the application of two terms,
followed by a sequence of applications. A useful remark is that, since all these
abstractions/applications remain in the same place during the reduction, the
above term could be denoted by a pair (UV,p) where p = {& — M,y —
My, z— M,,...}is an environment. This is exactly what the Krivine machine
with environment [9] does; this machine is typically stated to be correct with
respect to head (-reduction, but in fact computes linear head reduction.

Anyway, the point about normalization is that we are led to consider inter-
actions of open terms, which prevents us from using the same easy realizability
argument as for head [-reduction. Instead of terms we need to consider closures,
i.e. terms with their run-time environment.

To successfully take inspiration from the above remarks and formulate a
realizability proof in pointer structures, we need to find a counterpart to the
following notions:

Types. No surprise here, a type is still denoted by an integer. Intuitively, it is
the depth of the underlying arena.

Closed terms. Starting from a pointer structure ¢, we need to find the equivalent
of two unary A-terms with nondeterministic choice whose possible interactions
include ¢. Using intensively the nondeterministic feature of our language, we
just use integers for our terms, to be understood as the maximal length of their
Bohm tree. Formally, we define:

Definition 3. A closed interaction between integers k and p is a visible pointer
structure ¢ such that:

Vi€ Dy, [¢(0) <k A (D) <p+1

The set of all closed interactions between k and p is denoted by k * p.

15

Contexts. What is an interaction between two open terms in a given context?
This happens to have a simple answer in this setting: since this situation arises
naturally when using linear head reduction after a few reduction steps, we will
consider pointer structures with a specified node, called the starting move. The
part of the pointer structure before the starting move is considered to be the
history of the play. Pointing to a move in the history is making a call to the
environment.

Generalized terms. We need to extend our notion of term to this generalized
kind of interaction. Take a pointer structure ¢ and its starting move i € Dy.
What are the terms interacting in the play beginning at ¢ ? By extension of the
previous definition, they should be the sizes of the views starting at any move
of ¢ whose views include ¢, and stopping whenever ¢ is reached:

Definition 4. Let ¢ be a pointer structure, and let i € Dy. The maximal view
from i, denoted by "¢ (i), is defined as follows:

xS r(ZZ(j) i€ ¢ (j
iEQj Z%Q‘]

0,(i) =max | - max [0,(j)| = ["e,0)| +1, max |G - [,0)]+1

Similarly, the maximal coview from ¢ is defined by:

P'(i) = max | ma§(, (DG =@ +1, max .)IF¢J(j)|—|L¢j(i)|+1

i€ i€
i=2] i Z2 J

The maximal view and coview from ¢ can really be understood as the terms
interacting in the subplay starting with ¢, with the history ¢.;.

Closures. The above definition only partially describes the agents interacting
in an open context. We need to give a description of their environment with
them. An agent will be an integer n (still representing a Béhm tree size) and
a finite list of agents a;,...,a,. The idea is that, as long as the current move
is hereditarily justified by the starting move, the play obeys the restrictions of
n but, as soon as n “calls” the jth element of its view, the play will obey the
restrictions of the agent a;.

Definition 5. An agent is an integer n and a tuple of agents a, . .., ap, denoted
by nlai, ..., ap).

The set of all agents is denoted by A. This definition is well-founded since
we can build an agent from a O-tuple—in which case, we drop the brackets and
write n as shorthand for n[].

16

An alternative explanation of this definition is that it provides a way to
speak of strategies that are not in S-normal form. Indeed, n[aq,...,a,] can be
understood as a f-normal term with p free variables, and performing the corre-
sponding substitutions with a1,...,a, without renormalizing the resulting term.
This is rather more subtle than the usual interpretation of substitution in game
semantics—parallel composition plus hiding—which implicitly renormalizes the
term to a (possibly infinite) Bohm tree—infinite in the case that the resulting
term cannot be normalized. This interpretation of the definition of agents justi-
fies the chosen notation nfas,. .., a,], to be understood intuitively as the result
of the substitution of n by a,...,ap.

It remains to define how agents interact. The idea should now seem natural:
the result of the interaction of two agents a and b is a pointer structure ¢ along
with its starting move 4, such that views are compatible with the size of a and
b and such that calls to the history are compatible with the closure parts of a
and b.

Definition 6. Let a = nfa1,...,ap,] be an agent. The set of traces of a, denoted
by T'r(a), is the set of pairs (¢,1), with i € Dy, such that:
° (i) <n

e e @)U =2dA0G <D} =pandif{jr,...jp; = {j €
D) | (J =2 i) A (G < @)} (ordered by <) then for all m € {1,...,p},
for all x € ¢~ (jm) such that x > i, (¢,) € Tr(am).

e ¢ is visible after i

Definition 7. If n and p are agents then the set of interactions between n and
p, denoted nxp, is defined as follows:

nxp={(¢,i) € Ptr x N | (¢,4) € Tr(n), Vo € 6'(i), (¢,2) € Tr(p)}

We have by now gathered together all the necessary material to build a
normalization proof for pointer structures inspired by the realizability proof of
the beginning of Section 3.

Definition 8 (Realizability). We define the realizability relation - C Ax N as
follows:

enlF0oen<l1
e nlkd+1<Vml-d, Y(g,i) € nxm, ¢ is finite.

Note how agents have assumed the role of realizers played by closed \-terms
in the previous argument.

Lemma 2 (Adequacy). For all n € N, if we have di,...,dy,d > n and a1 Ik
di,...,ap - dp, then nfay, ... a,] IF d.

17

Proof. By induction on n.

If n = 0 then Tr(nfai,...,ap]) is always empty. If n = 1 and (¢,7) €
Tr(nla1,...,ap]) then necessarily ¢(i + 1) = L and ¢ is finite.

If n > 1, suppose we have a1 IF dy,...,a, IF d, satisfying the hypotheses
of the lemma, d € N such that d +1 > n and m I+ d. Let also (¢,i) €
nlai,...,ap] *x m and consider ¢(i + 1). If it is equal to L then ¢ is finite.
Otherwise, we have to prove that (4,74 1) € ¢x (n — 2)[a1, ..., ap,m], for ¢ a
realizer of some integer [, in order to conclude by the induction hypothesis.

Let {j1,...,Jpy1} ={j € "o, (i +1) | j #2 i + 1}. By visibility, there is x €
{1,...,p+1} such that ¢(i+1) = j,. Since (¢,i) € nfai,...,ap|*m, either x < p
and (¢,i+ 1) € Tr(ag) or x =p+1 and (¢,i+ 1) € Tr(m). Take now y € Dy
such that ¢(y) = i+ 1. We need to show that (¢,y) € Tr((n—2)[as,...,a,,m]).
Let us illustrate the current state of ¢:

(¢,1) € nlar,...,ap] xm

(¢p,i+1) € Tr(ay) Y

The first point to check is that "¢ (y) < n — 2. This is clear since by definition
"6,(1) > 79 ,(y) + 2. Now:

W'y) = {ypuTei+1)
= {yi+ 13U S()

So{je o'W |G<yA(G=vy)}=1{j,..-Jp,i}. Unfolding the definition of
(¢,i) € nlaq, ..., ap]*m ensures directly that (¢,y) € Tr((n—2)[as,...,ap, m]).
Thus (¢,i+1) € g% (n—2)[a1,...,ap, m], with either ¢ = m or ¢ = a,, for some
x € {1,...,p}. In either case there is, by hypothesis, some | € N such that
g1, withl > min(dy,...,dp,d) > n—1. Hence -1 > n—2 and, by induction
hypothesis, (n — 2)[a1,...,ap,m] IF 1 —1 and ¢ is finite. O

With the adequacy lemma in place, we can already deduce a normalization
theorem for visible pointer structures. Indeed, suppose that ¢ is a visible pointer
structure whose views are bounded by M? We know that ¢ € M * M + 1 and
the adequacy lemma ensures that M I+ M 4+ 2 and M + 1 IF M + 1. Hence ¢ is
finite.

The situation for pointer structures which are only wultimately visible is
slightly more subtle since, if ¢ is the move after which ¢ is visible, we have to
recover the agents interacting at ¢, i.e. with a non-empty environment. Thus,
in the general case, an additional property is required to rebuild them. This is
the object of our next lemma.

18

Lemma 3. Let ¢ be a pointer structure such that views in ¢ are bounded by
M €N, and i € Dy such that ¢ is visible after i. Then

(i) We are able to build an agent a; € A such that (¢,i) € Tr(a;). Moreover
the resulting agent only depends on ¢(i),

(i) We are able to build another agent b; € A such that (p,i) € a; x b;,
(i4i) For alld > M, a; - d and b; I+ d.

Proof. (i). By induction on ¢(i). If ¢(i) = 0, then (¢,4) € Tr(M). Otherwise
define:
{1, dpt={z € ¢'(G) |z =2iNnz <i}.
Indeed, {z € ¢'(i) | * =2 iAx < i} cannot be empty if ¢(¢) # 0 since it contains
at least ¢(i) — 1. Now, for each j, and for each y > i € Dy such that ¢(y) =
Jz, we have by induction hypothesis an agent a, such that (¢,y) € Tr(az).
Moreover, the induction hypothesis also ensures that a, does not depend on the
choice of y. Thus,
(¢7Z) € TT(M[ala ceey ap])'

It remains to prove that this agent does not depend on ¢. It suffices to remark
that if ' € Dy is such that ¢ is visible after i’ and ¢(i) = ¢(i’), we also have

{xe g(i)|z=inz<i}={ze ()| x=i ANz <i}

Thus, exactly the same argument applies and (¢,4') € Tr(Mla, ..., ap)).
(7). Either ¢ = 0, in which case (¢,i) € M = M. Otherwise, we compute

{jh“-ajq} ={z ¢ I_(b_l(i) | @ #2 i}

For each j,, (i) provides an agent b, such that, for all y > i such that ¢(y) = j.,
(¢,y) € Tr(b,), and this agent does not depend on the choice of y. Thus we get
b1,...,bq such that (¢,i) € a; x M[b1,...,b,].

(i4i) Straightforward induction on the definition of the agents built, using
the adequacy lemma at each step. O

We can now prove the weak finiteness theorem for pointer structures.

Theorem 1 (revisited). Let ¢ be an ultimately visible pointer structure. The
following propositions are equivalent.

(i) AIM €N, Vi€ Dy, |p,(i)] <M
(ii) ¢ is finite.

Proof. The only non-trivial direction is (i) = (). Let M € N be the bound
on the size of views. By Lemma 3, we are able to build a,b € A such that
(¢,i) € axb, with alF M +1 and bl M. Thus ¢ is finite. O

19

The reader may wonder why this proof only solves the “bounded views” for-
mulation of the theorem and not the stronger “no infinite view” introduced at
the end of Section 2. In fact, the limitation does not lie in the proof technique,
but in the class of agents considered. To handle agents without bounded views,
one would be forced to enrich the syntax of agents with an infinitary nondeter-
ministic choice operation at each level of the Béhm trees, so that terms with
unbounded views would be allowed—without the induction required to prove
adequacy becoming non-well-founded. Some necessary definitions would then
become very difficult to state, starting with the definition of Tr(a). We believe
the proof would lose a significant part of its explanatory aspect.

4. Alternative direct normalization proof

In this section, we present a different, more elementary proof of the finite-
ness theorem. It is slightly more general, but does not involve the interesting
structure necessary to the realizability proof, and is also less insightful. The
proof is similar to the “no infinite chattering” argument found in [6] which can
be traced back to [5] which predates modern game semantics.

The starting point is a known property of visible plays. Suppose we have a
visible pointer structure ¢ with a node ¢ € Dy such that nobody ever points to
i

Then the segment {¢(i),...,i} is unreachable for the rest of the play: nobody
will be able to point there. As a consequence, we can safely remove it without
affecting views for the remaining part of the play. Thus, we get a subplay of ¢
where one node without successor has been removed. If one regards this erasing
operation as a rewriting system on visible subsequences of ¢, it is clear that, if
¢ is initially infinite, a normal form must be a subsequence of ¢ for which every
move has a successor—which can exist only if ¢ has infinite depth. Thus, if
we can show that this reduction terminates, the proof will be over. This is not
obvious since there can be an arbitrary number of moves without successor in
an infinite play, and this operation may also very well generate new such moves.

We can deal with this by the following argument. We define an order < on
moves of the same polarity by < y iff * sees y. The hypothesis of finiteness
of views generalizes into the slightly weaker assumption that < is well-founded.
Consider then the induced lexicographic order <* on subsequences of ¢. In the
pattern above, we always have i4+1 < ¢(i), so the reduction is strictly decreasing
for <*. This is not yet enough: subsequences of ¢ can be infinite, hence <* need
not be well-founded. However, an additional argument will allow us to construct
directly a visible subsequence of ¢ which is minimal for <* and thus must be
normal for the reduction sketched above, which will conclude the proof. Of
course, the low-level character of pointer structures makes the formalization of
this proof a little bit longer.

20

We first have to define, for a fixed ¢, the set of its visible subsequences. For
that purpose, we need some preliminary definitions.

Definition 9. Let ¢ be a pointer structure, let (u;)ic; € D¢I be a strictly
increasing sequence of integers in the domain of ¢ (where I is an initial segment
of N). Then:

e u is a subsequence of ¢ iff
for all i € I there is j < i such that uj = ¢(u;)
foralli+1€l, u; #o it

e The restriction of ¢ to u, denoted ¢, is defined as:

L ifnegl
m such that u, = ¢(u,) otherwise.

%:nH{

e u is a visible subsequence of ¢ iff for alli,j € I:
i € "u,(j) & ui €79, (uy)
The set of visible subsequences of ¢ is denoted by V Sub(¢).
Let us now introduce the orders < and <*.
Definition 10. We define < as follows: let i,j € Dy, then
i<j = jEQNi=jNi#]
The induced lexicographic order is <* on V. Sub(¢).

Lemma 4. If ¢ is infinite and such that < is well-founded, then V Sub(¢),
ordered by <*, has an infinite element (mf)iel which is minimal among infinite
visible subsequences of ¢.

Proof. We build m® as follows :
° mg =0

e Consider the set of integers k for which there is an infinite visible sub-
sequence of ¢ beginning by mg, ...,m& k. The fact that this set is non-
empty is an induction invariant, and it must admit a minimal element (for
<) by well-foundedness of <. Let m? +1 be this minimal element.

This defines m? € V.Sub(¢). Now if there was an infinite u € V.Sub(¢) such
that u <* m?, consider the least n € N such that m¢ # u,,. By definition of <*,
we must have then u,, < m¢, which is impossible by construction of m?®. O

It remains to define the announced reduction and prove its compatibility
with respect to <*. First, the fundamental lemma on views which enables us
to define the reduction:

21

Lemma 5. Suppose ¢ is a pointer structure, take i € Dy such that ¢ is visible
after i, and take (u) a visible subsequence of ¢. Then, for all j > i,

Bk e {i+1,...,j—1}, (k) =i = "o,(j)){z |z Z2 j}n{0(3),...,i—1} =0

Proof. By induction. Let first j be i + 1. Then:
P+ = {i+1}U ()
= {i+1,4,0(@)}U 9 (0(i) —1)
Therefore:
B+ N{z|zZi+1}N{p(i),...,i —1} =0

Consider now j > i+ 1, and suppose Ak € {i +1,...,5 — 1}, ¢(k) = i.
Then:

0,(7) N{e(@),....i—1} = ({tU (G —1)n{e@),...,i—1}
G =D N {e),...,i—1}
= F¢J(¢(j—1))ﬂ{¢(i),...7i—1}

Since ¢ is supposed to be visible after i, we know that ¢(j—1) € "¢ ,(j—1). Thus
the induction hypothesis ensures that ¢(j — 1) & {#(é),...,i—1}. Moreover, by
assumption ¢(j — 1) # i thus ¢(j — 1) € {6(3), .. .,i}.

Therefore, two cases arise:

e Either ¢(j — 1) < ¢(7) and
(6 — 1) N {p(d),...,i—1} =0

e Or ¢(j—1) € {i+1,...,5 —2}. In that case we know by induction
hypothesis that:

",(0(G — 1) N{z [z #2 0(G -1} N {e(0),...,i =1} =0
And since {x | x Z2 ¢(j — 1)} = {z | = #2 j}, we conclude that
0,()) " {z [= #25} 0 {(0),...,i -1} =10 O
We deduce from this the desired reduction on visible subsequences of ¢.
Lemma 6. Let ¢ be a pointer structure, (u;)ic; € VSub(¢), i € I such that
o There is no j € I satisfying ¢(u;) = u;,
o ¢ is visible after ¢(u;),

Then there exists v € V.Sub(¢) such that v <* u.

22

Proof. We first define v' as a subsequence of ¢,:

Up =1 if n < ¢, (4)
v =n+1i—¢,(i) +1 otherwise.

Lemma 5 applied to ¢, ensures that v’ is a subsequence of ¢,. Indeed, take
v§ > 4. Since nobody will ever point to 7 in ¢,, we have:

'_(;SuJ(v;)ﬂ{x | © %4 v;}ﬂ{(bu(i),...,ifl}:@

Thus ¢, (v}) € {pu(i), ..., i} and by visibility there must be k such that ¢, (v}) =
V.
Let us now check that v’ is a visible subsequence of ¢,,, that is:

J1 € "pur (j2) © V), € T (v],)

We shall in fact prove that "¢, (v},) \ {¢u(i),i} = {v, | © € "¢y (j2)}, which
clearly implies the proposition above.
We distinguish two cases, depending on the polarity of 11;-2.

e Either v} =, d. In this case, i ¢ "¢, (v},) since that would imply that
i — 1 € "¢y (vj,), which is impossible by Lemma 5. Thus "¢,,(vj,) N
{Bu(i),...,i} =0, and we even have "¢, (v},) = {v} | = € "¢y (j2)}.

e Or v}, #3 i. In this case, a straightforward case analysis gives that,
irf I—¢U_:I(U§'2) N {¢u(2)»l} 7&/ 0, thegl {d)u(’) = 1i+ 1} C "¢y (vj,). Thus
Guy(V5,) \{@u(i),i} = {v; | & € "du,(j2)}-

Thus, v/ € VSub(¢,), from which it is straightforward to check that v =
(Uy!)1—(i—g,(i)+1) 18 a visible subsequence of ¢.

It remains to check that v <* u. This is justified by the fact that until ¢, (7),
u and v coincide. Then,

e Either i + 1 € I, then by construction, vy, ;) = ui41. But then:
I_¢u_|(i + 1) = {Z + 1} U |_¢u—l(i)
= {i+ 1,1} UTu (du(d)

Thus ¢, (i) € "¢, (i +1). Since u is a visible subsequence of ¢, we deduce
that ug,) € "0 (uiy1), thus w1 < ug, @y, thus v <* u.

e Otherwise u;11 is undefined. Then, v is only defined up to ¢, (i) — 1 and
is shorter than wu, thus v <* u. O

We immediately deduce the normalization theorem:

Theorem 3. Let ¢ be an ultimately visible pointer structure on which < is
well-founded. Then ¢ is finite.

23

Proof. Suppose ¢ is infinite. Then by Lemma 4, it has a minimal infinite visible
subsequence m?. Then m? is such that, for any m?, there is j such that (b(m?) =

mf’ Indeed, if this is not the case, Lemma 6 would build an infinite visible

subsequence u of ¢ such that u <* m?. But then we could build an infinite
sequence Zg,x1,... of moves of ¢ such that, for all i € N, z; = ¢(x;41). It
is then straightforward to check that (if N is such that ¢ is visible after NV)
for all ¢ such that z; > N, x;49 < x;, which immediately conflicts with the
well-foundedness of <. O

The formulation above is different from the one we announced in Section 2,
hence let us recall and prove it.

Theorem 2 (revisited). Let ¢ be an ultimately visible pointer structure with
no infinite pointer chain. Then, if ¢ has forks of arbitrary size, it has a conscious
fork of infinite size.

Proof. If ¢ has finite depth and arbitrarily large forks, it is in particular infinite.
Therefore, by Theorem 3, < cannot be well-founded on ¢. A counterexample
to well-foundedness is an infinite sequence xg > 1 > x2 > By definition of
<, we then have "¢ (z0) C "¢ ,(x1) C "¢ (22) C ... so we can take the limit:

X = |J", (@)

neN

X has a tree structure, considering that an integer ¢ has for sons all j such
that ¢(j) = 4. This tree cannot have an infinite branch (since ¢ has no infinite
pointer chain) and is infinite, thus it has a node with infinite degree by Koénig’s
lemma. By construction, each of the sons of this node with infinite degree sees
all the prior ones, thus giving an infinite conscious fork. O

5. Consequences

This brief section lists some corollaries of our finiteness theorems specific
to HO/N game semantics. As in several earlier parts of this paper, we assume
familiarity with the vocabulary of HO game semantics.

Let us first define some subclasses of innocent strategies on arena games.
(While the restriction to innocent strategies is convenient, it is not strictly
necessary—but a general treatment would go beyond the scope of this paper.)

Definition 11. Let A be an arena. An innocent strategqy o : A is:
o Total iff, for all sa € L4 such that s € o, there is b such that sab € o;
e Finite iff it has a finite view function;
e Bounded iff there is N € N such that, for any play s € o, |'s'| < N.

e Noetherian iff there is no strictly increasing infinite sequence of P-views
s1C s Cs3C... ino.

24

We also need some technical lemmas. The first is an obvious, quantitative
strengthening of Theorem 1; the others provide an analysis of the interactions
between o and 7 that give rise to the P-views of o; 7.

Lemma 7. If n,p € N, there is some T(n,p) € N such that, for all p € nxp,
|¢| <T'(n,p) where |@| is the size of ¢, i.e. the cardinal of Dy.

Proof. The set n * p has a tree structure, given by immediate prefix, which is
obviously finitely branching. It has no infinite branch since that would produce
an infinite pointer structure in n x p, which is forbidden by Theorem 1. So, by
Kénig’s lemma, it is finite and we define T'(n, p) to be its depth. O

Let 0 : A= B and 7 : B = C be innocent strategies. A pre-view of o;7
is an interaction u € of|7 with only one initial move on C' and such that the
external Opponent always points to the previous move, i.e. uja,c is a P-view.
A pre-view is always a (potentially infinite) legal play for (A = B) = C and,
as such, induces a pointer structure ¢,.

The key property of a pre-view is the switching condition: only Player can
switch between B and C' whereas only Opponent can switch between A and B.
As a consequence, if u ends with a move in B or C, its P-view only visits B and
C and is a P-view of B = (; whereas, if it ends with a move in A, "u'14 p is an
O-view of A = B where each move in A points to its preceding move. Dually,
Uy 4,p I8 a P-view of A = B; whereas \u 5 o is an O-view of B = C' where
each move in C' points to its preceding move.

Lemma 8. If the sizes of P-views of o and T are bounded respectively by N,
and N, then ¢, € (N, + N;) x max(N, + 1, N;).

Proof. The general form of a P-view of ¢, is s -t where s is a P-view of 7 and
t is an O-view of A which is also a P-view. This means that ¢ is a subsequence
of a P-view of 0. Hence lengths of P-views of ¢, are bounded by N, + N,.
An O-view of ¢, is either an O-view of C' that is also a sub-P-view of 7 and
is therefore bounded by N.; or is of the form c¢- s, where ¢ is an initial move of
C and s is a P-view of ¢ and is thus bounded by N, + 1. So lengths of O-views
of ¢, are bounded by max(N, + 1, N;). O

Lemma 9. If 0 and 7 are noetherian then the relation < induced by ¢, is
well-founded.

Proof. An infinite increasing sequence in ¢,, is an infinite increasing sequence of
either P- or O-views. In the case of P-views, the same reasoning as in Lemma 8
implies that this would induce either an infinite increasing sequence of P-views
of 7 or an infinite increasing sequence (t;) of sub-P-views of o.

The first case is immediately ruled out because 7 is noetherian. In the
second case, the sequence (¢;) would determine a strictly increasing sequence
(s;) of prefixes of uj4,p where each s; € o (and so s;" € ¢) and each s; sees all
sis with ¢ < j. So ("s;") would be strictly increasing which is ruled out because
o is noetherian.

The argument for O-views is completely symmetric. O

25

Lemma 10. If o and 7 are bounded (resp. finite, noetherian) then so is o;T.

Proof. If o and 7 are bounded, let P be the set of pre-views of o; 7. By Lemma 8,
each u € P gives rise to ¢, € (Ny + N;) * max(N, + 1, N;) and, by Lemma 7,
its length is bounded by T(N, + N,,max(N, + 1,N,)). Since this bound is
uniform for all u € P and restricting to A = C can only reduce their size, the
size of all P-views of o;7 is bounded by T(N, + N,, max(N, + 1, N;)).

If 0 and 7 are finite, they are in particular bounded and so o;7 is too.
Moreover, there must be finite restrictions A’, B’ and C’ of the arenas A, B
and C such that we still have 0 : A’ = B’ and 7 : B’ = C’. So 0; 7 is a bounded
strategy on the finite arena A’ = C’ and, by Konig’s lemma, must be finite.

Finally, suppose ¢ and 7 are noetherian and that there is an infinite increas-
ing sequence of P-views in ;7. By determinism of ¢ and 7, this would induce

an infinite increasing sequence of pre-views u; C us T ug C --- € o||T whose
limit is an infinite pre-view u. By Lemma 9, the relation < induced by ¢,, would
be well-founded—which is impossible by Theorem 3. O

Proposition 5. If o and 7 are both bounded (resp. noetherian) and total then
o; T is total.

Proof. For a contradiction, let us suppose that o; 7 is not total. So we can find
an infinite interaction in ol||7 of the form wu., such that uja ¢ is finite and
ULA,C = UUoo[A,C, §-€. Uso is an infinite tail in B. Since o and 7 are innocent,
the infinite pre-view u/_ := "u'us € of|7. (By definition, "' is the view [13] of
u that satisfies "u'ta,c = "ura,c’.)

In the case where o and 7 are bounded, Lemma 8 guarantees us a finite
bound for ¢,,_; and in the case where they are noetherian, Lemma 9 permits us
to apply Theorem 3 to obtain a finite bound for ¢,,_. In either case, we have
our desired contradiction. O

We have shown that bounded or noetherian total innocent strategies are
preserved by composition. The dependency on innocence can be weakened, in
the case of bounded strategies, to just the visibility condition (without even
the need for determinism) but this does require considerable further technical
development which goes beyond the scope of this paper. The details will appear
in the first author’s forthcoming PhD thesis.

On the other hand, the case of noetherian strategies is rather more subtle. It
seems that the class of noetherian finitely nondeterministic (visible) strategies
is closed under composition—despite the fact that neither the noetherian nor
the finite nondeterminism constraint is preserved in isolation! The argument of
Lemma 10 could then, in principle, be adapted to this more general setting by
considering the tree of pre-views which share the same projection on A = C' and
using an additional application of Konig’s lemma to build the needed infinite
pre-view, cf. Proposition 4.4.2 of [13]. The case of countable nondeterminism,
however, seems resistant to this approach: the strategy random : nat that may
return any, but must return some, integer, when composed with repeat, yields
a fundamentally non-noetherian strategy.

26

6. Conclusion

We have presented a thorough-going analysis of totality in arena games,
in particular proving the folklore theorem that total finite innocent strategies
form a category. However, many natural situations involve non-finite strategies.
For example, the finiteness hypothesis fails as soon as one try to models the
integers—whatever the arena chosen, flat or recursive—and, in the case of the
flat arena, this restriction is totally arbitrary since our theorems show that the
width of arenas does not in any way influence the compositionality of totality.
Thus finiteness of strategies can be relaxed to the existence of a bound on the
length of their views, or even to the absence of infinite views.

The next step is to drop innocence. This may seem less natural, since the
meaning of the “no infinite view” hypothesis for non-innocent strategies is not
so clear, but we do have a natural example: the naive interpretation in HO/N
arena games of nondeterministic terms provides such strategies. Moreover, this
is not the only interesting case: the “clock” operator employed by Krivine [21]
to realize the axiom of dependent choice probably also behaves as such.

Finally, the decomposition of having finite views into finite depth and finite
memory presented in Section 2 opens up the possibility of having composition-
ality of totality for a class of strategies with infinite views. Since no interesting
A-term generates an infinite conscious fork (as this would require some variable
to occur infinitely often in its Bohm tree), we could use an external argument
(such as a typical winning condition) to guarantee the finite depth of an inter-
action. This could be technically lighter than directly forcing finiteness of the
interaction and would be sufficient as our results would then imply its finite-
ness. Such strategies without infinite conscious fork, but with infinite views,
appear as soon as one wants to model polymorphism [12] or languages with
inductive/coinductive definitions [4].

Some of the arguments presented in this paper, particularly the last (strong)
finiteness theorem, could easily be carried out in the usual vocabulary of arena
games. However, we believe that the abstract language of pointer structures is
more convenient since it applies smoothly to a large number of settings where
pointers arise naturally, including of course the model of Hyland and Ong for
PCF [20] and the large number of games models based on it, but also traces of
abstract machines like the PAM and others.

The original goal which motivated this work was the construction of a locally
cartesian closed category of games and total innocent strategies in order to
give game semantics of dependent type theories [27]. This work can now be
continued. Another interesting idea would be to investigate how our results
interact with the new construction of the category of arena games and innocent
strategies in [15], where pointer structures play a central role.

Acknowledgements. We would like to thank our colleagues Pierre-Louis Curien,
Olivier Laurent and Laurent Régnier for the numerous stimulating discussions
we had during the development of this work; and the anonymous referees whose
comments have significantly improved the original draft.

27

References

1]

2]

S. Abramsky. Semantics of interaction: an introduction to game semantics.
Semantics and Logics of Computation, pages 1-31, 1996.

S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics
for general references. In Proceedings, Thirteenth Annual IEEE Symposium
on Logic in Computer Science, 1998.

S. Abramsky and G. McCusker. Linearity, sharing and state: a fully ab-
stract game semantics for Idealized Algol with active expressions. In P. W.
O’Hearn and R. D. Tennent, editors, Algol-like languages. Birkhaitiser, 1997.

D. Baelde and D. Miller. Least and greatest fixed points in linear logic.
Lecture Notes in Computer Science, 4790:92, 2007.

T. Coquand. A semantics of evidence for classical arithmetic. Journal of
Symbolic Logic, 60(1):325-337, 1995.

P.-L. Curien. Abstract Bohm trees. Mathematical Structures in Computer
Science, 8(06):559-591, 1998.

V. Danos and R. Harmer. Probabilistic game semantics (extended ab-
stract). In Proceedings, 15th Annual IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Society Press, 2000.

V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract ma-
chines. In Proceedings, 11th Annual IEEE Symposium on Logic in Com-
puter Science, pages 394405, 1996.

V. Danos and L. Regnier. How abstract machines implement head linear
reduction. Submitted to Higher Order and Symbolic Computation, 2004.

J. de Lataillade. Second-order type isomorphisms through game semantics.
Annals of Pure and Applied Logic, 151:115-150, 2008.

C. Faggian and J.M.E. Hyland. Designs, disputes and strategies. Lecture
notes in computer science, pages 442-457, 2002.

J.-Y. Girard. The system F of variable types, fifteen years later. Theoretical
Computer Science, 45(2):159-192, 1986.

R. Harmer. Games and full abstraction for nondeterministic languages.
PhD thesis, University of London, 1999.

R. Harmer. Innocent game semantics. Lecture notes, 2004-2007.

R. Harmer, J.M.E. Hyland, and P.-A. Mellies. Categorical Combinatorics
for Innocent Strategies. In Proceedings of the 22nd Annual IEEE Sym-
posium on Logic in Computer Science, pages 379-388. IEEE Computer
Society, Washington DC, USA, 2007.

28

[16]

[17]
[18]

R. Harmer and O. Laurent. The anatomy of innocence revisited. In Pro-
ceedings, 26th Annual Conference on Foundations of Software Technology
and Theoretical Computer Science. Springer Verlag, 2006.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

D. Hughes. Games and definability for System F. Twelfth Annual IEEE
Symposium on Logic in Computer Science, pages 76-86, 1997.

J.M.E. Hyland. Game semantics. Semantics and Logics of Computation,
1997.

J.ML.E. Hyland and C.H.L. Ong. On full abstraction for PCF: I, IT and III.
Information and Computation, 163:285—-408, 2000.

J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Com-
puter Science, 308(1-3):259-276, 2003.

J. Laird. Full abstraction for functional languages with control. In Proceed-
ings, 12th Annual IEEE Symposium on Logic in Computer Science, pages
58-67. IEEE Computer Society Press, 1997.

O. Laurent. Polarized games. Annals of Pure and Applied Logic, 130(1—
3):79-123, December 2004.

G. McCusker. Games and definability for FPC. Bulletin of Symbolic Logic,
3(3):347-362, September 1997.

R. Milner. Communication and concurrency. Prentice Hall, 1989.

H. Nickau. Hereditarily sequential functionals. Lecture Notes in Computer
Science, 813:253-264, 1994.

R.A.G. Seely. Locally cartesian closed categories and type theory. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 95(33-48):3-6,
1984.

29

