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Abstract— In this paper, a method of analytic subsample 

spatial shift estimation based on an a priori n-D signal model is 
proposed. The estimation uses the linear phases of n analytic 
signals defined with the multidimensional Hilbert transform. This 
estimation proposes: i) an analytic solution to the n-D shift 
estimation and ii) an estimation without processing complex 
cross-correlation function or cross-spectra between signals 
contrary to most phase shift estimators. The method provides 
better performance in estimating subsample shifts than two 
classical estimators, one using the maximum of cross-correlation 
function and the other seeking the zero of the complex correlation 
function phase. Two delay estimators using the in-phase and 
quadrature-phase components of signals are also compared to our 
estimator. Like most estimators using the complex signal phases, 
the estimator proposed herein presents the advantage of 
unaltered accuracy when low sampled signals are used. 
Moreover, we show that this method can be applied to motion 
tracking with ultrasound images. Thus, included in a block-based 
motion estimation method and tested with ultrasound data, this 
estimator provides an analytical solution to the translation 
estimation problem. 

Index Terms – motion estimation, multidimensional analytic 
signal, subsample shift estimation, ultrasound imaging 

I. INTRODUCTION

PATIAL shift estimation is applied in different fields such as 
sonar, radar, biomedical imaging and ultrasonics. For example, 
in motion estimation with block matching-based methods, shift 

estimation is used to locally find the shifted version of a block from 
one frame to the next one. This paper addresses the problem of 
motion tracking with ultrasound images applied to ultrasound static 
elastography [1], which is a technique that characterizes the elasticity 
of soft biological tissues.  

In block matching methods, a common matching technique is to 
search for the shift lags that maximize or minimize cost functions 
such as the cross-correlation or the sum of absolute or square 
differences [2].  

In many applications in fields such as the video or medical 
applications addressed in this paper, the local shifts to estimate are 
smaller than the image’s pixel size. For video applications, different 
subpixel motion estimation techniques can be found in the literature, 
such as the quarter-pixel motion estimation of H.264 [3] or improved 
derivations of this method [4]. Methods based on a parabolic 
interpolation of the ambiguity function are also proposed; they can be 
used to design fine estimators for spatial shift estimation [5]. To limit 

the need for interpolation in subsample estimation, spatial shift 
estimators using the phase correlation have also been discussed in the 
literature [6]. A comparative study of two phase delay estimators 
between two noisy sinusoids is given in [7]. In this reference, a phase 
delay estimator using the in-phase and quadrature-phase components 
of the signals is proposed. This method, referred to as the unbiased 
quadrature delay estimator (UQDE), is an improvement on the QDE 
estimator proposed in [8]. 

For ultrasound elastography, shift estimators using the phase of the 
complex signals have also been proposed in [9-11] and have shown 
unaltered performance for low sampled signals. 

Based on Jensen’s work [12] and using the image formation 
method proposed by Liebgott et al. in [13], we can control the shape 
of the signals which allows us to consider an a priori signal model. 
This article considers an n-D signal model based on a product of n 
sinusoids and proposes a phase delay estimator. The estimation uses 
the phases of n analytic signals chosen to obtain a linear estimation 
problem. Moreover, these complex signals are chosen such that the 
linear system obtained can be analytically solved, providing an 
analytic estimation for our phase delay problem. The estimator is 
then adapted so that the relative spatial delay between two shifted 
versions of the proposed signal model can be estimated. We show 
that the proposed estimator depends less on the signal resolution than 
a classical estimator by maximum of correlation.  

Compared to other shift estimators proposed in the literature and 
based on the complex signal phases, the method reported herein does 
not need to process the cross-correlation function between signals. 
The estimator is directly applied to the signals, which makes it more 
computer-efficient. 

In section II, the signal model and the multidimensional Hilbert 
transforms used to generate the analytic signals are introduced. 
Section III describes the estimation method and the statistical 
behavior of the proposed estimator.  Section IV shows how the 
estimator is used for motion tracking with a block–based motion 
estimation method. Sections V and VI present results on numerical 
simulations and experimental data. The estimator proposed is 
compared to the maximum of correlation estimator, an estimator 
based on the phase of the complex cross-correlation function and the 
above-mentioned QDE and UQDE estimators. Finally, conclusions 
are drawn in section VII. 

II. SIGNAL MODEL

The problem addressed here is estimating the spatial shift 

parameter vector ( )T
n21 d,,d,d …=d  given the harmonic function 

nr : →ℝ ℝ  in (1).
. 
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( ) ( ) ( )( )
1

2
n

k k k

k

r w cos f x dπ
=

= −∏x x (1) 

We denote vectors in n
ℝ  (n arbitrary) with boldface lowercase 

letters. Thus, in (1) ( )T
n21 x,,x,x …=x denotes the n-D spatial

variable, kf are the frequencies on each direction assumed to be 

known and )(w x is an n-D window assumed to have a disjointed 

Fourier spectrum from the cosinus product (see appendix for the use 
of the conditions on w). Notice that in this application of motion 
estimation, a relative shift between two signals that have the same 
form as in (1) will be discussed. 

By analogy with the 1-D case, in the theory of the complex signal, 
two extensions of the Hilbert transform were defined: the total 
Hilbert transform [14] and the partial Hilbert transform [15]. Let us 

define n
Hr : →ℝ ℝ the total Hilbert transform andp n

Hr : →ℝ ℝ

the partial Hilbert transforms of r. We use small letters to denote the 
functions in the spatial domain and capital letters to denote their n-D 

Fourier transform. Let ( )T
n21 u,,u,u …=u be the n-D frequency

variable. Thus, in the Fourier domain, the Hilbert transforms are 
defined as follows: 

( ) ( ) ( )( )
1

sign
n

H k

k

R R j u
=

= −∏u u (2) 

( ) ( ) ( )( )sign k

n

p

H k

k 1

R R j u
=

= −∏p
u u , (3) 

where 

( )
1 0

sign 0 0

1 0

k

k k

k

, if u

u , if u

, if u

>

= =

− <







 
(4) 

and kp 1= if the direction kx is present in the partial Hilbert

transform and kp 0= if not ( kp  denotes the kth element of vector p). 

Note that the total Hilbert transform can be obtained by the partial 
transform if all n directions are considered. Moreover, if all vector p 
elements are equal to zero no Hilbert transform is processed. 

Using the original function r and its Hilbert transforms introduced 
in (2) and (3), we can define a series of analytic signals, 

denoted ( )
i
r x . The analytic signals are defined in the Fourier 

domain by: 

( ) ( ) ( ) ( )( )signik

n

i k

k 1

R R 1 1 u
=

= + −∏ b
u u , (5) 

with1 2ni≤ ≤ . In (5) bi represents an n-D vector whose elements
can take the value of zero or one (bik denotes the kth element of vector 
bi). Therefore, 2n different vectors bi and consequently 2n analytic 
signals can be defined. We conclude that in  
 the variable i is an integer between 1 and 2n. 

Example. To illustrate how the analytic signals defined in (5) are 
related to the Hilbert transforms introduced in (2) and (3), let us 
consider an example for n equal to 2 [16]. Four analytic signals can 
be generated in this case. Let us consider the case corresponding 

to ( )T
0,0=b , denoted r1. Equation (5) becomes: 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

sign sign

sign sign sign sign

1 1 2

1 2 1 2

H H H

R R 1 u 1 u

R 1 u u u u

R R j R R

= + +

= + + +

= − + +1 2p p

u u

u

u u u u (6) 

with ( )T
1,0=1p and ( )T

0,1=2p . 

Figure 1 represents the Fourier transforms of signal r in (1) and of 
analytic signal r1 calculated in (6). The example given corresponds to 
n equal to 2 and a Gaussian window w. We observe that the analytic 
signal r1 has a single quadrant spectrum. Note that the choice of the 
quadrant in the Fourier domain is made by vectors b. 

(a) (b) 
Figure 1. Modulus of the 2-D Fourier transforms of (a) real signal 

r and (b) complex signal r1. 

For the function given in (1) and using the induction method (see 
appendix), we can show that the phases of the analytic signals 
defined previously have the form in (7). 

( ) ( )( ) ( ) ( ) ( )
1

2 1 i

n
k

i i k k k

k

r f x dφ φ π
=

= = − −∑ b
x x (7) 

III. A NALYTIC ESTIMATION

The phases of the analytic signals defined in section II are used here 
to estimate the n-D vectord . The model of the phases in (7) leads us 
to consider a class of estimation problems represented by the linear 
model:  

vdy += H (8) 
where d  is the deterministic vector of unknown parameters, y is the 

vector containing the observations, i.e. the phases of the analytic 
signals, H is a known 2n×n matrix and v is the noise. This type of 
linear model estimation has been widely studied in the literature for 
the general case. Among the proposed methods, d vector is 

commonly estimated by searching for the vector d̂ so that the 

estimated vector̂y is as close as possible to the given data y. If the 

total squared error in the observation is used, we deal with the 
classical least-square (LS) estimation [17]. The LS estimation is then 
given by: 

( ) 1T Tˆ H A H H A
−

=LSd y , (9) 

where A is an arbitrary positive definite weighting matrix. 
It should be remembered that the purpose here is to obtain an 

analytic expression for the estimation of vectord , i.e. which does not 
use a numerical algorithm to inverse the matrices in (9). Therefore, 
we propose to restrict to n the number of observations and 
consequently the number of analytic signals considered. In this way, 
H becomes an n×n matrix. Moreover, we choose n particular analytic 
signals for which the matrix H is invertible and may be analytically 
inverted. Note also that all positive definite matrices are invertible. In 
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this case, the estimation in (9) becomes: 

( ) 11 1 T T 1ˆ H A H H A H
−− − −= =ASd y y , (10) 

where the subscript AS stands for analytic shift estimation. 
Based on the phase model in (7) and on the linear estimation 

problem in (10), let us define the observations vector y as functions 

of measured phases( )
i

φ x , denoted ( )
i

Φ x , and the matrix H.

( ) ( )( ) ( )
1

2 1 1
n

k

i k k i

k

y f x , for i nπ
=

= − − Φ ≤ ≤∑ i
b

x
(11) 

( ) ( )

( ) ( )

11 1n

n1 nn

b b

1 n

b b

1 n

2 f 1 2 f 1

H

2 f 1 2 f 1

π π

π π

 − −
 

=  
 
 − − 

⋯

⋮ ⋮ ⋮

⋯

(12) 

As explained above, n different vectors b are chosen so that the 
matrix H is invertible. This choice was also motivated by the fact that 
matrix H should be easily updated when passing from n-1 dimensions 
to n dimensions. Moreover, the inverted matrix of H (see (14)) has a 
simple form that facilitates its analytic multiplication by vector y. The 
possibility retained which makes H analytically invertible for all 
integers n is given in  

. 























=























0111

0011

0001

0000

T

T

T

T

⋯

⋯

⋮⋮⋮⋮⋮

⋯

⋯

⋮

n

1-n

2

1

b

b

b

b

(13) 

For this series of vectors bi
T, the determinant of the matrix H is 

shown to be equal to ( )∏
=

−
n

k

k
n f

1

1 22 π  and consequently different

from zero for non-zero frequencies. In the case considered, the 
inverse of the matrix H is: 



























−

−

=−

nn ff

ff

ff

H

ππ

ππ

ππ

4

1
00

4

1

0
4

1

4

1
0

00
4

1

4

1

22

11

1

⋯

⋮⋮⋮⋮⋮

⋯

⋯

 (14) 

With these assumptions and using (10), the AS of vector d gives 
the following result:  

( ) ( )( ) ( )

( ) ( )( )

ASi i i i 1
i

ASn n n 1
n

1
d̂ x , for 1 i n 1

4 f

1
d̂ x

4 f

π

π

+− Φ − Φ ≤ ≤ −

− Φ + Φ

= x x

= x x

(15) 

The result in (15) is obtained considering only one observation of 
each phase for one given value of vector x. For each phase, we 
propose to take into account a series of measures and to calculate the 
final estimation as the mean value of AS estimations in (15). In this 
multi-measure case, let us consider the definition intervals for each 

direction of vector x as follows: 

1 1 1 n n nM x N ,...,M x N≤ ≤ ≤ ≤ .

Consequently, the mean analytic shift (MAS) estimation becomes: 

( ) ( )

( )

( )

( ) ( )

( )

n1

1 1 n n

n1

1 1 n n

NN

i i 1

x M x Mi i
MASi n

i k k

k 1

NN

n 1

x M x Mn n
MASn n

n k k

k 1

...
M N

d̂ ,
2

4 f N M 1

for 1 i n 1

...
M N

d̂
2

4 f N M 1

π

π

+
= =

=

= =

=

 Φ − Φ += −
− +

≤ ≤ −

 Φ + Φ += −
− +

∑ ∑

∏

∑ ∑

∏

x x

x x (16) 

In the following, the statistical behavior of the proposed estimator 
is studied. We assume that the data corresponding to signal r is 
observed with additive zero-mean white Gaussian noise, 

denoted ( )z x and having variance
2

z
σ . Let us denote the signal-to-

noise ratio corresponding to signal r with SNR. Note that we are 
interested in estimating the vector d for high SNR (SNR >> 1).  

The Hilbert transform is linear and does not change the statistical 
properties of the noise [18]. Thus, it can easily be shown that the 
analytic signals r i defined previously are observed with zero-mean 

complex white Gaussian additive noise, denotediz ( )x . Moreover, 

(17) gives the relation between the variance ofiz ( )x  and
2

z
σ .

( )( )2 22
i

n

z i zVar zσ σ= =x (17) 

It should also be noted that the real and imaginary parts of the 
analytic signal r i are observed with zero-mean additive noises of 

variances
1 22n

zσ−
[19]. The signal-to-noise ratios corresponding to r i

are equal to SNR. 
Based on Tretter’s work [20], we assume that the complex additive 

noise on the analytic signals can be converted into an additive phase 
noise with the assumption of high SNR. The noise sequence v 
considered in (8) is in this case white Gaussian with: 

( ) ( ) nI
SNR2

1
cov,0E == vv , 

(18) 

with In the n×n identity matrix. The two proposed estimatorsˆ
ASd

and ˆ
MASd  are unbiased in these conditions of high SNR and zero-

mean noise. Moreover, we can calculate the covariance matrices 
corresponding to each of the two estimators.  

( ) ( )( )
( ) ( )

( ) ( ) ( )

T

T T1 1 1 T 1

T 11 1 T

ˆ ˆ ˆcov E

E H H E H H

1
H cov H H H

2 SNR

− − − −

−− −

= − −

= =

= =

 
 

   
   

AS AS ASd d d d d

v v v v

v

(19) 

( )
( )

( )n

k k

k 1

1ˆ ˆcov cov

N M 1
=

=
− +∏

MAS ASd d (20) 

For both estimators and considering the linear model in (8) with 
Gaussian noise v the Fisher information matrices are shown to be 
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equal to the inverses of the covariance matrices calculated in (19) and 
(20) [17]. We conclude that the CRLB is achieved for both AS and
MAS estimators.

IV. APPLICATION TO MOTION ESTIMATION

The estimator described is used for estimating motion using 
ultrasound imaging. Thus, nonconventional ultrasound images [13] 
are used and shown to locally follow the signal model in (1) for n 
equal to 2. In the present case, a block-based estimation method is 
used to track motion. The MAS estimator is then used to locally 
estimate the 2-D block translations. It replaces cost functions as the 
sum of absolute or square differences or the cross-correlation [2] 
usually used with classical block matching methods. This method 
proceeds in two main steps. First, four phase images are computed 
using the analytic signals defined in (5) applied to the two ultrasound 
images. The second step consists in estimating the 2-D translations of 
a collection of nodes (pixels) defining a rectangular grid on the 
reference image. For each node, local phase blocks are extracted from 
the four phase images calculated previously. Note that the positions 
of these phase blocks in the phase images take into account the 
initialization technique described in [21]. Using these four local 
phases, the MAS estimator is used to estimate the local relative 2-D 
shift between the images. Before applying the formula in (16), two 
phase differences are calculated and positions corresponding to phase 
jumps are eliminated. For this, a threshold equal to π is used. This 
value takes into account the fact that in the present application the 
local shifts are considered smaller than the signals normalized half 
periods. 

The main steps of our block-based motion estimation method 
using the MAS estimator are given bellow. 
Data: Two unconventional ultrasound images i1 and i2. 
Phase image computation 
1) Compute four complex images i11, i12, i21, i22.

( ) ( ) ( )( ) ( )( ){ }

( ) ( ) ( )( ) ( )( ){ }

1

1 1 1

1

2 1 1

1 sign 1 sign

1 sign 1 sign

1 2

k k

k k

i FFT I u u

i FFT I u u

for k ,

−

−

= + +

= − +

=

x u

x u

(21) 

2) Extract the phases of the four complex images:

( ) ( )( )arg 1 2 1 2kj kji , for k , and j ,φ = = =x x (22) 

Translation estimation for one node 
3) For each node, execute steps 4 to 7.

4) Extract two local phases denoted ( ) 1 2
ri

, i ,Φ =x  from phase

images
11

φ and 
12

φ and two local phases ( ) 1 2
si

, i ,Φ =x  from phase

images
21

φ and
22

φ .

5) Compute the phase differences:

( ) ( ) ( ) 1 2i si ri , i ,Φ = Φ − Φ =x x x , (23) 

6) To eliminate phase jumps, find the Ω domain for which:

( ) ( ){ }1 2| andπ πΩ = Φ < Φ <x x x , (24) 

7) Compute the translations of the current node by applying the MAS

estimator in (16) using ( )x xi ,Φ ∈Ω .

( ) ( )[ ]

( ) ( )[ ]

2 1

1

2 1

2

1
mean

4 fˆ
1

mean
4 f

π

π

∈Ω

∈Ω

Φ − Φ

=
Φ + Φ

 
 
 
 
 
 

x

MAS

x

x x

d

x x

(25) 

Result: Dense motion field between images i1 and i2, computed by 
linear interpolation of the coarse motion field estimated in each node. 

V. COMPUTER SIMULATION RESULTS

In this section a numerical simulation was performed to show the 
performance of the proposed MAS estimator compared to four 
estimators: a generic estimator by the maximum of the cross-
correlation function [22], an ultrasound elastography oriented 
estimator searching for the phase root of the complex cross-
correlation function [10], the QDE estimator in [8] and the UQDE 
estimator in [7]. Given the separable form of the signal model 
considered (1) and of the result of our estimator (16), a 1-D 
simulation is sufficient to analyze its behavior. Moreover, two 
different ways to apply the MAS estimator are discussed. The first is 
presented in section IV, where the points corresponding to phase 
jumps are not taken into account. The second one consists in 
applying the MAS estimator after unwrapping the phases of the 
analytic signals. The 1-D phases are unwrapped by adding multiples 
of 2π when absolute jumps between consecutive points are greater 
than π. 

The generated data were: 

( ) ( )( ) ( )

( ) ( )( ) ( )

2

1

1 1 1 1

2

1

1 1 1 1

2

2

r

r r

r

s

s s

s

x d
r x exp cos f x d z x

x d
s x exp cos f x d z x

π π
σ

π π
σ

−
= − − +

−
= − − +

  
  

  

  
  

  
where 

1 1 r s r sx 1,2,...,20 ; f 0.2 ;d 0.4, d 0.6 ; 20, 20σ σ= = = = = =

and ( )
1r

z x and ( )
1s

z x are computer generated zero-mean 

Gaussian noises with variances ( )
1

r
z

xσ  and ( )
1

s
z

xσ , respectively.

The signal-to-noise ratio (SNR) is assumed to be the same for both 
signals. The relative shift to estimate between signals r and s 

is
1 s r

d d d= − . 

Figure 2 presents the mean and the standard deviation values 
obtained with each estimator in presence of noise for different SNRs. 
For each SNR level, 512 estimations were processed and the mean 
and standard deviation values are given.  

MAS, QDE, UQDE and the phase root estimators were all used 
with signals r and s at the initial resolution. Since the accuracy of the 
maximum of correlation estimator depends directly on the signals 
resolution, the cross-correlation function was piecewise cubic spline 
interpolated before the maximum detection was applied. Therefore, to 
obtain a sample corresponding to the shift to estimate, an 
interpolation by a factor of 5 was processed. However, in a practical 
application it is difficult to predict the interpolation factor and this 
type of estimation is usually biased. We can note that for low SNRs, 
the MAS estimator gives better results without unwrapping the phase 
and has similar accuracy for high SNRs. The QDE, the UQDE and 
the phase root estimator are roughly as accurate as the MAS 
estimator. On the other hand, these estimators can only be applied in 
1-D. Moreover, the phase root estimator works iteratively, which
increases the processing time reported to the MAS estimator by 30%
when three iterations are processed.
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Figure 2. Shift estimation in presence of noise with (a) the MAS 
estimator (b) the MAS estimator using the unwrapped phase, (c) the 
complex correlation phase root, (d) the cross-correlation maximum, 
(e) the quadrature time delay estimator (QDE) and (f) the unbiased
quadrature time delay estimator (UQDE). The true shift is 0.2
(dashed line).

As explained above, two possible ways to apply the MAS 
estimator are discussed. However, for all SNR levels considered, the 
domain Ω  which does not include phase jumps represented at least
80% of the phase definition domain. 

Figure 3 gives the behavior of the estimators versus the sampling 
frequency. For the same data and with an SNR of 20 dB, shift 
estimations were processed for signals with 3-10 samples per period. 
For each case, 512 estimations were processed and the mean and 
standard deviation values are retained. With the estimator searching 
for the maximum of correlation, the cross-correlation function was 
interpolated so that a sample corresponding to the shift to estimate 
was obtained. This explains why for signals with an SNR of 20 dB, 
the standard deviation values with this estimator are smaller than 
with the other methods. This estimator depends on on the shape of 
the signals, which explains the difference in standard deviation 
values obtained for the different sampling frequencies tested. We also 
observe that the MAS estimator, the UQDE and the estimator 
searching for the correlation phase root provide roughly the same 
accuracy for all sampling frequencies. 

 
Figure 3. Shift estimations for signals with a SNR of 20dB for 
different number of samples per period with (a) the MAS estimator 
(b) the MAS estimator using the unwrapped phase, (c) the complex

correlation phase root, (d) the cross-correlation maximum, (e) the 
quadrature time delay estimator (QDE) and (f) the unbiased 
quadrature time delay estimator (UQDE). The true shift is 0.2 
(dashed line). 

VI. A PPLICATION RESULTS

A. Simulated images

As explained in section IV, the MAS estimator is used for n equal
to 2 as the 2-D local translation estimation with block-based motion 
estimation methods. The application concerns motion tracking with 
ultrasound images. The performance of the estimator is tested with 
two simulated images. The formation of the RF simulated images is 
based on the spatial convolution product over the variables x1 and x2 
[23]. 

( ) ( )
( )

( )
1 2

1 2 1 2 1 2
x ,x

i x ,x h x ,x m x ,x= ⊗ , (26) 

where i is the radiofrequency image, h(x1,x2) is the impulse response 
of the imaging system, m(x1,x2) is a discrete distribution of scatterers 

representing the medium and
( )

1 2
x ,x

⊗ denotes the spatial convolution

over both directions. 
In our simulation, h has the following analytic expression: 

( )

( ) ( )

1 2

2 2

1 2
1 1 2 2 2 2

1 2

h x ,x

x x
cos 2 f x cos 2 f x expπ π π

σ σ

=

− +
  
  

  

(27) 

For the computer simulation, the values of the parameters were 
chosen so that they correspond to a possible real ultrasound image 
formation [13]: 

1 1

1 2 1 2

1 1
f mm , f mm ; 2 mm, 1mm

1.2 0.2
σ σ− −= = = =

The simulated medium corresponds to a surrounding 20×30 mm2 
homogeneous medium with a cylindrical inclusion in the center 
measuring 10 mm in diameter. We considered a spatial Gaussian 
distribution of the Young modulus. Thus, the central point was set at 
100 kPa, twice as hard as the surrounding medium, and the Poisson 
coefficient was 0.49.  

Two ultrasound images were computed to simulate a 2% axial 
compression of the medium, corresponding to a 0.98% lateral 
dilatation. The true displacement was obtained using the finite 
element software tool Femlab (COMSOL AB, Sweden). Initially, the 
images are simulated with sampling frequencies corresponding to 
roughly five times the usual ultrasound image resolutions in the axial 
direction and two times in the lateral direction. Thus, 50 samples per 
period are simulated on each image direction. Pixel dimension in this 
case was 3.8×25µm2. Moreover, both images are decimated on each 
direction by factors from 2 to 12 by filtering the data with an 8th order 
Chebyshev lowpass filter. This is done to show the accuracy of our 
motion estimation method for different sampling frequencies. Its 
accuracy with low sampled images is an important issue in ultrasound 
elastography, in the purpose of a real time implementation. As 
explained above, block-based estimation methods are used to 
estimate the motion between each image pair obtained previously. 
Four local estimators are processed. The first one uses the MAS 
estimator, as explained in Section IV; the second uses the maximum 
of the cross correlation estimator (MCC). The third method, based on 
the 1-D complex correlation phase root estimator (CCPR), is 
presented in [13]. The fourth method tested is the same as in [13], but 

Number of samples per period 

SNR [dB] 
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with the 1-D UQDE estimator instead of the correlation phase root 
estimator. For each resolution level and for all four methods, block 
size was set at two signal periods in both directions. With the MCC 
estimator, since its accuracy depends directly on image resolution, a 
search grid linear interpolation (SGI) strategy [2] was employed to 
compensate for image decimation. Thus, when searching for the best 
matching block with the cross-correlation cost function, the search 
zone is interpolated to improve the precision of the local estimation. 

The results are compared using the absolute error between the true 
and estimated displacement vector norms. Figure 4 shows the mean 
and standard deviation values of the absolute errors for each method 
versus the decimation factor. The accuracy of the MAS estimator 

does not depend on image resolution. Thus, we show that even after 
decimating the images by a factor of 12, which corresponds to signals 
with four points per period on each direction, the MAS estimator 
provides the same accuracy as a classical estimator for resolutions 
that are ten times higher versus the decimation factor. We observe 
that the accuracy of the MAS estimator does not depend on the 
images resolution. Thus, we show that even after decimating the 
images by a factor of 12, which corresponds to normalized 
frequencies of 1/4 on each direction, the MAS estimator provides the 
same accuracy as a classical estimator for resolutions that are ten 
times higher. 

(a) (b) (c) (d) 
Figure 4.  Comparison of mean and standard deviation values of the absolute error between the true and estimated vector norms with the 
original and decimated images between MAS estimator and (a) maximum cross-correlation estimator without search grid interpolation, (b) 
maximum correlation estimator with search grid interpolation, (c) complex correlation phase zero crossing estimator, and (d) unbiased 
quadrature delay estimator. 

Figure 4 shows that the MCC estimator gives a minimum error of 
roughly 8 µm (which corresponds to a relative error of 0.3%) for 
images at the initial resolution. For the initial resolution level, the 
MAS estimator provides less error and reaches the value of 8 µm 
when the resolution level is divided by 10. Therefore, a resolution 
that is 10 times higher is needed for the MCC estimator reported to 
the MAS phase estimator. In this case of equivalent accuracies, the 
computation time using the MCC estimator is 14 times longer than 
the computation time with the proposed estimator. Note in Figures 
4(c) and (d) that for all resolution levels the methods using CCPR 
and UQDE produce an absolute error higher than the MAS estimator. 
This may be explained by several reasons. First, the 1-D formulation 
of CCPR and UQDE estimators is not well adapted to estimate 2-D 
displacements. Moreover, UQDE uses the signals amplitude, which 
makes it less efficient in speckle imaging applications (as is the case 
of ultrasound imaging) than estimators using the phase [11]. The 
motion initialization used here for each node [21] may also not be 
adapted for these 1-D estimators. Thus, an estimation error that can 
occur for one node is propagated for the neighboring nodes and 
increases the total amount of error. This can be the case especially for 
UQDE, which is more sensitive to speckle changes than CCPR. For 
these reasons, only the CCPR method is retained for the experimental 
case. 

B. Experimental images

The experimental result presented here is considered with phantom
data. The phantom (Elasticity QA Phantom, model 049, by CIRS 
Tissue Simulation & Phantom Technology, Norfolk, VA, USA) was 
designed for ultrasound elastography and presented a spherical 20-
mm-diameter inclusion of 6 kPa for a surrounding medium of 29 kPa.
The ultrasound RF images were acquired and formed using the
beamforming method presented by Liebgott et al. in [13]. Two

images for two different compression levels were acquired, with 8 
points per period in the axial direction and 24 in the lateral direction, 
corresponding to a pixel size of 19.6×75.2 µm2. The compression of 
the phantom was directly applied with the ultrasound probe, as with 
freehand elastography for clinical applications [21]. The same motion 
estimation methods used with the simulated images were considered. 
MAS, MCC and CCPR estimators were tested. For the experimental 
data, since the true displacement was not available, a confidence 
measure was used to quantify the estimation accuracy. We therefore 
applied the estimated 2-D displacement to image i2 in order to map it 
onto the reference image i1. Furthermore, we calculated the 2-D 
normalized cross-correlation coefficient between each block 
considered on i1 and its corresponding block on the registered version 
of i2. The similarity measure, denoted ξ, is then the mean value of all 
these coefficients.  

Figure 5(a) shows the evolution of ξ and of the standard deviation 
values of ξ for the three methods when original images are 
decimated. Figure 5(b) compares the accuracy of the MAS estimator 
to the MCC estimator with the search grids refined for different 
interpolation factors and using the original images.  

(1,1) (1,2) (1,3) (1,4) (2,1) (2,4)

85

90

95

100

Decimation factor

ξ 
[%

]

MCC wo SGI
CCPR
MAS

(1,1) (2,1) (3,1) (4,1) (4,2) (4,4) (6,6)
92

94

96

98

100

Search grid interpolation factors

ξ 
[%

]

MCC with SGI
MAS

(a) (b) 
Figure 5. Accuracy measurement (a) using the MAS, MCC or CCPR 
local estimator for different decimation factors (axial, lateral), (b) 
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with the MCC using the original images and the search grid refine for 
different interpolation factors (axial, lateral) 

The results of comparing MAS and MCC with the original images 
and MCC with the search grids interpolated by a factor of 6 in each 
direction are given in figure 6. The estimated motion vectors for a 
region around the inclusion are shown, as well as the ultrasound 
image. Thus, for roughly the same computation time (Figure 6 (b) 
and (c)) the estimation accuracy with the MAS estimator is much 
higher than with the classical MCC. To reach the same accuracy level 

with MCC, search grids must be linearly interpolated by a factor of 6 
in both directions. Note that this method of searching for the best 
matching block with the MCC refines the precision of the local 
motion estimation with no increase in the computation complexity of 
the cross-correlation. However, the computation time in this case 
becomes roughly ten times higher than with the MAS estimator on 
the original images. 

(a) (b) (c) (d) 

Figure 6. (a) Ultrasound image and estimated 2-D motion vectors corresponding to the region designated by the rectangle on the ultrasound 
image, estimated using (b) MAS, (c) MCC, (d) MCC with SGI and an interpolation factor of 6 in each direction. 

VII. CONCLUSIONS

An analytic subsample spatial shift estimation method is proposed. 
The estimation is based on an a priori form of n-D signals based on a 
nonconventional technique of forming ultrasound images. A series of 
analytic signals is generated and shown to present linear phases with 
respect to all directions. Thus, a linear estimation problem is 
obtained. The choice of n particular complex signals allows us to 
analytically solve the linear system and consequently to provide an 
analytic estimation. The simulation results show the performance of 
the proposed estimator for subsample estimation and its accuracy for 
low sampled signals compared to classical methods. 

For two dimensions, we showed how the proposed estimator can 
be used for motion tracking with block-based motion estimation 
methods. The proposed estimator is then shown to perform better 
than the classical maximum of the cross-correlation estimator, an 
estimator dedicated to ultrasound elastography that searches for the 
root of the complex correlation phase and an estimator using the in-
phase and quadrature-phase components of signals. 

As one of the major problems in motion estimation for ultrasound 
elastography is the out-of-plane displacements, the three-dimensional 
case will be considered in a future study. The n-D formulation of the 
analytic estimator in this case makes it possible to directly estimate 
the three components of the local tissue displacement vector. 
Moreover, its accuracy for low sampled signals is also relevant to the 
3-D case to reduce the amount of processed data.

APPENDIX 

We use the induction method to show that the phases of the 
analytic signals defined in (5) follow the linear model in (7) for any 
integer n. Let us note the result which is to be proved here by E(n).  

( ) ( ) ( ) ( )
1

2 1 ik

n
b

i k k k

k

E n : f x dφ π
=

= − −∑x (28) 

We start by checking the basis step E(1). 
Case n = 1: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

signi1

i1

b

i 1 1 1

b

1 H 1

R u R u 1 1 u

R u j 1 R u

= + −

= + −

(29) 

With the signal model in (1) and assuming the disjointed Fourier 

spectrum between the window )( 1xw  and the 1-D cosinus, the 

analytic signal defined in (29) becomes: 

( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

i1

i1

i 1

b
1 1 1 1 1 1 1

b

1 1 1 1

r x

w x (cos 2 f x d j 1 sin 2 f x d

w x exp j 2 f 1 x d

π π

π

= − + − −

= − −
(30) 

From this it can easily be concluded that E(1) is true. 
We assume now that E(n) is true (inductive hypothesis) and we 

need to show that E(n+1) is true. 

Case ( ) ( )1E n true E n true⇒ +
Considering E(n) true and keeping in mind the separable form of 

the cosinus product, the analytic signal r i for the case n+1 can be 
written as follows:  
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( ) ( ) ( ) ( )

( )( ) ( ) ( )( )

( ) ( ) ( )

( )( )

( ) ( ) ( )

ik

in+1

ik

in+1

ik

n

b

i k k k

k 1

b

n 1 n 1 n 1 n 1 n 1 n 1

n

b

k k k

k 1

b

n 1 n 1 n 1

n 1

b

k k k

k 1

r w exp j 2 f 1 x d

cos 2 f x d j 1 sin 2 f x d

w exp j 2 f 1 x d

exp j 2 f ( 1 ) x d

w exp j 2 f 1 x d

π

π π

π

π

π

=

+ + + + + +

=

+ + +

+

=

= − − ×

− + − −

= − − ×

− −

= − −

 
 
 

  

 
 
 

 
 
 

∑

∑

∑

x x

x

x

(31) 

In (31) we show that E(n+1) is also true. Thus, the conditions of 
the induction method are met and we conclude that E(n) is true for all 
integers n. 
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