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Analytic estimation of subsample spatial shift
using the phases of multidimensional analytic
signals

Adrian Basarab, Hervé Liebgott, Philippe Delachartre

the need for interpolation in subsample estimatispatial shift

Abstract— In this paper, a method of analytic subsample estimators using the phase correlation have also been discussed in the
spatial shift estimation based on an a priori n-D signal model is literature [6]. A comparative study of two phase delay estimators
proposed. The estimation uses the linear phases of analytic ~ between two noisy sinusoids is given in [7]. In this reference, a phase
signals defined with the multidimensional Hilbert transform. This  delay estimator using the in-phase and quadrature-phase components
estimation proposes: i) an analytic solution to the n-D shift of the signals is proposed. This method, referred to as the unbiased
estimation and ii) an estimation without processing complex quadrature delay estimator (UQDE), is an improvement on the QDE
cross-correlation function or cross-spectra between signals estimator proposed in [8].
contrary to most phase shift estimators. The method provides  For ultrasound elastography, shift estimators using the phase of the

better performance in estimating subsample shifts than two complex signals have also been proposed in [9-11] and have shown
classical estimators, one using the maximum of cross-correlation ynajitered performance for low sampled signals.

funct?on and the other seeking thle zero of the complgx correlation  pased on Jensen’s work [12] and using the image formation
function phase. Two delay estimators using the in-phase and method proposed by Liebgott et al. in [13], we can control the shape
qua}drature-phase compqnents of s!gnals are also cor_npared 0 OUr ot he signals which allows us to consider an a priori signal model.
estimator. Like most estimators using the complex signal phases, This article considers an n-D signal model based on a product of n

the estimator proposed herein presents the advantage of sinusoids and proposes a phase delay estimator. The estimation uses
unaltered - accuracy when low sampled signals are used. the phases of n analytic signals chosen to obtain a linear estimation
Moreover, we show that this method can be applied to motion b? M tﬁt 9 | ianal h h that th
tracking with ultrasound images. Thus, included in a block-based probiem. Moreover, these compiex sighais are chosen such that the
linear system obtained can be analytically solved, providing an

motion estimation method and tested with ultrasound data, this ) e . )
estimator provides an analytical solution to the translation 2&nalytic estimation for our phase delay problem. The estimator is

estimation problem. then adapted so that the relative spatial delay between two shifted
Index Terms — motion estimation, multidimensional analytic versions of the proposed signal model can be estimated. We show
signal, subsample shift estimation, ultrasound imaging that the proposed estimator depends less on the signal resolution than

a classical estimator by maximum of correlation.
Compared to other shift estimators proposed in the literature and
I. INTRODUCTION based on the complex signal phases, the method reported herein does

not need to process the cross-correlation function between signals.

PATIAL shlft.estlmgnon. IS applled n dn‘ferenlt fields such 8SThe estimator is directly applied to the signals, which makes it more
sonar, radar, biomedical imaging and ultrasonics. For examp mputer-efficient

in motion estimation with block matching-based methods, shi In section I, the signal model and the multidimensional Hilbert

estimation is used to locally find the shifted version of a block frorﬂansforms used to generate the analytic signals are introduced
one frame fo the next one. This paper addresses the problemSgEtion Il describes the estimation method and the statistical

motion tracking With. ultrasound images applied to gltrasound Sta,‘tﬂ)(‘ehavior of the proposed estimator. Section IV shows how the
elastography [1], which is a technique that characterizes the elas“%%mator is used for motion tracking with a block—based motion

of soft biological tissues. estimation method. Sections V and VI present results on numerical

In block matchlpg methods, a common ma?“’.h'f‘g technique 1S Snulations and experimental data. The estimator proposed is
search for the shift lags that maximize or minimize cost funCt'OrFompared to the maximum of correlation estimator, an estimator

such as the cross-correlation or the sum of absolute or SAUBKsed on the phase of the complex cross-correlation function and the

differences [2]. o _ ) ﬁbove-mentioned QDE and UQDE estimators. Finally, conclusions
In many applications in fields such as the video or medlc%re drawn in section VII

applications addressed in this paper, the local shifts to estimate are
smaller than the image’s pixel size. For video applications, different
subpixel motion estimation techniques can be found in the literature,
such as the quarter-pixel motion estimation of H.264 [3] or improved The problem addressed here is estimating the spatial shift
derivations of this method [4]. Methods based on a pafabo'garameter vectod = (d1 .. ,dn)T given the harmonic function
interpolation of the ambiguity function are also proposed; they can be

used to design fine estimators for spatial shift estimation [5]. To lim#&: R" — R in (2).

Il. SIGNAL MODEL



R, (u) = R(u)( 2+sign( y))( 2 sigr( u))
= R(u)(1+sign(u,) + sign(w,) + sigfu) sighy))
R(u)- R, (u)+ j( R (u)+ R (u)) ©6)

r(x) :w(x)ﬁcos(znn( x-d) @

We denote vectors inR" (n arbitrary) with boldface lowercase
letters. Thus, in (1)X:()<l,x2 ,...,Xn)T denotes the n-D spatial

variable, f, are the frequencies on each direction assumed to éth p, =(1,0) andp, =(0,1)" .

known andM X )is an n-D window assumed to have a disjointed Figure 1 represents the Fourier transforms of sigira(1) and of
Fourier spectrum from the cosinus product (see appendix for the @&ytic signat; calculateq n (6)- The example given correspond§ to
of the conditions omw). Notice that in this application of motion N €qual to 2 and a Gaussian windaw\We observe that the analytic
estimation, a relative shift between two signals that have the safi@nalr: has a single quadrant spectrum. Note that the choice of the

form as in (1) will be discussed. quadrant in the Fourier domain is made by vedtors
By analogy with the 1-D case, in the theory of the complex sig 04 04 700

two extensions of the Hilbert transform were defined: the t 150 ' 600
Hilbert transform [14] and the partial Hilbert transform [15]. Let 02 02 500
define r, : R" - Rthe total Hilbert transform amf : R" - R+ o g 1 S0 T :zz
the partial Hilbert transforms of We use small letters to denote tl o2 50 02 200
functions in the spatial domain and capital letters to denote their 0s 0s 100
Fourier transform. Letu :(ul,uz ,...,un)T be the n-D frequency 27 B2 & 02 02 97 02 4 02 02
variable. Thus, in the Fourier domain, the Hilbert transforms aic y u1b
defined as follows: . @ . (b) .

. Figure 1. Modulus of the 2-D Fourier transforms of (a) real signal

R, (u) - R(u) |—| (_ jsign( '~!<)) @) r and (b) complex signal.
k=1

For the function given in (1) and using the induction method (see
appendix), we can show that the phases of the analytic signals

R: (u) _ R(u) |i| (_ jsign( LL))pk 3) defined previously have the form in (7).
| a(x)=0(r (x)) = X2, (0" (x-4) @

where
1, ifu >0
4)
. _ . _ ( I1l.  ANALYTIC ESTIMATION
sign(u ) =3 0 ifu =0
] The phases of the analytic signals defined in section Il are used here
-1, ifu <0 to estimate the n-D vectdr. The model of the phases in (7) leads us
and p, = 1if the directionx, is present in the partial Hilbert t0 consider a class of estimation problems represented by the linear

. model:
transform andp, = Oif not ( p, denotes th&" element of vectop).

. . , y=Hd+v (8)
Note that the total Hilbert transform can be obtained by the par‘ua‘1 . s .
. . . . . Where d is the deterministic vector of unknown parameteyss the
transform if alln directions are considered. Moreover, if all vegior o i ) )
elements are equal to zero no Hilbert transform is processed. vector containing the observations, i.e. the phases of the analytic

Using the original functiom and its Hilbert transforms introduced Signals,H is a known2xn matrix andv is the noise. This type of
in (2) and (3), we can define a series of analytic Signa|gpear model estimation has been widely studied in the literature for

denoted, (x) The analytic signals are defined in the FourieFhe general case. Among the proposed methatissector is

commonly estimated by searching for the vecthso that the
estimated vectoy is as close as possible to the given datH the

n
R (u) = R(u) |‘| ( 1_,_(_ ])Qk sign( l;!)) (5) total squared error in the observation is used, we deal with the
k=1 classical least-square (LS) estimation [17]. The LS estimation is then

domain by:

) . n given by:
withl<i < 2. In (5) by represents an n-D vector whose elements R 4
can take the value of zero or orig @enotes th&" element of vector dLS = (HTA H) HTAy, 9)
by). Therefore, 2 different vectorsh, and consequently”2analytic

signals can be defined. We conclude that in whereA is an arbitrary positive definite weighting matrix.

S . n It should be remembered that the purpose here is to obtain an
the variable is an integer betweehand2". Vi ion for th timati f vectori hich d i
Example.To illustrate how the analytic signals defined in (5) ar@nalytic expression for the estimation of vedari.e. which does no

related to the Hilbert transforms introduced in (2) and (3), let Jise a numerical algori_thm to inverse the matrices in (9)_. Therefore,
consider an example for equal to 2 [16]. Four analytic signals can'Vé Propose to restrict to the number of observations and

be generated in this case. Let us consider the case correspondffgseduently the number of analytic signals considered. In this way,
H becomes anxn matrix. Moreover, we chooseparticular analytic

— T 1 .
tob=(0,0)", denoted:;. Equation (5) becomes: signals for which the matrix H is invertible and may be analytically
inverted. Note also that all positive definite matrices are invertible. In



this case, the estimation in (9) becomes: direction of vectox as follows:
de=H AT (HT) " HAY= HY, (10) Mp<x < Npo My < N,
where the subscript AS stands for analytic shift estimation. Consequently, the mean analytic shift (MAS) estimation becomes:

Based on the phase model in (7) and on the linear estimation u S
Z Z [ (%)=, (x)]

problem in (10), let us define the observations vegtas functions
— Mi + Ni _X%=M;  x=M,

of measured phases(x ) , denotedp, (x), and the matrikd. Ayasi = 2 . :
" “ 4”fil<_l(Nk_Mk+1)
y, = 2mf (-1)" x ) - @ (x), for 1<is<n =
k:l( ) (1) for 1<i<(n-1)
N, N,
by by, LY [, (x)+ @, (x (16)
ot (-1 - 218, (-1) . _Mn+Nn_x1:ZM:1 x“;n[ (x)+ @, (x)]
H= : : : 12) MASNT o

n
4nan(Nk—Mk+1)

ot ()™ - 2wt (-9
. . In the following, the statistical behavior of the proposed estimator
As explained above) different vectorsh are chosen so that the g g1 died. We assume that the data corresponding to sigisal
matrix H is invertible. This choice was also motivated by the fact thal,carved  with  additive zero-mean white Gaussian noise,
matrix H should be easily updated when passing fretrdimensions
to n dimensions. Moreover, the inverted matrix-b{see(14)) has a denotedz(x) and having variance; . Let us denote the signal-to-
Simple form that facilitates its analytic multiplication by VeqlDThe noise ratio Corresponding to S|gna|w|th SNR Note that we are
possibility retained which makesl analytically invertible for all interested in estimating the vectbfor high SNR(SNR>> 1).
integersn is given in The Hilbert transform is linear and does not change the statistical
properties of the noise [18]. Thus, it can easily be shown that the
analytic signalsr; defined previously are observed with zero-mean

blT 0000 complex white Gaussian additive noise, denatéck ). Moreover,
.
b, 10 00 ) _ _ .
I P (13) (17) gives the relation between the variancezdfx ) ando, .
. - . . . . . 2 B _ 2 (17)
b,t| |11 00 o, =Vvar(z(x))=2"0;
b ' 11 10 It should also be noted that the real and imaginary parts of the

n
For this series of vectoris', the determinant of the matrkt is

n variance@"™ UZ2 [19]. The signal-to-noise ratios corresponding;to
shown to be equal tB”’lH (277fk) and consequently different

analytic signalr; are observed with zero-mean additive noises of

are equal tSNR

Based on Tretter's work [20], we assume that the complex additive
tll?&lse on the analytic signals can be converted into an additive phase
noise with the assumption of high SNR. The noise sequence

from zero for non-zero frequencies. In the case considered,
inverse of the matriM is:

1 _ 1 O .. 0 considered in (8) is in this case white Gaussian with:
18
a7, A;_nfl 1 Hv) = 0,coMv) =—251NRI . (18)
T 0 - 0 (14)
. 47:i2 4:77f2 . . with I, the nxn identity matrix. The two proposed estimat&;;g
1 0 0 1 andélMAS are unbiased in these conditions of high SNR and zero-
47fn 477fn mean noise. Moreover, we can calculate the covariance matrices
With these assumptions and using (10), the AS of vattives corresponding to each of the two estimators.
the following result: - - - u
. ’ 1 ( ) cov(d,¢) = E[(dAS ~d)(d,s-d) } 19)
Opsi = X ——— ¢i(X)—¢i+l(X) , for 1Si£(n—1) : .
_ -1 -1 —_ -1 T -1
4le (15) -E[H v(H v) }—E[H A (H ) }
Gaon=Xo™ 2t (@, (x)+,(x)) — 7 cov(v) (H)' =%NR(HTH)*
The result in(15) is obtained considering only one observation of COV(aMAS) :n;cov aAS) (20)
each phase for one given value of vectorFor each phase, we (N -M +1)
propose to take into account a series of measures and to calculate the l:l k K

final estimation as the mean value of AS estimationd#). In this For both estimators and considering the linear model in (8) with
multi-measure case, let us consider the definition intervals for ea@?ﬂussian noise v the Fisher information matrices are shown to be



equal to the inverses of the covariance matrices calculated in (19) &wbult: Dense motion field between imagesandi,, computed by
(20) [17]. We conclude that the CRLB is achieved for both AS arléhear interpolation of the coarse motion field estimated in each node.
MAS estimators.

V. COMPUTER SIMULATION RESULTS

IV. APPLICATION TO MOTION ESTIMATION In this section a numerical simulation was performed to show the
The estimator described is used for estimating motion usimerformance of the proposed MAS estimator compared to four
ultrasound imaging. Thus, nonconventional ultrasound images [18§timators: a generic estimator by the maximum of the cross-
are used and shown to locally follow the signal model in (1) for correlation function [22], an ultrasound elastography oriented
equal to 2. In the present case, a block-based estimation methoésgmator searching for the phase root of the complex cross-
used to track motion. The MAS estimator is then used to localborrelation function [10], the QDE estimator in [8] and the UQDE
estimate the 2-D block translations. It replaces cost functions as #stimator in [7]. Given the separable form of the signal model
sum of absolute or square differences or the cross-correlation fnsidered (1) and of the result of our estimator (16), a 1-D
usually used with classical block matching methods. This methaimulation is sufficient to analyze its behavior. Moreover, two
proceeds in two main steps. First, four phase images are compudiéfterent ways to apply the MAS estimator are discussed. The first is
using the analytic signals defined in (5) applied to the two ultrasoupdesented in section IV, where the points corresponding to phase
images. The second step consists in estimating the 2-D translationfuafps are not taken into account. The second one consists in
a collection of nodes (pixels) defining a rectangular grid on thepplying the MAS estimator after unwrapping the phases of the
reference image. For each node, local phase blocks are extracted fewralytic signals. The 1-D phases are unwrapped by adding multiples
the four phase images calculated previously. Note that the positiafs2t when absolute jumps between consecutive points are greater
of these phase blocks in the phase images take into account ttiensr.
initialization technique described in [21]. Using these four local The generated data were:
phases, the MAS estimator is used to estimate the local relative 2-D 2
shift betyveen the images. Before applying the formula in_(16), two (x ) = exp _”( X~ d,] cos(2ﬂ[( x - d)) . z( ¥)
phase differences are calculated and positions corresponding to phase* * ' '
jumps are eliminated. For this, a threshold equat te used. This
value takes into account the fact that in the present application the (

r

local shifts are considered smaller than the signals normalized halfs(‘) = exp -7
periods.

The main steps of our block-based motion estimation methoq1

. ) ; where
using the MAS estimator are given bellow. - L L . _ .
Data: Two unconventional ultrasound imageandis,. x,=12,.,20;f= 02;d= 04,0= 067 = 2@, = :
Phase image computation
1) Compute four complex images, i1z, i1, iz

) et (- ) (9

s

and zr(>g) and zs(>g) are computer generated zero-mean

. - . . Gaussian noises with variances ando , respectively.
i, (x) =FFT {1, (u) (2+sign(u,)) (2+ sigri(u,))} 1) ? (%) zs(xl)
) 4 ) _ The signal-to-noise ratio (SNR) is assumed to be the same for both
i, (x) =FFT {1, (u) (1~ sign(u,)) (2+ sigr(u,))} signals. The relative shift to estimate between signals r and s
fork =1,2 isd, =d -d .
2) Extract the phases of the four complex images: Figure 2 presents the mean and the standard deviation values
- ; - - (22) obtained with each estimator in presence of noise for different SNRs.
% (X) arg(lki (X)) fork=12and j=1.2 For each SNR level, 512 estimations were processed and the mean
Translation estimation for one node and standard deviation values are given.
3) For each node, execute steps 4 to 7. MAS, QDE, UQDE and the phase root estimators were all used

4) Extract two local phases denoten (x) i =1,2 from phase Wwith signalsr and s at the initial resolution. Since the accuracy of the

maximum of correlation estimator depends directly on the signals
images, and ¢, and two local phaseB_ (x), i =1,2 from phase resolution, the cross-correlation function was piecewise cubic spline
interpolated before the maximum detection was applied. Therefore, to

imagesy, andg, ] obtain a sample corresponding to the shift to estimate, an
5) Compute the phase differences: interpolation by a factor of 5 was processed. However, in a practical
o, (x) =0, (x)-o,(x),i=12, (23) application it is difficult to predict the interpolation factor and this

type of estimation is usually biased. We can note that for low SNRs,

6) To eliminate phase jumps, find thedomain for which: the MAS estimator gives better results without unwrapping the phase

Q :{X | ch(X) <mand ®, (X) < 77} ) (24) and has similar accuracy for high SNRs. The QDE, the UQDE and
7) Compute the translations of the current node by applying the MABe phase root estimator are roughly as accurate as the MAS
estimator in (16) using (X) x0Q estimator. On the other hand, these estimators can only be applied in
i ' -

1-D. Moreover, the phase root estimator works iteratively, which

1 _ increases the processing time reported to the MAS estimator by 30%
. 4, mngr{GDZ (x) =@, (x)] (25)  when three iterations are processed.
dMAS = 1

ot mear(®, (x) + @, (x)]



correlation phase root, (d) the cross-correlation maximum, (e) the

L 0.2 guadrature time delay estimator (QDE) and (f) the unbiased
02 %_{ i %%l 02 ‘\%+ % quadrature time delay estimator (UQDE). The true shift is 0.2
0.1 0.1 (dashed line).
% 0 20 40 0 20 40
5 (@) (b) VI. APPLICATION RESULTS
2| 03l dfie 02| gk A. Simulated i
£ 0 - 0 e . Simulated images
= 0 =0 0 : 0 =0 0 As explained in section 1V, the MAS estimator is usednfequal
é (©) () to 2 as the 2-D local translation estimation with block-based motion
Z estimation methods. The application concerns motion tracking with
s 03 1 03 L ultrasound images. The performance of the estimator is tested with
8% [ 8% =" two simulated images. The formation of the RF simulated images is
' 0 >0 20 ' 0 >0 20 based on the spatial convolution product over the variaplasdx,
23].
(&) (M) [
. _ 26
., (e) = h(x %) O x ). (26)
SNR [dB] B

wherei is the radiofrequency imagb(xi,%) is the impulse response

Figyre 2. Shitt estimation' in prese_nce of naise with (a) the MA f the imaging systenm(x;,%,) is a discrete distribution of scatterers
estimator (b) the MAS estimator using the unwrapped phase, (c) the

complex correlation phase root, (d) the cross-correlation maximufgPresenting the medium a(nd] ) denotes the spatial convolution
(e) the quadrature time delay estimator (QDE) and (f) the unbiased R

quadrature time delay estimator (UQDE). The true shift is 0ver both directions. _ ) )
(dashed line). In our simulationh has the following analytic expression:

h(x .x)=

As explained above, two possible ways to apply the MAS » 2
estimator are discussed. However, for all SNR levels considered, the cos(27f%) co§ Z fx e p—n£i2+%D @7
domain Q which does not include phase jumps represented at least 1 2
80% of the phase definition domain.

Figure 3 gives the behavior of the estimators versus the samplingFor the computer simulation, the values of the parameters were
frequency. For the same data and with an SNR of 20 dB, shifiosen so that they correspond to a possible real ultrasound image
estimations were processed for signals with 3-10 samples per perifgitmation [13]:

For each case, 512 estimations were processed and the mean and 1 B 1 B

standard deviation values are retained. With the estimator searchingf: =M b “op MM 0= 2mm,g, = 1mi

for the maximum of correlation, the cross-correlation function was N - .

. . . . The simulated medium corresponds to a surrounding 20x3b mm
interpolated so that a sample corresponding to the shift to estimate

was obtained. This explains why for signals with an SNR of 20 d omogeneous medl_um .Wlth a cyllndrlcal_ inclusion in _the cente_r
o . ; . measuring 10 mm in diameter. We considered a spatial Gaussian
the standard deviation values with this estimator are smaller th

with the other methods. This estimator depends on on the shap digpibution qf the Young modulus. Thus,_ the ceqtral point was sgt at
. . . . . L kPa, twice as hard as the surrounding medium, and the Poisson
the signals, which explains the difference in standard deviation

values obtained for the different sampling frequencies tested. We a?ss)efflment was 0'49.' . .
wo ultrasound images were computed to simulate a 2% axial

observe that the MAS estimator, the UQDE and the estimator

. : - compression of the medium, corresponding to a 0.98% lateral
searching for the correlation phase root provide roughly the sa . . . . -

. : Ifatation. The true displacement was obtained using the finite
accuracy for all sampling frequencies.

element software tool Femlab (COMSOL AB, Sweden). Initially, the

‘r 025 02 images are simulated with sampling frequencies corresponding to
ool L Lo L SR A B I { roughly five times the usual ultrasound image resolutions in the axial
= e rTIrTrT sl T T | direction and two times in the lateral direction. Thus, 50 samples per
E 2 s s 2 e e period are simulated on each image direction. Pixel dimension in this
B o - 025 ] case was 3.8x28n°. Moreover, both images are decimated on each
& . P }‘{ ‘i l‘ufw ﬂ‘L 4 4 S ST S S S direction by factors from 2 to 12 by filtering the data with Sro&ler
Fl . S ' vl 1 S Chebyshev lowpass filter. This is done to show the accuracy of our
:Ej 2 4 S ¢ 10 2 ¢ by ° 1 motion estimation method for different sampling frequencies. Its
g 025 025 accuracy with low sampled images is an important issue in ultrasound
2 . }T Lo P B — - Ll elastography, in the purpose of a real time implementation. As
= s fT %TL\J[ el L FrT Tl | explained above, block-based estimation methods are used to
2 4 by ° 10 2 4 oy ° E estimate the motion between each image pair obtained previously.
Four local estimators are processed. The first one uses the MAS

»
|

estimator, as explained in Section 1V; the second uses the maximum

Number of samples per per - . .
Figure 3. Shift estimations for signals with a SNR of 20dB fo f the cross correlation estn_nator (MCC). The th|r_d method, based on
he 1-D complex correlation phase root estimator (CCPR), is

different number of samples per period with (a) the MAS estimator ; i )
(b) the MAS estimator using the unwrapped phase, (c) the compl%&esemed in [13]. The fourth method tested is the same as in [13], but



with the 1-D UQDE estimator instead of the correlation phase rodbes not depend on image resolution. Thus, we show that even after
estimator. For each resolution level and for all four methods, bloclecimating the images by a factor of 12, which corresponds to signals
size was set at two signal periods in both directions. With the MO@th four points per period on each direction, the MAS estimator
estimator, since its accuracy depends directly on image resolutiorpravides the same accuracy as a classical estimator for resolutions
search grid linear interpolation (SGI) strategy [2] was employed that are ten times higher versus the decimation factor. We observe
compensate for image decimation. Thus, when searching for the bibstt the accuracy of the MAS estimator does not depend on the
matching block with the cross-correlation cost function, the sear@images resolution. Thus, we show that even after decimating the
zone is interpolated to improve the precision of the local estimationimages by a factor of 12, which corresponds to normalized
The results are compared using the absolute error between the fraquencies of 1/4 on each direction, the MAS estimator provides the
and estimated displacement vector norms. Figure 4 shows the meame accuracy as a classical estimator for resolutions that are ten
and standard deviation values of the absolute errors for each methiates higher.
versus the decimation factor. The accuracy of the MAS estimator

40 % 40 _ 40 40
= 30} ——MAS — 30| MAS =30[ F-MAS =
g g g g
<] 5 <] 5
= 20 =20 E 20 Pt
= = 5 =
310 310 % 10 3
2 ﬂ 2 Y E

0 0 0
123456 8 10 12 123456 8 10 12 123456 & 10 12 123456 8 10 12
Decimation factor Decimation factor Decimation factor Decimation factor

(@ (b) (© (d)
Figure 4. Comparison of mean and standard deviation values of the absolute error between the true and estimated vector norms with tl
original and decimated images between MAS estimator and (a) maximum cross-correlation estimator without search grid interpolation, (b)
maximum correlation estimator with search grid interpolation, (c) complex correlation phase zero crossing estimator, and (d) unbiasec
quadrature delay estimator.

Figure 4 shows that the MCC estimator gives a minimum error ahages for two different compression levels were acquired, with 8
roughly 8 um (which corresponds to a relative error of 0.3%) fopoints per period in the axial direction and 24 in the lateral direction,
images at the initial resolution. For the initial resolution level, theorresponding to a pixel size of 19.6x7fr@2. The compression of
MAS estimator provides less error and reaches the valuepofi 8 the phantom was directly applied with the ultrasound probe, as with
when the resolution level is divided by 10. Therefore, a resolutidreehand elastography for clinical applications [21]. The same motion
that is 10 times higher is needed for the MCC estimator reportedéstimation methods used with the simulated images were considered.
the MAS phase estimator. In this case of equivalent accuracies, MAS, MCC and CCPR estimators were tested. For the experimental
computation time using the MCC estimator is 14 times longer thatata, since the true displacement was not available, a confidence
the computation time with the proposed estimator. Note in Figureseasure was used to quantify the estimation accuracy. We therefore
4(c) and (d) that for all resolution levels the methods using CCP4pplied the estimated 2-D displacement to image order to map it
and UQDE produce an absolute error higher than the MAS estimatonto the reference image il. Furthermore, we calculated the 2-D
This may be explained by several reasons. First, the 1-D formulatioarmalized cross-correlation coefficient between each block
of CCPR and UQDE estimators is not well adapted to estimate 2donsidered o, and its corresponding block on the registered version
displacements. Moreover, UQDE uses the signals amplitude, whighi,. The similarity measure, denotédis then the mean value of all
makes it less efficient in speckle imaging applications (as is the cakese coefficients.
of ultrasound imaging) than estimators using the phase [11]. TheFigure 5(a) shows the evolution &find of the standard deviation
motion initialization used here for each node [21] may also not halues of § for the three methods when original images are
adapted for these 1-D estimators. Thus, an estimation error that cdecimated. Figure 5(b) compares the accuracy of the MAS estimator
occur for one node is propagated for the neighboring nodes awdthe MCC estimator with the search grids refined for different
increases the total amount of error. This can be the case especiallyiriterpolation factors and using the original images.

UQDE, which is more sensitive to speckle changes than CCPR. Fok 1
these reasons, only the CCPR method is retained for the experimental
case. o

&[4
g
8

B. Experimental images
90
The experimental result presented here is considered with phantom

——MCC wo SGl o4

data. The phantom (Elasticity QA Phantom, model 049, by CIRS |-e-ccer +Mccwm§1
Tlss_ue Simulation & Phantom Technology, Norfolk, VA, USA) was an 42 @9 aH @D CH P D eDGE) @) @D 49 6o
designed for ultrasound elastography and presented a spherical 20- Dedimation factor Smhg”dt')"efpda"wams
mm-diameter inclusion of 6 kPa for a surrounding medium of 29 kPa, @) (b)

The ultrasound RF images were acquired and formed using fhigUre 5. Accuracy measurement (@) using the MAS, MCC or CCPR
beamforming method presented by Liebgott et al. in [13]. Twipcal estimator for different decimation factors (axial, lateral), (b)



with the MCC using the original images and the search grid refine faith MCC, search grids must be linearly interpolated by a factor of 6
different interpolation factors (axial, lateral) in both directions. Note that this method of searching for the best
matching block with the MCC refines the precision of the local

The results of comparing MAS and MCC with the original imagemotion estimation with no increase in the computation complexity of

and MCC with the search grids interpolated by a factor of 6 in eatthe cross-correlation. However, the computation time in this case

direction are given in figure 6. The estimated motion vectors forl@comes roughly ten times higher than with the MAS estimator on

region around the inclusion are shown, as well as the ultrasoutie original images.

image. Thus, for roughly the same computation time (Figure 6 (b)

and (c)) the estimation accuracy with the MAS estimator is much

higher than with the classical MCC. To reach the same accuracy level

20
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Figure 6. (a) Ultrasound image and estimated 2-D motion vectors corresponding to the region designated by the rectangle on the ultrasour
image, estimated using (b) MAS, (c) MCC, (d) MCC with SGI and an interpolation factor of 6 in each direction.

n
VII. CONCLUSIONS E(n): ¢(x) :ZZITfk(—l)b'k (x, -d) (28)
An analytic subsample spatial shift estimation method is proposed. = .
The estimation is based on an a priori form of n-D signals based on awe start by checking the basis st(t).
nonconventional technique of forming ultrasound images. A series ofCase n=1
analytic signals is generated and shown to present linear phases witiR (u ) = R( q)( (- 3 ™sign( y)) (29)
respect to all directions. Thus, a linear estimation problem is . b
obtained. The choice of n particular complex signals allows us to = R(Ul)+ J(‘l) ‘R ( Ll)
analytically solve the linear system and consequently to provide anWith the signal model in (1) and assuming the disjointed Fourier
analytic estimation. The simulation results show the performance §fectrum between the window(x;) and the 1-D cosinus, the
the proposed estimator for subsample estimation and its accuracyE[R[c‘lytic signal defined in (29) becomes:
low sampled signals compared to classical methods.

For two dimensions, we showed how the proposed estimator cﬁr(xl)
be used for motion tracking with block-based motion estimation _ + (- 1™ gj '
methods. The proposed estimator is then shown to perform betterW(Xi)(cos( xn I( X Q)) ( )' SI(I z 11( 2 g (30)
than the classical maximum of the cross-correlation estimator, &E]W(Xl) eXF( jar i(_ ;)“1( X- q))
estimator dedicated to ultrasound elastography that searches for the
root of the complex correlation phase and an estimator using the in- o ) )
phase and quadrature-phase components of signals. From this it can easily be concluded tE#t) is true.

As one of the major problems in motion estimation for ultrasound We assume now thdk(n) is true (inductive hypothesis) and we
elastography is the out-of-plane displacements, the three-dimensioR@@d to show thad(n+1) is true.
case will be considered in a future study. The n-D formulation of the CaseE(n) true = E( n+ 1) true
analytic estimator in this case makes it possible to directly eStimateConsideringE(n) true and keeping in mind the separable form of
the three components of the local tissue displacement vect@{y osinus product, the analytic signafor the casen+1 can be
Moreover, its accuracy for low sampled signals is also relevant to theon as follows:
3-D case to reduce the amount of processed data.

APPENDIX

We use the induction method to show that the phases of the
analytic signals defined in (5) follow the linear model in (7) for any
integern. Let us note the result which is to be proved herg(hy.
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