
HAL Id: hal-00443529
https://hal.science/hal-00443529

Preprint submitted on 31 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability Analysis of Communicating Pushdown
Systems

Alexander Heussner, Jérôme Leroux, Anca Muscholl, Grégoire Sutre

To cite this version:
Alexander Heussner, Jérôme Leroux, Anca Muscholl, Grégoire Sutre. Reachability Analysis of Com-
municating Pushdown Systems. 2010. �hal-00443529�

https://hal.science/hal-00443529
https://hal.archives-ouvertes.fr

Reachability Analysis of

Communicating Pushdown Systems

Alexander Heußner⋆, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre

LaBRI, Université Bordeaux, CNRS – France

Abstract. The reachability analysis of recursive programs that commu-
nicate asynchronously over reliable Fifo channels calls for restrictions
to ensure decidability. We extend here a model proposed by La Torre,
Madhusudan and Parlato [LMP08], based on communicating pushdown
systems that can dequeue with empty stack only. Our extension adds
the dual modality, which allows to dequeue with non-empty stack, and
thus models interrupts for working threads. We study (possibly cyclic)
network architectures under a semantic assumption on communication
that ensures the decidability of reachability for finite state systems. Sub-
sequently, we determine precisely how pushdowns can be added to this
setting while preserving the decidability; in the positive case we obtain
exponential time as the exact complexity bound of reachability. A sec-
ond result is a generalization of the doubly exponential time algorithm of
[LMP08] for bounded context analysis to our symmetric queueing policy.
We provide here a direct and simpler algorithm.

Introduction

The verification of safety properties for distributed programs, e.g., client/server
environments, peer-to-peer networks, or Grid applications, relies on the decid-
ability of the reachability problem. In this paper we reconsider recursive queue-
ing concurrent processes (Rqcp), one possible model for such systems which was
studied recently by LaTorre, Madhusudan, and Parlato [LMP08]. It is a natural
idea to combine peer-to-peer asynchronous communication (via point-to-point,
unbounded, reliable Fifo channels) with some automaton-based model for in-
dividual peers (e.g., pushdown automata or Petri nets). We call such combined
models queueing concurrent processes (Qcp). Since communicating finite-state
automata are the most elementary instantiation of Qcp, reachability is in general
undecidable [BZ83]. Furthermore, adding recursion (i.e., replacing finite-state by
pushdown automata) yields an additional source of undecidability. One of the
main motivations in this paper is to separate these two sources of undecidabil-
ity: we consider behavioral restrictions for which reachability for communicating
finite-state machines is decidable, and then look under which conditions we can
add recursion to the model. The challenging task is to derive conditions that
conserve the simplicity and expressiveness of the model.

⋆ Work supported by the ANR project AVERISS.

In general, there are three main directions to cope with the undecidability
of communicating finite-state machines: restricting the communication architec-
ture, assuming that channels are lossy, or adding semantic restrictions, e.g., that
sending/receiving of messages can be scheduled in such a way that runs can
be executed with channels of bounded size. In this paper we stick to the lat-
ter approach, as described in more detail below. Our point of departure is the
work of LaTorre et al. [LMP08], which introduced Rqcp together with a behav-
ioral restriction on the combined use of channels and pushdowns. Informally, a
Rqcp is well-queueing if pushdown processes can only dequeue (read) messages
when the stack is empty (they can enqueue messages without restriction). Well-
queueing expresses an event-based programming paradigm: tasks are executed
by threads without interrupt, i.e., a thread accepts the next task only after it
finished the current one. One of the results of [LMP08] is that Rqcp have a
decidable reachability problem if and only if their communication architecture
is a directed forest; in the decidable case, the latter paper provides a doubly ex-
ponential upper bound by a reduction to bounded-phase multi-stack pushdown
systems [LMP07].

Our contribution. We extend the work of LaTorre et al. [LMP08] in several
directions. First, we add a dual notion to well-queueing: a pushdown process
can enqueue (send) messages only with empty stack (but can dequeue messages
without restriction). Oriented communication architectures, as presented here,
combine these two notions, by fixing the behaviour of the two endpoints of
each channel. This dual notion to well-queueing arises naturally if one wants to
model interrupts: a server might need to accept tasks from high priority clients
independently of the status of the running task.

Second, we exhibit a precise characterization of those oriented architectures
for which the Rqcpmodel has a decidable reachability problem over so-called ea-
ger runs. Informally, a run is eager if the sending of a message is immediately fol-
lowed by its reception, a notion closely related to existentially 1-bounded commu-
nication [LM04]. Eagerly communicating finite-state machines are a well-studied
model, enjoying good expressiveness and decidability properties [GKM06]. Here,
we use eager runs in order to rule out undecidability stemming from unbounded
channels. We show that reachability of Rqcp over eager runs is ExpTime-
complete in the decidable case. This result generalizes and improves the doubly
exponential time decision procedure of [LMP08], which holds for architectures
without undirected cycles (polyforest architectures).

Eagerness is a relatively strong requirement, hence, we show how it arises
rather naturally, by imposing a semantic restriction on the communication flow:
the mutex restriction demands that in every reachable configuration there is no
more than one non-empty channel per cycle. In particular, Qcp over polyforest
architectures are mutex. Actually mutex can be seen as a generalization of the
half-duplex restriction studied in [CF05].

LaTorre et al. [LMP08] propose a second approach to solve the reachabil-
ity problem for Rqcp, inspired by recent work on reachability with bounded
contexts in the verification of concurrent programs [QR05]. They show that

2

bounded-context reachability for well-queueing Rqcp is decidable in time dou-
bly exponential in the number of contexts. Again, this result is obtained by a
reduction to bounded-phase multi-stack pushdown systems [LMP07]. Our second
main contribution is to extend the bounded-context result to Rqcp that allow
for the two dual notions of well-queueing. Moreover, our algorithm is direct and
simpler than the one involving bounded-phase multi-stack pushdown systems.

A long version of this paper that includes all proofs omitted due to space
limitations can be found at http://hal.archives-ouvertes.fr/hal-00443529/.

Related work. In the context of thread programming, other notions of syn-
chronization between pushdowns arise naturally. Earlier publications considered
synchronization via shared memory, such as local/global memory in [BESS05,
BMT05] or bags in [SV06, JM07]. The paper [BESS05] showed that bounded-
context reachability can be solved in exponential time, whereas [SV06] provided
an exponential space lower bound for reachability (without context bounds).
More recently, synchronization in the form of state observation was considered
in [ABT08]. The latter model was shown to be decidable only for acyclic archi-
tectures, and is strongly related to lossy systems [AJ96, FS01].

1 Queueing Concurrent Processes

We write X ·∪X ′ for the disjoint union of X and X ′. Let Σ denote an alphabet
(i.e., a finite set of letters). We write Σ∗ for the set of all finite words (words for
short) over Σ, and we let ε denote the empty word. Moreover, we use standard
complexity classes such as polynomial space (PSpace), deterministic exponential
time (ExpTime), and doubly exponential time (2ExpTime). For more detailed
definitions the reader is referred to textbooks like [Pap94].

A communication architecture T (or architecture for short) is a pair 〈P,Ch〉 with
a finite non-empty set P of processes and a finite set of point-to-point channels
Ch ⊆ (P × P) \ idP .

Remark 1.1. Our definition of architecture forbids self-loops, as well as two dis-
tinct channels in the same direction between a pair of processes (without further
restriction, these settings are immediately Turing equivalent).

Definition 1.2. A system of queueing concurrent processes (Qcp) over a given
architecture T = 〈P,Ch〉 is a tuple A = 〈(Sp)p∈P , (Σp)p∈P , (∆p)p∈P , (s

0
p)p∈P ,M〉

with M a finite message alphabet. For each process p ∈ P, the tuple 〈Sp, Σp, ∆p, s
0
p〉

describes a (local) transition system on the state set Sp with actions from Σp =
Σloc

p ·∪Σcom
p , which are either local (i.e., in Σloc

p) or communication actions in
Σcom

p = {p!q(m) | (p, q) ∈ Ch and m ∈ M} ∪ {p?q(m) | (q, p) ∈ Ch and m ∈ M}.
Local transitions are given by the rules in ∆p ⊆ Sp × Σp × Sp, and the initial
state of process p is s0p.

The global state space is S =
∏

p∈P
Sp and the global initial state is s0 =

(s0p)p∈P ∈ S. By Σ =
⋃

· p∈PΣp we denote the set of all possible actions in A.
The size of A is

∑

p∈P
|∆p|.

3

http://hal.archives-ouvertes.fr/hal-00443529/

As usual, p!q(m) denotes the send of message m from process p to process q,
whereas q?p(m) denotes the matching receive on process q.

Note also that the Sp and hence S need not necessarily be finite. If S is finite,
we will call A a finite Qcp (or communicating finite-state machine, Cfm). The
local transition systems given by 〈Sp, Σp, ∆p, s

0
p〉 could be, for example, finite

automata, counter automata (including Petri nets), pushdown automata. As
usual, we define the semantics of A as labeled infinite-state transition system:

Definition 1.3. A Qcp A represents an LTS JAK = 〈C,Σ,→, c0〉 with config-
urations C = S × (M∗)Ch and the initial configuration c0 =

(

s0, (ε, . . . , ε)
)

, i.e.,
all channels are initially empty. We write a configuration as c = 〈s, w〉 where
s = (sp)p∈P is the global state and w = (wp,q)(p,q)∈Ch are the channel contents.
Further, for any p ∈ P and a ∈ Σp, 〈s, w〉

a
−→〈s′, w′〉 is a transition in C×Σ×C

with s′ = (s′p)p∈P , w
′ = (w′

p,q)(p,q)∈Ch, if (sp, a, s
′
p) ∈ ∆p and the following holds:

(i) sq = s′q for all q 6= p,

(ii) if a ∈ Σloc
p then w = w′,

(iii) if a ∈ Σcom
p with a = p!q(m) then w′

p,q = wp,qm and w′
s,t = ws,t

for (s, t) ∈ Ch\{(p, q)},
(iv) if a ∈ Σcom

p with a = p?q(m) then wq,p = mw′
q,p and w′

s,t = ws,t

for (s, t) ∈ Ch\{(q, p)}.

A finite run ρ in the labeled transition system JAK from a configuration c0 to
cn ∈ C is a sequence 〈c0, a1, c1, a2, c2, · · · , an, cn〉 where ci−1

ai−→ ci for 1 ≤ i ≤ n.
The length of ρ is n, and a run of length 0 is defined as ρ = 〈c0〉.

A configuration c ∈ C is reachable in the Qcp A if there exists a finite run
ρ = 〈c0, a1, c1, · · · , cn〉 starting in the initial configuration c0 = c0 and ending in
cn = c. We define the reachability set as ReachA = {c ∈ C | c is reachable in A}.
The reachability question asks for a given A and a configuration c ∈ C whether
c ∈ ReachA. Given a state s ∈ S, the control state reachability question asks
whether one can reach a configuration with (control) state component s regard-
less of the channel content, i.e., whether {s} × (M∗)Ch ∩ ReachA 6= ∅. Both
questions are undecidable for finite Qcp with at least two processes that are
connected by two channels [BZ83].

The trace of a run ρ = 〈c0, a1, c1, a2, c2, · · · , an, cn〉 is the sequence of actions
tr(ρ) = a1 · · · an ∈ Σ∗. Since channels are Fifo, we can speak about matching
send/receive pairs: ai, aj form such a pair if (1) ai = p!q(m), aj = q?p(m), and
(2) |{ℓ | ℓ ≤ i, aℓ = p!q(n), n ∈ M}| = |{ℓ | ℓ ≤ j, aℓ = q?p(n), n ∈ M}|. We
call two runs ρ, ρ′ order-equivalent if they can be transformed one into the other
by iteratively commuting adjacent transitions labeled by a and b, resp., such
that (i) a, b do not belong to the same process, and (ii) a, b are not a matching
send/receive pair.

Lemma 1.4. If ρ, ρ′ are order-equivalent runs of A starting in the same con-
figuration, then ρ, ρ′ end in configurations with the same control state.

4

Definition 1.5. A run ρ with trace tr(ρ) = a1 · · · an is eager if the following
holds: if ai = p!q(m) for some 0 ≤ i < n then either ai+1 = q?p(m) or no action
aj with j > i is a receive on (p, q).

A channel that does not permit further receives is in its “growing phase”.
A Qcp A is eager if each c ∈ ReachA is reachable by some eager run. Eager

runs, modulo the fact that Definition 1.5 allows for runs which end in a sequence
of (unmatched) send actions, are closely related to globally 1-bounded runs,
whereas eager Qcp are close to existentially globally 1-bounded Cfm [LM04,
GKM07]. The (control-state) reachability question on eager runs asks whether
one can reach a given (control state) configuration by some eager run.

Recursive QCPs and oriented communication architectures. In the following
we introduce Rqcp together with a symmetric version of the “well-queueing”
property from [LMP08]. Informally speaking, Rqcp are Qcp where all basic
processes are pushdown automata.

A recursive Qcp (Rqcp) is a Qcp given by 〈(Sp)p∈P , Σ, (∆p)p∈P , s
0,M, Γ 〉

where each process p is a pushdown process over the local states Sp ⊆ Zp × Γ ∗

with a finite set Zp of control states and the content of the pushdown stack
represented by a word over the stack alphabet Γ ; further, the local actions Σloc

p

contain push(γ) and pop(γ) for each γ ∈ Γ , and we assume that in the initial
state all stacks are empty, i.e., s0 ∈

∏

p∈P
(Zp × {ε}).

A well-queueing Rqcp in [LMP08] is one where a process can only receive
when its stack is empty. Here, we dualize this concept by also allowing channels
where the sender (but not the receiver) must have an empty stack.

Definition 1.6. An architecture T = 〈P,Ch〉 together with a labeling of the
channels Ch = Chs∪Chr as “send restricted” (Chs) and / or “receive restricted”
(Chr), is called oriented.

For pushdown networks the previous definition translates, informally speak-
ing, as follows: a process p can send on a channel (p, q) ∈ Chs only with empty
stack. Symmetrically, p can receive on a channel (q, p) ∈ Chr only with empty
stack. By definition, channels are restricted at least at one end.

The semantics of an Rqcp R is given by a labeled transition system JAK =
〈C,Σ,→, c0〉 analogously to Definition 1.3 except for transitions (s, w)

a
−→(s′, w′)

that correspond to a (local) pushdown transition (sp, a, s
′
p) ∈ ∆p:

(i)’ if a ∈ Σloc
p ,

then w = w′ and further push and pop behave as local pushdown actions;
(ii)’ for a = p!q(m) ∈ Σcom

p ,
we demand additionally to (ii) that if (p, q) ∈ Chs then sp ∈ Zp × {ε};

(iii)’ for a = p?q(m) ∈ Σcom
p ,

we demand additionally to (iii) that if (q, p) ∈ Chr then sp ∈ Zp × {ε}.

Given an oriented architecture T = 〈P,Ch〉 we will use the following no-
tation, that forgets about the direction of the channels and focuses on the
(un)limited use of pushdowns: for two processes p, q ∈ P we write p •−◦ q if

5

(p, q) ∈ Ch \ Chs or (q, p) ∈ Ch \ Chr. Moreover, we write p ◦−◦ q if (p, q) ∈
Chs ∩ Chr or (q, p) ∈ Chs ∩ Chr.

Informally, p •−◦ q means that for at least one channel between p and q,
process p can use its stack without restriction. Similarly, p ◦−◦ q means that
neither p nor q can use their stacks when communicating. Finally, p ◦−• q is
equivalent to q •−◦ p. As this notation refers implicitly to a given channel between
p and q, we might have both p •−◦ q as well as p ◦−• q (or p ◦−◦ q) — since both
channels (p, q) and (q, p) may exist.

Remark 1.7. A channel can be both send and receive restricted, but we exclude
— per definition — channels that are unrestricted at both ends, as this leads
immediately to undecidability: one can reduce right away the intersection of two
context-free languages to the reachability question on a topology with a single
channel that is unrestricted at both ends (and eager runs suffice).

2 Decidable Oriented Architectures

Several factors lead to the undecidability of the (control-state) reachability ques-
tion for Rqcp. Particularly, the model is already undecidable even without push-
downs. Our actual motivation in this section is therefore to separate the unde-
cidability which stems from unbounded Fifo queues from the undecidability
originating from an unrestricted usage of pushdowns. Hence, we consider a re-
stricted version of the control state reachability question, namely the one on
eager runs. In the next section, we show how eager Qcp naturally arise from
some natural (and decidable) restrictions on cyclic communication. The most
simple example of an eager Qcp is an Rqcp on a polyforest architecture.

Definition 2.1. An oriented architecture T = 〈P,Ch〉 is called confluent if
there exist distinct processes p = r0, r1, . . . , rk, rk+1 = q (k ≥ 1) in T , satisfying
the following conditions: (1) (ri, ri+1) ∈ Ch ∪ Ch−1 for all 0 ≤ i ≤ k, and
(2) p •−◦ r1 and rk ◦−• q.

p r1 r2 r3 . . . rk q

Fig. 1. Example of a confluent architecture (mixing •−◦ and →= Ch notation).

Theorem 2.2. An oriented architecture T = 〈P,Ch〉 admits a decidable Rqcp

control-state reachability problem on eager runs if and only if it is non confluent.
Moreover, the problem is ExpTime-complete in the latter case.

The only-if direction of the theorem above is not difficult to show. The if-
direction is based on two main ingredients: first, we show how to reorder runs
such that we can identify subruns on subarchitectures that start and end with
empty stacks; second, we use induction on subarchitectures.
The subsequent lemma is the core of the remaining proof of Theorem 2.2.

6

Lemma 2.3. Let R be an Rqcp over a non-confluent architecture T , and con-
sider an eager run ρ of R starting with all stacks empty. Further assume that
ρ = ρ1a ρ2 b ρ3 with a, b ∈ Σ such that for some process p ∈ P:
(i) the stack of p is continuously empty during both subruns ρ1 and ρ3, and

continuously non-empty during ρ2, respectively;
(ii) there is no eager run ρ′ that is order-equivalent to ρ and has the form

ρ′ = ρ1c ρ
′
2 d ρ3 where c, d ∈ Σ with c 6= a or d 6= b.

Then, the stacks of all processes occurring in ρ2 are empty after both ρ1 and ρ2.

Proof. By (ii), each process q occurring in ρ2 has a “proof” for its presence in
ρ2. This proof consists of a simple, unoriented path in T between p and q.

We explain this more formally: notice first that a is necessarily a push action
and b its matching pop action on p. Consider now the first action of some q

occurring in ρ2: this is a communication either with p, or with some different
process r. Thus, we can assume inductively that there is a simple unoriented
path between p and r, which can be extended to a path between p and q.

Since p’s stack is continuously nonempty during ρ2, we know that the com-
munication between p and the first node p′ on the path above is on a channel of
type p •−◦ p′. Due to the non-confluent property, we cannot have r ◦−• q; hence,
q’s stack must be empty at the beginning of ρ2. A symmetric argument applies
at the end of ρ2. �

Proposition 2.4. The control-state reachability problem for Rqcp on eager
runs over non-confluent architectures is ExpTime complete.

Proof. For the upper bound we show how to compute inductively in ExpTime all
pairs of global states (s, s′) ∈ S2 such that there is an eager run over T = 〈P,Ch〉,
starting in s with stacks and queues empty, as well as ending in s′ with possibly
empty stacks and queues. Actually, we need to compute more, namely for which
sets P ⊆ P of connected processes we can reach s′ from s (with empty stacks
and queues). W.l.o.g. we assume that T is connected.

We (arbitrarily) order the processes in P and choose
the first process p ∈ P that has at least one edge
(channel) of type p •−◦ ∗ in T and at least one of
type either p ◦−• ∗ or p ◦−◦ ∗ (with ∗ denoting an
arbitrary process in P \ {p}). Since the architecture
is non confluent, only two cases can occur if such a
process does not exist: either (i) T contains no •−◦
edge at all, or (ii) T = 〈P = 〈r, r1, . . . , rk〉,Ch〉,
where:

– a channel of type •−◦ is one of (r, ri), for some i,
– a channel of type ◦−◦ is one of (ri, rj), for

some i, j.

r

r1 rkri

Fig. 2. Case (ii).

Let us first consider case (i) where T has no channel of type •−◦, i.e., all channels
in T are of type ◦−◦. In this case we can reorder any eager run into an order-
equivalent eager run where messages alternate with local pushdown runs, each of

7

them starting and ending with empty stack. This amounts to solving the control-
state reachability problem for one pushdown automaton of size exponential in
|P|, which is possible in ExpTime.

We consider now case (ii). Here, we may assume w.l.o.g. that r •−◦ ri for
every 1 ≤ i ≤ k (just add channels of type r •−◦ ri if there is no channel between
r and ri). Assume that there exists an eager run from s to s′, starting with all
stacks empty. For simplicity we also assume that the run ends with all channels
empty (the special case of unmatched sends can be handled similarly). This run
can be reordered into an order-equivalent eager run ρ of the following form:

ρ = σ0α0 m1σ1α1 m2σ2α2 · · ·mnσnαn (1)

where

– process r does not occur in σ0 · · ·σn,
– each mi is a message (i.e., send/receive pair) between r and some rj ,
– each αi is a sequence of local (pushdown) actions of r,
– each σi (i < n) starts and ends with all stacks of processes rj empty.

We obtain the previous reordering by scheduling the messages between r

and the rj as late as possible. That is, the run starts first with actions not
involving r (subrun σ0), plus some pushdown actions of r (subrun α0). Then the
first message m1 between r and some rj follows. All remaining actions are in
the future of this message, and σ1 is a run over the rj (which may synchronize
among themselves by communication), etc.

We check that the stacks of the rj are always empty at the beginning/end of
each σi by considering the subruns σ0α0m1σ1, σ0α0m1σ1m2α2σ2, etc.: consider
the first occurrence of some process q occurring e.g. in σ1. Either this occurrence
is the message m1 between q and r (so r •−◦ q), or it is a synchronization with
some ri, so ri ◦−◦ q. In particular, q’s stack must be empty at the end of σ0.

The existence of an eager run as above can be checked by first pre-computing
the control-state reachability for T \ r, which corresponds to the first case previ-
ously considered in this proof (recall that we compute summaries, i.e., all pairs of
global states that can be reached starting/ending with empty stacks and queues).
Then the question for T reduces to the control-state reachability of a pushdown
automaton (that of process p) of size exponential in |P|, thus showing the claim.

We now get back to the situation where T contains some process p ∈ P with
at least one channel of type p •−◦ ∗ in T , and at least one channel of type either
p ◦−• ∗, or p ◦−◦ ∗ in T .

Consider an (eager) run over T , starting (and possibly ending) with all stacks
empty. Again we assume, for convenience, that all channels are empty at the end.
The run can be reordered such that we obtain an order-equivalent run of the
form ρ0σ0ρ1 · · ·σn−1ρn, where:

– every subrun σi (i < n) starts and ends with empty stacks for all processes
q 6= p occurring in σi,

– p’s stack is continuously empty during ρi, and continuously non-empty dur-
ing σi, for each i.

8

We need to explain why we may assume that the subruns σi start / end with
empty stacks for each q 6= p. The reason is that we schedule the internal
push / pop actions of p that start / end a phase with non-empty p-stack such
that push actions have lowest priority, and pop ones have the highest one. Such
push / pop pairs on p delimit the subruns σi and Lemma 2.3 can be applied to
ρ0σ0ρ1, (ρ0σ0ρ1)σ1ρ2, etc.

The existence of suitable subruns σi can be checked inductively: notice that
channels of type p ◦−• ∗ and p ◦−◦ ∗ can be removed from T , since p’s pushdown
is non-empty during every σi, hence such channels are not used. More formally,
we check for each (connected) subset P ⊆ P with p ∈ P , and each pair of
starting/ending states s = (sq)q∈P , s′ = (s′q)q∈P whether there is a run of
processes from P from s to s′ in the modified architecture, starting/ending with
empty stacks and queues.

Consider now a set P corresponding to processes occurring in some run σi.
Notice first that every process in P can be reached from p via messages involving
only P ; symmetrically, every process in P can reach p via messages involving only
P . For each such set P we can introduce new synchronization messages between
processes in P such that we replace σi by a sequence Si of new messages with
the following properties: the first message in Si is sent by p, the last message is
received by p, and every process in P occurs among the receivers in Si. Such a
sequence Si can be used to enforce that processes in Pi go (in a sort of meta-
transition) from state s = (sq)q∈P to state s′ = (s′q)q∈P , thus replacing σi.
We can enforce that the new messages occur only in form of sequences Si, by
encoding Si with message contents. In order to avoid an exponential blow-up
in the size of the Rqcp we record the possible sequences Si separately. Notice
that using these sequences in the base step of the induction does not affect the
ExpTime upper bound.

We can now apply induction on the modified Rqcp in order to check whether
there is some run of the form ρ′ = ρ0S0ρ1S1 . . . Sn−1ρn. The induction is possible
since we can transform the channels of type p •−◦ ∗ into type ◦−◦(since p does
not use its pushdown in ρ′).

To summarize, the induction is done on two parameters: either we decrease
the overall number of channels, or we change at least one channel of type •−◦
into type ◦−◦. We first check the existence of runs σi inductively in exponential
time, by computing reachability for every pair of global states and subset of
processes (of which there are exponentially many). Then we modify the Rqcp

according to the previous calls and check inductively the existence of a single
run ρ′ (again, this is done for each pair of global states and set of processes).

Finally, let us comment on the lower bound: It is known (and probably folk-
lore) that the following problem is ExpTime-complete: checking the emptiness
of the intersection of a pushdown with n finite automata. The hardness follows
easily by a reduction from linearly bounded alternating Turing machines. Actu-
ally, a closely related problem is shown to be ExpTime-hard in [EKS03], namely
the reachability problem for pushdowns with checkpoints. Clearly, the intersec-

9

tion between a pushdown and n finite automata can be simulated on a topology
T = 〈P,Ch〉 with P = {r, r1, . . . , rn} and r •−◦ ri for each i. �

3 From Mutex QCP to Eager QCP

The previous section showed how to decide the control state reachability for
Rqcp (and therewith finite Qcp) on eager runs. Nevertheless, restricting the
communication to eager runs seems rather strong at first glance. In the following,
we will show how eagerness arises naturally on two practically relevant commu-
nication architectures: polytrees and cyclic architectures with mutex restriction.
Further, we discuss the reduction of the control state reachability problem for
(possibly infinite) mutex Qcp to their underlying local transition systems, like
e.g., Petri nets.

Any communication architecture T can be regarded as directed graph 〈P,Ch〉;
let UCycle(T) be the set of its undirected simple cycles. A cycle is undirected
if we ignore the direction of the channels, and simple if it has no subcycle of
smaller length.

Definition 3.1. A configuration c of a Qcp A is mutex with respect to a given
architecture T if for every cycle α of UCycle(T) at most one of the channels
occurring in α is non-empty in c. A Qcp A is called mutex with respect to a
given architecture T if every c ∈ ReachA is mutex.

Before discussing mutex Qcp in detail, we first recall two known results that are
subsumed by our definition of mutex:

Remark 3.2. A special case of mutex Qcp was considered in [LMP08]: polyfor-
est architectures over finite Qcp, as well as (well-queueing) root-to-leaf directed
forests for Rqcp. Their decidability proof relied on the idea that, on any tree
architecture, we can reorder runs such that first all actions of the root process
are scheduled, and then, in breadth-first order, the actions of all others. Con-
sequently, each run could be partitioned into a bounded number of contexts
(bounded by |P|) where in each context only one process executes all its actions
by reading on one unique incoming channel from its tree parent (and — in the
case of Rqcp— solely when its local stack is empty). Hence, the decidability
problem reduced to the control state reachability for a bounded-phase multi-
stack pushdown system, which is known to be decidable in doubly exponential
time [LMP07].

We will show in the following that mutex Qcp are eager, and, consequently,
apply the results of the previous section to obtain the decidability of control-
state reachability via a direct proof. Moreover, recall that the complexity of the
algorithm of the previous section is ExpTime, so one exponential less than the
positive results of [LMP08].

10

Remark 3.3. Runs over an architecture of two finite processes connected by two
channels where each reachable configuration is mutex are known as “half-duplex
communication”. For these, it is known how to decide the (general) reachability
question by computing a recognizable description of the channel contents [CF05].
Quasi-stable systems are a semantic ad-hoc extension of this idea to larger, cyclic
architectures of finite Qcp [CF05], which is subsumed by our mutex condition.

Proposition 3.4. Given a Qcp A that is mutex with respect to a given archi-
tecture T , each of its runs has an order-equivalent eager run.

Proof. In the following, we will differentiate the occurrences of one action by
referring to them as events. For each process p ∈ P occurring in ρ there is a first,
initial event w.r.t. ρ which will be abbreviated fp; further, each receive event
has a preceding matching send in ρ. All events that belong to the same process
are totally ordered. Consequently, we define the partial order “before” (denoted
by <) between events as the transitive closure of the previous two cases. In the
following we will focus only on matched communication events, by considering
send actions on channels that already entered their growing phase as internal
actions.

We will inductively define a reordering for a run ρ whose first configuration
c0 = 〈s, w〉 fulfills wp,q = ε if there exists a receive event q?p in ρ.

Assume we have a run ρ from c to c′ and c fulfills the previous property. First,
we pick an initial send event fp on a channel from process p to q which either
(i) has no matching receive in ρ (i.e., it is the first send in a growing phase), or
(ii) its matching receive on process q is also initial, hence, equal to fq. In case
(i) we schedule fp first and reorder inductively the remaining run starting from
c′′ with c

fp−→ c′′ towards c′. For case (ii) we first schedule fp and then fq before
we inductively reorder the remaining run starting from c′′ with c

fp−→ c′′′
fq−→ c′′.

Note than in both cases c′′ satisfies our requirement.

Next we have to show that it is always possible to apply cases (i) or (ii)
above, to any run ρ of our mutex Qcp. The general idea is as follows. Suppose
that we pick an initial send event fp0

on process p0 that has a matching receive
ep0

on process p1, but ep0
is not initial. Then we can restart our search for

an initial event from p1 on. If fp1
is a send, then we proceed as for p0; else,

if fp1
is a receive, we continue with its matching send on process p2. As we

only have finitely many processes, an unsuccessful, repeated search leads to a
cycle in UCycle(T): 〈p0, p1, p2, . . . , pi, pi+1, . . . , pk, pk+1〉 with pk+1 = pi and all
pi (i ≤ k) pairwise different. Moreover, we show the existence of at least two
non-empty channels on this cycle.

In the following, we slightly abuse notation by writing fi and instead of fpi

for the initial event of process pi. We focus on the initial events fi, . . . , fk and
their matching events ei, . . . , ek on processes pi+1, . . . , pk, pk+1 = pi. Obviously,
fj+1 < ej for all i ≤ j ≤ k, since both fj+1, ej occur on process pj+1 and fj+1

is initial. We distinguish the following cases:

(a) all initial events fi, . . . , fk are receives (cf. Fig. 3(a)), then ej+1 < fj+1 < ej
for all i ≤ j ≤ k; hence, we arrive at the contradiction ei < ei;

11

p1 . . . pi pi+1 . . . pk

fi

ek ei

fk

(a)

fi+1

ek−1

p1 . . . pi pi+1 . . . pk

fi

ek ei

fk

(b)

p . . . pi pi+1 . . . pk

fi

ek ei

fk

(c)

fi+1

ek−1

e

Fig. 3. Cycles in the proof of Lemma 3.4 (⋄ : events, arrows : messages).

(b) there are at least two sends among the initial actions, for example fj and
fl with i ≤ j < l ≤ k; consequently, c

fj−→ c′′
fl−→ c′′′ leads to a configuration

which is not mutex (cf. Fig. 3(b)) and, hence another contradiction;
(c) there is only one send event among the initial events of the cycle, say fi.

Then, fi = fk+1 is before ek, and ek is a send event, too (since all fj with
i < j ≤ k are receives). It is easy to see that ek < fk < ek−1 < · · · < fi+1 <

ei. In particular, all events on each of pi+1, . . . , pk are after ek.
Consider now an event e with fi < e < ek. Notice that e cannot belong to
any of pi+1, . . . , pk, as all events on these processes must take place after ek
(cf. Fig. 3(c) for e on a process p that does not participate in the cycle);
consequently, the configuration obtained after executing all events before ek
is not mutex, as the channels (pi, pi+1) and (pi, pk) are both non-empty.

�

Corollary 3.5. If a Qcp A is mutex with respect to a given architecture T then
A is eager.

Proposition 3.6. The control state reachability for finite Qcp that are mutex
with respect to the given architecture is Pspace-complete.

Remark 3.7. Control-state reachability is decidable for particular infinite-state
mutex Qcp. For example, if all local transition systems are Petri nets, then the
control state reachability question reduces to a Petri net reachability question
which is known to be decidable [May84, Kos82].

The mutex property can be checked effectively for Qcp.

Proposition 3.8. It is PSpace-complete to check whether a finite Qcp is mu-
tex with respect to a given architecture.

4 Bounded Phase Reachability

Besides their proven practical relevance in the verification of concurrent pro-
grams [QR05], bounded-context reachability allows to attack the (control-state)
reachability problem on Qcp from a different angle. In this section, we neither
restrict the communication architecture, nor constrain the runs to be eager (or
mutex). The price we pay is a (strong) restriction on the form of the possible

12

runs, by fixing the number of contexts. We present in this section a construction
that subsumes the 2ExpTime algorithm for bounded-context reachability for
well-queueing Rqcp described in [LMP08]. Recall that the latter algorithm is
based on a reduction to bounded-phase reachability for multi-stack systems. In
contrast, our construction below is direct and simpler.

We define a phase in an Rqcp run ρ over an oriented architecture as a
(contiguous) subrun of ρ consisting of actions on a unique process, say p, that
are subject to one of the two restrictions below (definingM -phases andN -phases,
resp.):

(M) Receives are from a unique process, say q, with (q, p) ∈ Ch of type p ◦−• q or
p ◦−◦ q. Sends go to (arbitrarily many) processes r with (p, r) ∈ Ch of type
p •−◦ r.

(N) Sends go to a unique process, say q, with (p, q) ∈ Ch of type p ◦−• q or
p ◦−◦ q. Receives come from (arbitrarily many) processes r with (r, p) ∈ Ch
of type p •−◦ r.

Notice that M -phases are precisely the phases (contexts) used in [LMP08],
whereas N -phases represent the dual notion. We will refer below to the channel
(q, p) (M -phase) resp. (p, q) (N -phase) as the special channel of the phase. A
run ρ of an Rqcp is K-bounded, if we can write ρ = ρ1 · · · ρK , with each ρi a
phase as above.

Theorem 4.1. Given an Rqcp A and an integer K, the K-bounded control
state reachability problem for A can be solved in time doubly exponential in the
number K of phases (but polynomial in the size of A).

Sketch of proof. The basic idea is to decrease the number of phases in a particular
order: M -phases are deleted for right to left (a sort of pre-computation), whereas
N -phases are deleted from left to right (post-computation). Deleting a phase
i belonging to some process p amounts to synchronizing a finite automaton
obtained from Ap and phase i with the current automaton Aq of the process
communicating with p on the special channel of phase i. We obtain this finite
automaton by exploiting the fact that p’s stack is empty while communicating in
phase i on the special channel. In addition we must ensure that the phase i that
we delete starts and ends with empty p-stack. Finally, for a single phase we need
to solve a reachability problem for a single pushdown with doubly exponentially
many states. The details can be found in the long version of this paper.

Remark 4.2. Adapting proof ideas from [LMP07, ABH08], we can show that the
complexity bound in Theorem 4.1 is tight.

5 Conclusion

Applications. Qcp combine an automata-based local process model with point-
to-point communication, which results in an intuitive and simple framework.

13

q1

q2

q3

q4

(a)

p3

p5 p6

p1 p2

p4

p7

p8

(b)

Fig. 4. Non-confluent architectures: (a) ring, and (b) hierarchical master-worker set-
ting — tree-like architecture with •−◦-channels between master and workers (distribute
tasks and collect results while in computation, send result to own master when compu-
tation finished, i.e., stack empty) as well as ◦−◦-channels between workers of the same
master; note the •−◦-cycle on the top level.

Since we subsume well-queueing Rqcp, we also inherit their application do-
mains, e.g., event-based programs. The dual restriction to well-queueing (i.e.,
that sending on a channel is only possible if the stack is empty) covers e.g. “in-
terrupt based” programming models, i.e., threads that can receive messages while
still in recursion, as well as extended sensor networks where peers can collect
and send data while using their pushdown for computations.

Fig. 4 (b) shows an example for non-confluent architectures that are on the
rise with the current focus on Grid computing. The topology depicts a hierarchi-
cal overlay network as implemented, for example, in a master-worker protocols.
Here, mutual communication is restricted with respect to the hierarchy (in gen-
eral: •−◦ top-down and ◦−◦ between siblings). Notice also the use of the dual
notion to well-queueing, when sending information from lower to higher levels.

Proposition 3.4 allows for further applications, since it does not assume that
the Qcp is finite: we can combine locally decidable models for multi-threaded
programs (with or without local data), as well as local event-based programs
together with eager (or mutex) communication architectures; natural candi-
dates for local models would be Petri Nets, Wsts, or multi-set pushdown sys-
tems [SV06].

Outlook. We discussed in detail the class of eager Rqcp (as well as mutex Qcp)
which both generalize the current lineup of decidable models for asynchronously
communicating pushdown systems. Further, we presented an optimal decision
procedure for eager Rqcp over non-confluent architectures in ExpTime, as well
as a direct and simpler construction for bounded phase reachability for Rqcp.

This paper dealt with the most basic form of verification, namely control-
state reachability. More general reachability questions (w.r.t. configurations)
may be interesting to consider. Further decision problems for Qcp, like bound-
edness or liveness, will be investigated in future work.

14

References

[ABH08] M. F. Atig, A. Bouajjani, and P. Habermehl. Emptiness of multi-pushdown
automata is 2ETIME-complete. In DLT’08, volume 5257 of LNCS, pages
121–133. Springer, 2008.

[ABT08] M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of
acyclic networks of pushdown systems. In CONCUR’08, volume 5201 of
LNCS, pages 356–371. Springer, 2008.

[AJ96] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
Inf. Comput., 127(2):91–101, 1996.

[BESS05] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability
analysis of multithreaded software with asynchronous communication. In
FSTTCS’05, volume 3821 of LNCS, pages 348–359. Springer, 2005.

[BMT05] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of
dynamic networks of pushdown systems. In CONCUR’05, volume 3653 of
LNCS, pages 473–487. Springer, 2005.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. of

the ACM, 30(2):323–342, 1983.
[CF05] G. Cécé and A. Finkel. Verification of programs with half-duplex communi-

cation. Inf. Comput., 202(2):166–190, 2005.
[EKS03] J. Esparza, A. Kucera, and S. Schwoon. Model checking LTL with regular

valuations for pushdown systems. Inf. Comput., 186(2):355–376, 2003.
[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems every-

where! Theoretical Computer Science, 256(1-2):63–92, 2001.
[GKM06] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model check-

ing algorithms for existentially bounded communicating automata. Inf. Com-

put., 204(6):920–956, 2006.
[GKM07] B. Genest, D. Kuske, and A. Muscholl. On communicating automata with

bounded channels. Fundamenta Informaticae, 80:147–167, 2007.
[JM07] R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous pro-

grams. In POPL’07, pages 339–350, ACM, 2007.
[Kos82] S. Rao Kosaraju. Decidability of reachability in vector addition systems. In

STOC’82, pages 267–281. ACM, 1982.
[LM04] M. Lohrey and A. Muscholl. Bounded MSC communication. Inf. Comput.,

189(2):160–181, 2004.
[LMP07] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-

sensitive languages. In LICS’07, pages 161–170. IEEE, 2007.
[LMP08] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis

of concurrent queue systems. In TACAS’08, volume 4963 of LNCS, pages
299–314. Springer, 2008.

[May84] E. W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM J. Comput., 13(3):441–460, 1984.

[Pap94] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[QR05] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent

software. In TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.
[SV06] K. Sen and M. Viswanathan. Model checking multithreaded programs with

synchronous atomic methods. In CAV’06, volume 4414 of LNCS, pages 300–
314. Springer, 2006.

15

Appendix

Proofs for Section: Decidable Oriented Architectures

Proposition . The Rqcp control-state reachability problem is undecidable if the
topology is confluent. This holds even if we only consider reachability on eager
runs.

Proof. Assume that we have a simple and unoriented path p, r1, . . . , rk, q between
p 6= q, with p •−◦ r1 and rk ◦−• q. Then we simulate non-deterministically the
intersection of two context-free languages on p, q, by conveying the information
about the common input guessed by p, q on the path r1, . . . , rk. Since the path
between p, q is unoriented, the intermediary processes ri (for 1 ≤ i ≤ k) may
have to guess the input, and deadlock if the guess was wrong. �

Proofs for Section: From Mutex QCP to Eager QCP

Proposition 3.6. The control state reachability for finite Qcp that are mutex
with respect to the given architecture is Pspace-complete.

Proof. We want to know for a given control state s = (sp)p∈P whether a config-
uration c = (s,w) can be reached, for some w, from the initial configuration c0.
By Lemma 3.4 we know that c can be reached by a eager run ρ. Consequently, we
can guess the run ρ storing the current global state, but without recording more
than one message, which gives the (usual) polynomial space bound for products
of automata.

Note that we need to take extra care of a channel’s growing phase by non-
deterministically guessing, at each step of the previous computation, whether a
channel will enter its growing phase. This additional information can be stored
in polynomial space.

PSpace-hardness follows by reducing from the non-emptiness test of the
intersection of arbitrarily many finite automata. �

Proposition 3.8. It is PSpace-complete to check whether a finite Qcp is
mutex (eager, resp.) with respect to a given architecture.

Proof. Assume that A over an architecture T is not mutex and consider a run ρ

of minimal length from c0 to a configuration c = (s,w) that is not mutex. Thus,
by minimality all configurations in ρ up to c are mutex.

So by an argument analogous to the construction in the proof of Lemma 3.4,
we can reach c′ — the predecessor of c — by a eager run ρ′, and test whether
there exists a transition c′

a
−→ c with a send action a that violates the mutex

condition for c. Hence, we will guess ρ′ without storing more than one message
at each step, leading to a configuration c′ in which one channel of a cycle in
UCycle(T) is non-empty and the action a would write on another channel in
this cycle.

16

As in the previous proof for Proposition 3.6, we have to take care of growing
channels by a flag construction.

PSpace-hardness is not hard to obtain by reducing from the non-emptiness
test of the intersection of arbitrarily many finite automata. We can construct
the finite Qcp in such a way that a “bad” cycle is reached precisely from the
target (final) states of the product of the automata. �

Proofs for Section: Bounded Phase Reachability

Theorem 4.1. Given a Qcp A and an integer K, the K-bounded control state
reachability problem for A can be solved in time doubly exponential in the number
K of phases (but polynomial in the size of A).

Proof. Let ρ = ρ1 · · · ρk be aK-bounded run ofA = 〈(Sp)p∈P ,M,Σ, (∆p)p∈P , s
0〉,

with each ρi an M - or an N -phase. W.l.o.g. we suppose that all stacks are empty
at the end of ρ. Let (tp)p∈P ∈ Πp∈PSp be the target control state. We first mod-
ify the Rqcp A in such a way that we explicitly refer to phases in action names
(actually we only consider a subset of A’s behaviors, namely those corresponding
to K-bounded runs): we add to each send p!q(m) the number i of the phase in
which the send occurs, as well as the number j of the phase in which the match-
ing receive occurs; in the special case j = K + 1, the matching receive does not
occur within the first K phases. So p!q(m) is replaced (non-deterministically) by
p!q(m | i, j), with i < j ≤ K + 1. We proceed similarly for receives, this time
just replacing p?q(m) by p?q(m | i, j) with i < j ≤ K. In addition, we label
also the local actions by their phase number. The transition relation ∆p of each
automaton Ap = 〈Sp,M,Σp, ∆p, s

0
p〉 can check that the phase labeling for p’s

actions is consistent. The set Sp of local states increases polynomially in K.
At the beginning of the construction we fix for each phase 1 ≤ j ≤ K: (1) its

type, (2) the process to which it belongs, and (3) its special channel. Moreover,
we fix the “reading graph” Read , which is a DAG with nodes (p, j), where p is
the process of phase j. If j is an M -phase then there is an edge to (p, j) from
each (q, i) such that (a) (q, p) is the special channel of phase j and (b) q in phase
i sends to p in phase j. Dually, if j is an N -phase then there is an edge from
(p, j) to each (q, k) such that (a) (p, q) is the special channel of phase j and (b)
p in phase j sends to q in phase k. Clearly there are some natural consistency
requirements on Read . Note also that there are only exponentially many graphs
Read , so that we can check them one by one.

In addition, we will fix at the beginning some state information for 4 distin-
guished points in each phase i (belonging to some p): the starting/ending point
of the phase, together with the first and last point where p’s stack is empty (if
any). Of course, some of these points might coincide. For each of the 4 points we
fix p’s state at that point. Again, there are exponentially many cases to check
one by one.

We now show how to reduce the K-bounded control state reachability ques-
tion for A to a (K−1)-bounded control state reachability question for a modified

17

Rqcp A′. Assume first that there is at least one phase of type M , and let j ≤ K

be the index of the last M -phase in ρ. Suppose moreover that phase j belongs
to process p, and that the special channel of this phase is (q, p) ∈ Ch. We will
delete phase j, and adapt the two local automata Ap,Aq accordingly.

First, we show that we may assume w.l.o.g. that ρj starts and ends with
empty p-stack. So let ρk = αβγ, where β starts and ends with empty p-stack
and such that the stack of p is never empty during α, nor during γ (α, β, γ might
be empty each). By the definition of M -phases, the only possible actions during
α and γ are sends on channels of type p •−◦ r. Since all phases j < ℓ ≤ K are
N -phases, these sends are unmatched within ρ, hence they must be labeled as
p!r(c | j,K+1). We now declare all sends p!r(m | j,K+1) as local p-actions, and
move α to the end of the last phase i < j that belongs to p. The subrun γ can
be either moved to the beginning of the next phase belonging to p, or deleted
if there is no such phase. Recall that we know p’s state after α and before γ,
respectively. So we can adapt the information about the 4 distinguished points
in the phases belonging to p that are modified.

So assume that ρj starts in p-state sp and ends in s′p, both with empty p-
stack. From Ap we can define a finite automaton Bp that accepts precisely those
sequences (m1, i1) · · · (mn, in) ∈ (M ×{1, . . . , j− 1})∗ such that Ap can go from
sp to s′p on a sequence w of actions of phase j only, (1) starting and ending with
empty stack, (2) performing p?q actions only when the stack is empty, and such
that (3) the projection of w on p?q actions equals p?q(m1 | i1, j) · · · p?q(mn |
in, j). Note that Bp can be constructed on the same state space as Ap. We finally
modify Ap by disallowing actions from phase j.

Finally we change the automaton Aq of process q into A′
q in order to ensure

consistency with ρj . The new automaton A′
q starts simulating Bp in parallel from

state sp on the subsequence consisting precisely of symbols q!p(m | i, j) (for all
m ∈ M and i < j). Moreover, the simulation of Bp must end with state s′p.

We need now to update the state information for the 4 distinguished points
in the phases that are synchronized by Bp above. Assume that the incoming
edges of (p, j) are (q, i1), . . . , (q, ik) with i1 < · · · < ik. So a run of Bp “splits”
over (a suffix of) phase i1, followed by phases i2, . . . , ik. So for each of the phases
i1, . . . , ik and each of the 4 distinguished points (except maybe for some of the
points of i1) we need to fix a state of Bp. We then run the recursive algorithm for
each choice of these states. We will see below what this means for the running
time.

Now it remains to deal with the case where there is no M -phase in ρ. Here,
it is quite easy to check that we may assume from the beginning that each phase
starts and ends with empty stack (of all processes). So here we do not need the
extra information about the 4 distinguished points for each phase.

Since there are only N -phases we work from left to right and we eliminate the
first phase of the run. Suppose that the first phase belongs to process p. Since
it is an N -phase, the only possible actions are sends to a unique process, say q,
such that (p, q) ∈ Ch is of type p ◦−• q or p ◦−◦ q. In particular, p’s stack is empty
during this first phase. So from Ap we obtain directly a finite automaton Bp that

18

accepts precisely those sequences (m1, j1) · · · (mn, jn) ∈ (M × {2, . . . , k})∗ such
that Ap can go from s0p to some sp on a sequence w of actions of phase 1 only,
(1) working without stack, (2) performing only p!q actions (or local actions), and
such that (3) the projection of w on p!q actions equals p!q(m1 | 1, j1) · · · p!q(mn |
1, jn). We also set the initial local state of Ap to sp and disable actions from
phase 1. We change the automaton Aq by synchronizing with Bp on q?p(m | 1, j)
actions (for all m ∈ M and 1 < j). Moreover the synchronization starts with Bp

in state s0p.
Let us now estimate the running time of the construction. For simplicity

we focus on the elimination of M -phases. During the phase elimination, au-
tomata Aq get synchronized with automata Bp (with the same state space as
Ap at the current stage). So local states become tuples of local states of the
original automata Ar. If the length of the tuples gets at most F (j) after elim-
inating j < K phases, then we can show that the overall construction is of
complexity nO(K2

·F (K)): denote by t(i) the time needed for i phases. Then
t(1) ≤ nO(F (K)) and t(i) ≤ (nF (K−i))4K · t(i − 1) (the first factor stands for
the states of the 4 distinguished points needed in the recursive step). So we have

t(K) ≤ n4K·(F (1)+···+F (k−1))t(1) ≤ nO(K2
·F (K)) as claimed.

Finally, it is not hard to see that F (j) is exponential in j, which gives the
doubly exponential upper bound (in K).

�

19

