
HAL Id: hal-00443075
https://hal.science/hal-00443075v1

Submitted on 28 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decisions with conflicting and imprecise information
Thibault Gajdos, Jean-Christophe Vergnaud

To cite this version:
Thibault Gajdos, Jean-Christophe Vergnaud. Decisions with conflicting and imprecise information.
Social Choice and Welfare, 2013, 41 (2), pp.427-452. �10.1007/s00355-012-0691-1�. �hal-00443075�

https://hal.science/hal-00443075v1
https://hal.archives-ouvertes.fr


 

 
DECISIONS WITH CONFLICTING AND IMPRECISE 

INFORMATION 
 
 
 
 

Thibault GAJDOS 

Jean-Christophe VERGNAUD 
 
 
 
 

 
December  2009 

 

Cahier n° 2009-57 
 

 

 

                              ECOLE POLYTECHNIQUE                      
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

DEPARTEMENT D'ECONOMIE 
Route de Saclay 

91128 PALAISEAU CEDEX 
(33) 1 69333033 

http://www.enseignement.polytechnique.fr/economie/  
mailto:chantal.poujouly@polytechnique.edu 

 
 



Decisions with conflicting and imprecise

information 1

Thibault Gajdos2 Jean-Christophe Vergnaud3

December 2009

1We thank I. Gilboa, Ch. Gollier, N. Vieille, and audience at the Toulouse Shcool
of Economics Theory seminar for useful comments and suggestions.

2CNRS, Ecole Polytechnique and CERSES. E-mail: gajdos@univ-paris1.fr.
3CNRS, Centre d’Economie de la Sorbonne and CERSES. E-mail:

vergnaud@univ-paris1.fr.



Abstract

The most usual procedure when facing decisions in complex settings consists

in consulting experts, aggregating the information they provide, and deciding

on the basis of this aggregated information. We argue that such a procedure

entails a substantial loss, insofar as it precludes the possibility to take into

account simultaneously the decision maker’s attitude towards conflict among

experts and her attitude towards imprecision of information. We propose to

consider directly how a decision maker behaves when using information coming

from several sources. We give an axiomatic foundation for a decision criterion

that allows to distinguish on a behavioral basis the decision maker’s attitude

towards imprecision and towards conflict.

Keywords. Decisions with multiple sources of information. Conflict aversion.

Imprecision aversion.

JEL Classification. D81, D83.



1 Introduction

When facing situations involving uncertainty, a decision maker might seek

the advice of experts. She will then make her decision on the basis of the

information gathered. Such would be the case, for instance, of a company who

consults experts in climate before deciding to invest in a ski resort. This raises

the following question: how to decide on the basis of an information coming

from several experts?

Clearly, different experts might have different opinions. Moreover, they

could also provide imprecise information. We argue that one should take this

two dimensions into account. Let us illustrate this point with the following

example. Suppose that two experts in climatic change give their predictions

about the frequency of snowy winters in the next thirty years. We allow the

experts to express their degrees of beliefs through probability intervals. The

size of the intervals captures the imprecision of their opinions. We compare

now three possible situations, described in the table below.

Expert 1 Expert 2

Situation A 1
2

1
2

Situation B 1
4

3
4

Situation C [1
4
, 3

4
] [1

4
, 3

4
]

Consider first situations A and B. A classical aggregation procedure is

the linear aggregation rule1. According to this rule (and assuming that both

experts are equally reliable), one would end in both situations with the same

aggregated information, namely that the frequency of snowy winter in the next

thirty years will be 1
2
. However, these two situations are rather different, as in

the first one experts reach a consensus, whereas in the second one they strongly

disagree. Thus, the aggregation procedure sweeps conflict under the rug.

A simple way out consists in aggregating experts opinions by probability

intervals. A natural candidate in situation B would be the interval [1
4
, 3

4
]. But

consider now situation C. Admittedly, any sensible aggregation rule should

respect unanimity among experts. Thus the aggregation in situation C should

also lead to the interval [1
4
, 3

4
]. However, situations B and C greatly differ.

1This aggregating rule, applied to probability distributions, is known in the statistics
literature as the “pooling rule”. See Stone (1961), McConway (1981), and Genest and Zidek
(1986) for a survey.

1



Indeed, in situation B, experts provide strongly conflicting but precise infor-

mation, whereas in situation C, they provide strongly imprecise but similar

predictions. The aggregation procedure considered does not allow to distin-

guish between imprecision of, and conflict among, experts.

This example suggests that it might be tricky to find an aggregation pro-

cedure that takes into account simultaneously, in a satisfactory way, both im-

precision of experts assessments and conflict among them. This would not be

a problem if decision makers were indifferent between ambiguity coming from

imprecision of experts, or conflict among them. The few experimental studies

that have addressed this question to date suggest that such is not the case. In

particular, Smithson (1999) introduces the distinction between ”source con-

flict” and ”source ambiguity”. He formulated the following ”conflict aversion

hypothesis”:

Likewise, conflicting messages from two equally believable sources

may be more disturbing in general than two informatively equiva-

lent, ambiguous, but agreeing messages from the same sources.

Smithson (1999), p.184

Smithson finds evidence supporting this hypothesis in experiments with stu-

dents involving verbal statements. Cabantous (2007) conducted experiments

in a probabilistic setting (very similar to our example) with professional ac-

tuaries. She confirms the conflict aversion hypothesis, which means in this

context that situation C is preferred to situation B.

These results suggest that one should consider directly how a decision

maker behaves when using information coming from several sources. However,

to the best of our knowledge, there is no decision model that rationalizes the

conflict aversion hypothesis. We axiomatically characterize preferences that

exhibit independently aversion towards imprecision and conflict. We obtain a

two-step procedure. The first step consists in using separately experts assess-

ments in a multiple prior model. The second step consists in an aggregation of

these evaluations through a multiple weights model. Such a model is compati-

ble with the evidence found by Smithson (1999) and Cabantous (2007). More

precisely, a decision maker will satisfy the conflict aversion hypothesis when-

ever her degree of conflict aversion is higher than her degree of imprecision

aversion.
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The rest of the paper is organized as follows. We present the formal setup

in Section 2. Section 3 is devoted to the axiomatic characterization of the

decision maker preferences. We in particular introduce an axiom of conflict

aversion. In Section 4 we present results on imprecision aversion and conflict

aversion.

2 Setup

Let Ω be a finite set of states of the world.2 Let ∆(Ω) be the set of all

probability distributions over Ω, and P be the family of compact and convex

subsets of ∆(Ω), where compactness is defined with regard to the Euclidean

space R
Ω. The support of P ∈ P, denoted supp(P ), is defined as the union

over p ∈ P of the support of p.

The collection of information sets P is a mixture space under the operation

defined by

λP + (1 − λ)Q = {λp + (1 − λ)q : p ∈ P, q ∈ Q}.

The set of pure outcomes is denoted by X. Let ∆(X) be the set of simple

lotteries (probability measures with finite supports) over X. Let F = {f :

Ω → ∆(X)} be the set of acts. Abusing notation, any lottery is viewed as a

constant act which delivers that lottery regardless of the states. The set F is

a mixture space under the operation defined by:

(αf + (1 − α)g)(ω) = αf(ω) + (1 − α)g(ω), ∀ω ∈ Ω.

For E ∈ S , denote fEg the act that yields f(ω) if ω ∈ E and g(ω) if not. We

denote by F c the set of constant acts, and for all (x̄, x) ∈ X2, define F b
x̄,x =

{f ∈ F |f(s) = (x̄, ps; x, 1 − ps), ∀s ∈ Ω}, where (x̄, ps; x, 1 − ps) denotes the

lottery that yields x̄ with probability ps and x with probability (1 − ps).

The decision maker is endowed with a preference relation < defined on

F × P × P. When

(f, P1, P2) < (g, Q1, Q2),

2The finiteness assumption is not needed, and is only made for sake of simplicity. All our
results extend to the infinite countable case.
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the decision maker prefers choosing f when, according to expert i, the true

probability distribution belongs to Pi (i ∈ {1, 2}) to choosing g when, accord-

ing to expert i, the true probability distribution belongs to Qi (i ∈ {1, 2}). The

behavioral meaning of this relation has been extensively discussed in Gajdos,

Hayashi, Tallon, and Vergnaud (2008), and we will not dwell on it here.

We derive from < a preference relation <∗ on F ×P as follows: (f, P ) <∗

(g, Q) iff (f, P, P ) < (g, Q, Q).

3 Representation

3.1 Axioms

Our axioms can be divided in two groups. The seven first axioms are simple ex-

tensions of the axioms used in Gajdos, Hayashi, Tallon, and Vergnaud (2008).

They are used to derive a maxmin expected utility representation à la Gilboa

and Schmeidler (1989), in presence of objective information set. Whereas Gaj-

dos, Hayashi, Tallon, and Vergnaud (2008) only consider situations where one

information set is available, we consider here an objective information made

of a pair of probability distribution sets.

Axioms 1 to 6 exactly parallel Gilboa and Schmeidler (1989) axioms, so

we will not elaborate on them. We only insist on the fact that imprecision

aversion is captured through attitude towards mixture of acts (axiom 5). It is

traditionally related to uncertainty aversion (hence its name; see in particular

Schmeidler (1989) and Gilboa and Schmeidler (1989)). It turns out that in

our context, it also can be interpreted as imprecision aversion, exactly through

the same line of arguments. Axiom 7 parallels the classical (and crucial) c-

independence axiom. It imposes that mixing all information sets with the same

information set for both experts does not change preferences.

The two last axioms (Dominance and Conflict aversion) are specifically

related to the problem at hand.

Axiom 1 (Order). The preference relation < is complete and transitive.

Axiom 2 (Continuity). For all P, Q ∈ P, f, g, h ∈ F , if (f, P, Q) ≻ (g, P, Q) ≻

(h, P, Q) then there exist α and β in (0, 1) such that (αf + (1 − α)h, P, Q) ≻

(g, P, Q) ≻ (βf + (1 − β)h, P, Q).
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Axiom 3 (Risk preferences). (i) For all f ∈ F c and P, Q ∈ P, (f, P ) ∼∗

(f, Q) and (ii) There exist f, g ∈ F , P ∈ P such that (f, P ) ≻∗ (g, P ).

Axiom 4 (C-Independence). For all f, g ∈ F , h ∈ F c, P, Q ∈ P, α ∈ (0, 1),

(f, P, Q) < (g, P, Q) ⇒ (αf + (1 − α)h, P, Q) < (αg + (1 − α)h, P, Q).

Axiom 5 (Uncertainty aversion). For all f, g ∈ F , P ∈ P, α ∈ (0, 1),

(f, P ) ∼∗ (g, P ) ⇒ (αf + (1 − α)g, P ) <∗ (f, P ).

Axiom 6 (Monotonicity). For all f, g ∈ F , P ∈ P,

(f(ω), P ) <∗ (g(ω), P ) ∀ω ∈ supp(P ) ⇒ (f, P ) <∗ (g, P ).

Axiom 7 (I-Independence). For all f ∈ F , α ∈ (0, 1), P, Q, R ∈ P, if

(f, P ) <∗ (f, Q) then

(f, αP + (1 − α)R) <∗ (g, αQ + (1 − α)R).

The next two axioms are more specifically related to the problem at hand

(namely, the aggregation of information). The first one states that if (i) the

decision maker prefers f when both experts agree on an information set P1 to

g when both experts agree on Q1, and (ii) she also prefers f when both experts

agree on an information set P2 to g when both experts agree on Q2, then she

prefers f when experts’ opinions are (P1, P2) to g when experts’ opinions are

(Q1, Q2). This is essentially a dominance axiom, similar in substance to the

traditional Pareto requirement.

Axiom 8 (Dominance). For all f, g ∈ F , P1, Q1, P2, Q2 ∈ P,

(f, P1) <∗ (g, Q1)

(f, P2) <∗ (g, Q2)

}

⇒ (f, P1, P2) < (g, Q1, Q2)

Moreover, if one of the preferences on the left-hand side is strict, so is the

preference on the right-hand side.

Our last axiom is related to conflict aversion. Given two information sets P ,

Q and α ∈ (0, 1), the information set αP+(1−α)Q can be seen as a compromise
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between P and Q in the following sense. It is the set of probability distributions

obtained if one considers that the true probability distribution belongs to P

with probability α, whereas it belongs to Q with probability (1−α). Our axiom

says that the decision maker always prefers when experts come in with opinions

that are less disparate, i.e., always prefers (f, αP + (1 − α)Q, αQ + (1− α)P )

to (f, P, Q).

Axiom 9 (Conflict aversion). For all f ∈ F , P, Q ∈ P, α ∈ (0, 1),

(f, αP + (1 − α)Q, αQ + (1 − α)P ) < (f, P, Q).

3.2 Main result

We derive from our axioms the following representation.

Theorem 1. Axioms 1 to 9 are satisfied iff there exist a mixture-linear function

u : ∆(X) → R, a linear mapping ϕ : P → P satisfying supp(ϕ(P )) ⊆

supp(P ) and a symmetric closed and convex subset Π in ∆({1, 2}) such that

< can be represented by:

V (f, P, Q) = min
π∈Π

π(1)

(

min
p∈ϕ(P )

∑

ω

u(f(ω))p(ω)

)

+π(2)

(

min
p∈ϕ(Q)

∑

ω

u(f(ω))p(ω)

)

.

Moreover u is unique up to a positive linear transformation, and ϕ and Π are

unique.

Maximizing this formula can be though of as a two-step procedure. First,

the decision maker transforms experts information through ϕ, and uses the

resulting sets of probability to evaluate the act under consideration. Second,

she aggregates linearly these two evaluations, using the worst weight vector

in a set Π. The first step deals with experts’ assessments. It is important to

observe that we face two very different kinds of sets of probability distributions.

Indeed, P and Q are strictly informational. They capture the information

available to the decision maker. ϕ(P ) and ϕ(Q) are the behavioral beliefs the

decision maker would use to evaluate acts if she were facing either P or Q3.

The mapping ϕ introduces a subjective treatment of an imprecise information.

3In Gilboa and Schmeidler (1989) celebrated maxmin expected utility model, only be-
havioral beliefs appear.
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In the second step, evaluations based on information provided by experts are

aggregated. The set Π captures the decision maker’s attitude towards conflict

among valuations based on experts assessments.

Note that we also have:

V (f, P, Q) = min
p∈Π⊗(ϕ(P ),ϕ(Q))

∑

ω

u(f(ω))p(ω),

where Π ⊗ (ϕ(P ), ϕ(Q)) = {π(1)p + π(2)q|π ∈ Π, p ∈ ϕ(P ), q ∈ ϕ(Q)}.

Thus maximizing this formula can be though of as first aggregating experts

information through Π⊗(ϕ(P ), ϕ(Q)), and then applying the maxmin expected

utility criterion over this set. Therefore Π⊗(ϕ(P ), ϕ(Q)) has only a behavioral

meaning: it is related to the decision maker’s preferences.

Finally, note that a different route is also possible: It consists in aggregat-

ing behavioral beliefs of experts into behavioral beliefs of the decision maker.

It essentially amounts to ask the experts what their own decision would be

(possibly assuming that they would evaluate consequences the same way as

the decision maker) and to aggregate these stated preferences. A large liter-

ature in social choice theory has been elaborated along these lines, following

Harsanyi (1955) seminal paper4. See among others Mongin (1995), Gilboa,

Samet, and Schmeidler (2004), Gajdos, Tallon, and Vergnaud (2008).

Indeed, this problem has also been addressed by Crès, Gilboa, and Vieille

(2009), who consider the problem of aggregating preferences of Maxmin Ex-

pected Utility maximizers who share the same utility function into a Maxmin

Expected utility. They show that under Pareto constraint, the aggregate set

of priors takes the form Π ⊗ (P1, . . . , Pn), where Pi denotes individual i’s set

of priors. They thus aggregate behavioral beliefs into behavioral beliefs.5

4Although Harsanyi (1955) actually considers the case where experts share the same
beliefs, and disagree on valuations. But it really laid the foundations for the aggregation of
experts behavioral beliefs.

5Actually, one can also interpret experts beliefs in Crès, Gilboa, and Vieille (2009) as
informational beliefs. But then it implies that the decision maker is forced to be extremely
averse towards uncertainty.
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4 Attitude towards uncertainty and conflict

4.1 General definitions and characterization

We now turn to the behavioral characterization of imprecision and conflict

aversion. We use the standard comparative approach.

We first define comparative imprecision aversion as in Gajdos, Tallon, and

Vergnaud (2004) and Gajdos, Hayashi, Tallon, and Vergnaud (2008). Let a

and b be two decision makers. We will say that b is more averse to imprecision

than a if, whenever a prefers a precise situation to an imprecise one, so does b.

In order to control for risk aversion, this definition is restricted to binary acts.

Definition 1. Let %∗

a and %∗

b be two preference relations defined on F × P.

Suppose there exist two prizes x̄, x in X such that both a and b strictly prefer

x̄ to x. We say that <∗

b is more averse to imprecision than <∗

a whenever for

all f ∈ F b
x̄,x, p ∈ ∆(Ω), P ∈ P

(f, {p}) <∗

a (f, P ) ⇒ (f, {p}) <∗

b (f, P ).

The following proposition shows how ϕ is related to the decision maker’s

attitude towards imprecision. Intuitively, the more ϕ “shrinks” P , the less

imprecision averse is the decision maker.

Proposition 1. The following assertions are equivalent:

1. <∗

b is more averse to imprecision than <∗

a,

2. for all P ∈ P, ϕa(P ) ⊂ ϕb(P ).

Comparative conflict aversion will be defined along the same line as com-

parative imprecision aversion. It simply states that decision maker b is more

averse to conflict than decision maker a if, whenever a prefers a consensual

situation to a situation with divergent information, so does b.

Assume that a decision maker strictly prefers (f, P, P ) to (f, Q, Q). Then

(by axiom 8) she will have the following preferences: (f, P, P ) < (f, P, Q) <

(f, Q, Q). Now, consider R(α) = αP + (1 − α)Q. Of course, the larger α,

the better (f, R(α), R(α)). Since (f, R(1), R(1)) < (f, P, Q) < (f, R(0), R(0)),

there is an (unique) α̂ such that (f, R(α̂), R(α̂)) ∼ (f, P, Q). Loosely speaking,
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R(α̂) is the worst consensual information that the decision maker considers as

equivalent to (P, Q) when facing act f . Thus (1− α̂) can be seen as the “price”

she is ready to pay to avoid conflict. Decision maker b is more averse to conflict

than decision maker a if b is ready to “pay” a higher price to avoid conflict.

Definition 2. Let %a and %b be two preference relations defined on F ×P ×

P. We say that %b is more averse to conflict than %a if for all f ∈ F ,

P, Q ∈ P, α ∈ (0, 1), such that both a and b prefers (f, P ) to (f, Q) if :

(f, αP + (1 − α)Q, αP + (1 − α)Q) <a (f, P, Q)

then,

(f, αP + (1 − α)Q, αP + (1 − α)Q) <b (f, P, Q).

The following Proposition shows how Π is related to the decision maker’s

attitude towards conflict. Intuitively, the larger Π, the more averse to conflict

is the decision maker.

Proposition 2. The following assertions are equivalent:

1. <b is more averse to conflict than <a,

2. Πa ⊆ Πb.

4.2 The two states case

In order to illustrate our results, let us consider the specific situation where

there are only two states, and ϕ is symmetric, i.e., for all permutation ρ :

Ω → Ω, and all P ∈ P ρ((ϕ(P )) = ϕ(Pρ), where ρ (ϕ(P )) = {p|∃q ∈

ϕ(P ), q(ρ(ω)) = p(ω), ∀ω ∈ Ω} and Pρ = {p|∃q ∈ P, q(ρ(ω)) = p(ω), ∀ω ∈

Ω}.

In this case, ϕ and Π take the following parametric form:

ϕ(P ) = {(1 − θ)c(P ) + θp|p ∈ P} ,

where θ ∈ [0, 1] and c(P ) is the center of P , and

Π =

{

(1 − α)

(

1

2
,
1

2

)

+ α(t, 1 − t)
∣

∣

∣
t ∈ [0, 1]

}

,
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where α ∈ [0, 1]. In other words, ϕ(P ) is a contraction of P around its center,

with a contraction rate equal to (1 − θ), whereas Π is a symmetric set of

probabilities. In view of Propositions 1 and 2, θ can be interpreted as a measure

of imprecision aversion (imprecision aversion increases with θ) whereas α can

be interpreted as a measure of conflict aversion (conflict aversion increases with

α).

The traditional aggregation approach assumes that decisions with informa-

tion coming from various experts can be made in two steps. First, information

provided by experts is somehow aggregated into a unique piece of information;

then this aggregated information is used by the decision maker, who trans-

forms it into behavioral beliefs. A classical example of this kind of decision

process is the traditional cost-benefit analysis. Expert commission transmits

the information concerning the likelihood of the relevant events, outcomes

are evaluated separately, and the policy maker uses a decision rule based on

transmitted information and outcome evaluation. This is typically the case

for environmental and health issues (e.g., global warming, new diseases). The

problem can then be reduced to independent questions. First, how should we

aggregate experts opinions? Second, what should be the decision, given this

aggregated information?

It is natural to wonder whether it is always possible to reduce the behavioral

approach we follow to the traditional two-steps aggregation? This would be

the case if any pair of statements is equivalent for the decision maker (from the

informational point of view) to some statement coming from a single source.

In other words, for all P, Q, there should exist R such that for all f , (f, P, Q) ∼

(f, R, R). As shown by the following proposition, such is actually not the case.

When there are only two states and ϕ is symmetric, the classical procedure

and our approach are equivalent iff the decision maker degree of uncertainty

aversion is larger than her degree of conflict aversion. Note that in these

situations, the conflict aversion hypothesis described and observed by Smithson

(1999) and Cabantous (2007) will not be satisfied.

Proposition 3. Assume |Ω| = 2 and ϕ(P ) is symmetric. Then the following

statements are equivalent:

(i) For all P, Q ∈ P, there exists R ∈ P such that Π ⊗ (ϕ(P ), ϕ(Q)) =

ϕ(R);
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(ii) θ ≥ α.

In some specific cases we can even be more specific. For instance, if Q ⊆ P ,

there always exists R such that ϕ(R) = Π⊗ (ϕ(P ), ϕ(Q)) as soon as θ > 0. R

is then simply:

R =

(

1 + α

2

)

P +

(

1 − α

2

)

Q.

The example discussed in the introduction suggested that it might be dif-

ficult to take into account simultaneously the decision maker attitude towards

imprecision and conflict when using a two-steps aggregation procedure. In-

deed, it must then be the case that attitude towards conflict only appears in

the first step, whereas attitude towards imprecision only appears in the second

step. This would not be a problem if the two steps commute (i.e. if the tra-

ditional procedure were equivalent to first transforming experts informational

beliefs into several behavioral beliefs, and then aggregating these behavioral

beliefs). But, as shown by the following proposition, such is the case only if

the decision maker is extremely averse to imprecision. Although this result is

only proved with two states and a symmetric ϕ, it suggests that the behavioral

approach we followed is significantly wider than the traditional one.

Proposition 4. Assume |Ω| = 2 and ϕ(P ) is symmetric. Then the following

statements are equivalent:

(i) For all P, Q ∈ P, Π ⊗ (ϕ(P ), ϕ(Q)) = ϕ (Π ⊗ (P, Q));

(ii) θ = 1.

Finally, we suggested in the introduction that a natural way to aggregate

information so as to take into account the decision maker attitude towards

conflict consists in considering the unions of the pieces of information provided

by the experts. It is thus a natural question to ask if this rule can be obtained

in our framework. The answer is: yes. It actually corresponds to the case of

extreme aversion towards both conflict and imprecision.

Proposition 5. Assume |Ω| = 2 and ϕ(P ) is symmetric. Then the following

statements are equivalent:

(i) For all P, Q ∈ P, Π ⊗ (ϕ(P ), ϕ(Q)) = ϕ(co(P ∪ Q));

(ii) (α, θ) = (1, 1).
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5 Illustration

We illustrate our approach through the following example. Assume Ω = {1, 2}.

Consider the four following situations.

A. P A
1 = {1

4
} and P A

2 = {3
4
};

B. P B
1 = P B

2 = {p|1
4
≤ p(1) ≤ 3

4
};

C. P C
1 = {p|1

4
≤ p(1) ≤ 3

8
} and P C

2 = {p|5
8
≤ p(1) ≤ 3

4
};

D. P D
1 = P B

1 and P D
2 = {p|3

8
≤ p(1) ≤ 5

8
}.

These four situations are depicted on the following graph, where the range

of p(1) is depicted.

We assume that ϕ and Π are defined as in Section 4. Let Ψ(P i
1, P

i
2) =

Π ⊗ (ϕ(P i
1), ϕ(P i

2)) (i ∈ {A, B, C, D}). Simple computations lead to:

A. Ψ(P A
1 , P A

2 ) = {p|2−α
4

≤ p(1) ≤ 2+α
4
};

B. Ψ(P B
1 , P B

2 ) = {p|1−θ
4

≤ p(1) ≤ 2+θ
4
};

C. Ψ(P C
1 , P C

2 ) = {p|8−3α−θ
16

≤ p(1) ≤ 8+3α+θ
16

};
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D. Ψ(P D
1 , P D

2 ) = {p|5−αθ+3(1−θ)
16

≤ p(1) ≤ 11+αθ−3(1−θ)
16

}.

Clearly, if Ψ(P i
1, P

i
2) ⊂ Ψ(P j

1 , P j
2 ), the decision maker prefers the situation6

where the available information is (P i
1, P

i
2) to the situation where the available

information is (P j
1 , P j

2 ). The following table summarize the results. Situations

are listed from the best to the worst, for different values of the parameters.

1 ≥ θ ≥ 3α
α+2

3α
α+2

≥ θ ≥ 4α
3+α

4α
3+α

≥ θ ≥ α α ≥ θ ≥ 0

A A D D

C D A B

D C C C

B B B A

Note that increasing imprecision aversion implies moving from the right

to the left of the table, whereas increasing conflict aversion implies moving

from the left to the right. Thus, as imprecision aversion increases (ceteris

paribus) A and C are ranked higher, and B and D lower. The converse is true

when conflict aversion increases. Observe that the conflict aversion hypothesis

corresponds to the situation where situation B is better than situation A, i.e.,

the last column. Unsurprisingly, it is obtained when the degree of conflict

aversion is higher than the degree of imprecision aversion.

6 Appendix

6.1 Proof of Theorem 1

Necessity is easily checked. We thus only prove sufficiency.

By Proposition 2 in Gajdos, Hayashi, Tallon, and Vergnaud (2008), we

have:

Lemma 1. If axioms 1 to 7 hold, then there exist a function U : F × P →

R which represents <∗, a mixture-linear function u : ∆(X) → R, a linear

mapping ϕ : P → P satisfying supp(ϕ(P )) ⊆ supp(P ) such that:

U(f, P ) = min
p∈ϕ(P )

Epu(f).

6We say that a decision maker prefers a situation (P, Q) to a situation (P ′, Q′) when for
any bet, she prefers betting in situation (P, Q) rather than in situation (P ′, Q′).
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Moreover u is unique up to a positive linear transformation, and ϕ is unique.

According to Lemma 1, u is unique up to a positive linear transformation,

which implies that we can choose u such that U(h1, P ) = 1 and U(h2, P ) = −1

for some constant acts h1, h2, and for any P .

Lemma 2. {(U(f, P ), (f, Q))|f ∈ F , P, Q ∈ P} = rangeU × rangeU.

Proof. Let K = {(U(f, P ), U(f, Q))|f ∈ F , P, Q ∈ P}, and D = range U ×

rangeU . We have to show that D ⊆ K. Let f, g ∈ F and P, Q ∈ P. By

axiom 6 there exist f̄ and f in F such that (f̄ , P ) <∗ (f, P ) <∗ (f, P ). Thus,

by axiom 2 there exists θ ∈ [0, 1] such that (θf̄ + (1 − θ)f, P ) ∼∗ (f, P ). Let

f c = θf̄ + (1 − θ)f . Observe that f c ∈ F c and U(f, P ) = U(f c, P ). Define

similarly gc as the constant act such that (gc, Q) ∼ (g, Q). We also have, of

course, U(g, Q) = U(gc, Q). Now, fix any event E ⊂ Ω, E 6= Ω, and let P ′, Q′ ∈

P be such that supp(P ′) ⊆ E and supp(Q′) ⊆ Ω \E. We have U(f c
Egc, P ′) =

U(f c, P ) by axioms 3 and 6. Thus U(f c
Egc, P ′) = U(f, P ). Similarly, we have

U(f c
Egc, Q′) = U(gc, Q′) = U(g, Q). Thus (U(f, P ), U(g, Q)) ∈ K, the desired

result.

By axioms 1 and 2, there exists a continuous function V : F ×P×P → R

that represents <. By axiom 8, and Lemma 2 there exists an increasing,

continuous function Ṽ : D → R such that for all f ∈ F and P, Q ∈ P:

V (f, P, Q) = Ṽ (U(f, P ), U(f, Q)) .

Moreover, given U , V can be chosen such that V (f, P, P ) = U(f, P ) (since

V (f, P, P ) represents <∗ as well). The two following steps essentially mimic

Gilboa and Schmeidler (1989)’s and Chateauneuf (1991) proofs.

Lemma 3. For all w ∈ D, α ∈ [0, 1] such that αw ∈ D, Ṽ (αw) = αṼ (w).

Proof. Pick f0 ∈ F c such that U(f0, P ) = 0 (this is possible, given the nor-

malization we choose for V ). Let w = (w1, w2) ∈ D . By Lemma 2 there

exist f ∈ F , Q1, Q2 ∈ P such that U(f, Q1) = w1 and U(f, Q2) = w2.

By definition of Ṽ and V we have V (f, Q1, Q2) = Ṽ (w). By axioms 2, 3

and 6 there exists h ∈ F c such that (h, Q1, Q2) ∼ (f, Q1, Q2). By axiom 4,

14



(αh+(1−α)f0, Q1, Q2) ∼ (αf +(1−α)f0, Q1, Q2) for all α ∈ [0, 1]. By axiom

3, (αh + (1 − α)f0, Q1, Q2) ∼ (αh + (1 − α)f0, Q1, Q1). Thus

V (αh + (1 − α)f0, Q1, Q2) = V (αh + (1 − α)f0, Q1, Q1)

= U(αh + (1 − α)f0, Q1), by the normalization of V

= αU(h, Q1) + (1 − α)U(f0, Q1) by c−linearity of U

= αU(h, Q1), since U(f0, Q1) = 0

= αV (h, Q1, Q1), by the normalization of V

= αV (h, Q1, Q2), by axiom 3

= αV (f, Q1, Q2), by definition of h

= αṼ (w).

On the other hand,

V (αf + (1 − α)f0, Q1, Q2)

= Ṽ (U(αf + (1 − α)f0, Q1), U(αf + (1 − α)f0, Q2))

= Ṽ (αU(f, Q1) + (1 − α)U(f0, Q1), αU(f, Q2) + (1 − α)U(f0, Q2)),

by c−linearity of U

= Ṽ (αU(f, Q1), αU(f, Q2)) since U(f0, P ) = 0

= Ṽ (αw).

Thus Ṽ (αw) = αṼ (w) for all α ∈ [0, 1], and thus for all α ∈ R+.

We extend Ṽ to R
2 by homogeneity, and still call Ṽ its extension (which is

homogeneous and monotone).

Lemma 4. For all w ∈ R
2, µ ∈ R, Ṽ (w + (µ, µ)) = Ṽ (w) + µ.

Proof. Let w1, w2, µ be such that 2w1, 2w2, 2µ ∈ range U . Given the homo-

geneity of Ṽ , this assumption is without any loss of generality. Let f ∈ F ,

h1, h2 ∈ F c and P, Q ∈ P be such that U(f, P ) = 2w1, U(f, Q) = 2w2,

(h1, P, Q) ∼ (f, P, Q) and U(h2, P ) = 2µ. Since (h1, P, Q) ∼ (f, P, Q), axiom

4 implies (1
2
h1 + 1

2
h2, P, Q) ∼ (1

2
f + 1

2
h2, P, Q). Thus:

Ṽ (U(
1

2
h1 +

1

2
h2, P ), U(

1

2
h1 +

1

2
h2, Q)) = Ṽ (U(

1

2
f +

1

2
h2, P ), U(

1

2
f +

1

2
h2, Q)),
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which implies

U(
1

2
h1 +

1

2
h2, P ) = Ṽ (

1

2
U(f, P ) +

1

2
U(h2, P ),

1

2
U(f, Q) +

1

2
U(h2, Q)).

Therefore,

Ṽ (w1 + µ, w2 + µ) =
1

2
U(h1, P ) +

1

2
U(h2, P )

=
1

2
Ṽ (U(h1, P ), U(h1, Q)) + µ, by homogeneity of U

=
1

2
V (h1, P, Q) + µ, by normalization of V

=
1

2
V (f, P, Q) + µ

=
1

2
Ṽ (U(f, P ), U(f, Q)) + µ

=
1

2
Ṽ (2w1, 2w2) + µ

= Ṽ (w1, w2) + µ,

the desired result.

It remains to show that Ṽ is symmetric and concave. This is the key part

of the proof, where the conflict aversion axiom plays a crucial role.

Lemma 5. Ṽ is symmetric.

Proof. We first show that Ṽ is symmetric. Without loss of generality (because

of the homogeneity of Ṽ ), choose w, w′ ∈ D . Let f ∈ F and P, Q ∈ P be

such that U(f, P ) = w1 and U(f, Q) = w2. Let α ∈ [0, 1]. We have:

Ṽ (αw1 + (1 − α)w2, αw2 + (1 − α)w1)

= Ṽ (αU(f, P ) + (1 − α)U(f, Q), αU(f, Q) + (1 − α)U(f, P ))

= Ṽ (U(f, αP + (1 − α)Q), U(αQ + (1 − α)P )), by linearity of ϕ.

Thus axiom 9 implies for all w1, w2 ∈ R (by homogeneity) and all α ∈ [0, 1]:

Ṽ (αw1 + (1 − α)w2, αw2 + (1 − α)w1) ≥ Ṽ (w1, w2).
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Thus, in particular, Ṽ must be symmetric. Indeed, setting α = 0, we obtain

Ṽ (w2, w1) ≥ Ṽ (w1, w2). Permuting w1 and w2 yields Ṽ (w1, w2) ≥ Ṽ (w2, w2),

and thus Ṽ (w1, w2) = Ṽ (w2, w1).

Lemma 6. Ṽ is concave.

Proof. Step 1.

Let w = (w1, w2) and w′ = (w′

1, w
′

2) in D be such that Ṽ (w) = Ṽ (w′),

w1 ≤ w2, w′

1 ≤ w′

2, and w̄ = (t, t) ∈ D be such that Ṽ (w̄) = Ṽ (w) (by axioms

2 and 8, such an w̄ exists). Without loss of generality, assume 0 < w1 ≤ w′

1

(and thus, by axiom 8, w2 ≥ w′

2) and 0 < w′

2. First, we show that there exists

θ ∈ [0, 1] such that w′ = θw +(1− θ)w̄. Assume that such is not the case. Let

λ > 0 be such that λw′ ∈ [w, w̄], and let θ̂ be such that λw′ = θ̂w + (1 − θ̂)w̄.

Since w′ /∈ [w, w̄], λ 6= 1. Thus, by axiom 8, either Ṽ (λw′) > Ṽ (w′) or

Ṽ (λw′) < Ṽ (w′). But by lemma 3 and 4, Ṽ (λw′) = Ṽ (θ̂w + (1 − θ̂)w̄) =

θṼ (w) + (1 − θ)Ṽ (w̄) = Ṽ (w) = Ṽ (w′), a contradiction.

Thus, let θ be such that w′ = θw + (1 − θ)w̄. Then, for all α ∈ [0, 1],

Ṽ (αw + (1 − α)w′) = Ṽ (αw + (1 − α)(θw + (1 − θ)w̄))

= Ṽ ((α + (1 − α)θ)w + (1 − α)(1 − θ)w̄)

= (α + (1 − α)θ)Ṽ (w) + (1 − α)(1 − θ)Ṽ (w̄)

= Ṽ (w)

= αṼ (w) + (1 − α)Ṽ (w′),

where the third equality follows by c−affinity and homogeneity of Ṽ .

Step 2.

Assume now that w = (w1, w2) and w′ = (w′

1, w
′

2) are D such that Ṽ (w) =

Ṽ (w′), w1 ≤ w2, w′

1 ≥ w′

2, and w̄ = (t, t) ∈ D be such that Ṽ (w̄) = Ṽ (w). We

assume, without loss of generality, 0 < w1 ≤ w′

2 (and thus, by axiom 8 and

lemma 5, w2 ≥ w′

2) and 0 < w′

2.

By lemma 5, Ṽ (w1, w2) = Ṽ (w2, w1). Thus Ṽ (w2, w1) = Ṽ (w′

1, w
′

2). By the

preceding argument, there exits θ ∈ [0, 1] such that w′ = θ(w2, w1) + (1− θ)w̄.

Therefore, for all α ∈ [0, 1]:

Ṽ (αw + (1 − α)w′) = Ṽ (αw + (1 − α)(θ(w2, w1) + (1 − θ)w̄))
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= Ṽ ((αw + (1 − α)θ(w2, w2)) + (1 − α)(1 − θ)w̄)

= (α + (1 − α)θ)Ṽ

(

α

α + (1 − α)θ
w +

1 − α

α + (1 − α)θ
(w2, w1)

)

+(1 − α)(1 − θ)Ṽ (w̄), by c−affinitiy and homogeneity of Ṽ

≥ (α + (1 − α)θ)Ṽ (w) + (1 − α)(1 − θ)Ṽ (w̄), by axiom 9,

and therefore Ṽ (αw + (1 − α)w′) ≥ Ṽ (w), the desired result.

Step 3.

It remains to deal with the case where Ṽ (w) 6= Ṽ (w′). Assume without

loss of generality that Ṽ (w) > Ṽ (w′). Let µ = Ṽ (w) − Ṽ (w′). Define w̃ =

w′ + (µ, µ). By c-affinity of Ṽ , we have Ṽ (w̃) = Ṽ (w′) + µ = Ṽ (w). Thus, for

all α ∈ [0, 1],

Ṽ (αw̃ + (1 − α)w) ≥ αṼ (w̃) + (1 − α)Ṽ (w), by steps 1 and 2

≥ αṼ (w′) + (1 − α)Ṽ (w) + αµ.

On the other hand,

Ṽ (αw̃ + (1 − α)w) = Ṽ (α(w′ + µ) + (1 − α)w)

= Ṽ (αw′ + (1 − α)w) + αµ by c−affinitiy of Ṽ .

Therefore Ṽ (αw′ + (1−α)w) ≥ αṼ (w′) + (1−α)Ṽ (w), the desired result.

By Lemma 3, 4 and 6, Ṽ is concave and homogeneous of degree 1, and

c−affine. Therefore, by a classical result (see, e.g., the “Fundamental Lemma”

in Chateauneuf (1991) and Lemma 3.5 in Gilboa and Schmeidler (1989)), there

exists a unique closed and convex set Π such that Ṽ (w1, w2) = minπ∈Π π(1)w1+

π(2)w2. Furthermore, by lemma 5, Π is symmetric. Lemma 1 yields to Theo-

rem 1.

6.2 Proof of Proposition 1

This proposition is in the vein of Theorem 3 in Gajdos, Tallon, and Vergnaud

(2004) and Theorem 4 in Gajdos, Hayashi, Tallon, and Vergnaud (2008). For

sake of exactness, we adapt the proof here.

It is straightforward to check that 2 implies 1.
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Conversely, suppose ad absurdum that <∗

b is more averse to imprecision

than <∗

a but that there exists p∗ ∈ ϕa(P ) such that p /∈ ϕb(P ). Using a

separation argument, there exists a function φ : Ω → R such that Ep∗φ <

minp∈ϕb(P ) Epφ. Let x̄ and x in X be such that both a and b strictly prefer

x̄ to x. Note that we can choose by normalization ua and ub so that ua(x̄) =

ub(x̄) = 1 > ua(x) = ub(x) = 0. Since Ω is a finite set, there exist numbers

m > 0 and ℓ, such that for all ω ∈ Ω, mφ(ω) + ℓ ∈ [0, 1]. Let αω = mφ(ω) + ℓ,

ω ∈ Ω. Let f 0 ∈ F b
x̄,x such that f 0(ω) = αωδx̄ + (1 − αω)δx for all ω ∈ Ω.

Then, Ep∗u(f 0) < minp∈ϕb(P ) Epu(f 0) which implies that (f, P ) ≻∗

b (f, {p∗}).

However, since p∗ ∈ ϕa(P ), Ep∗u(f 0) ≥ minp∈ϕa(P ) Epu(f 0) which implies that

(f, {p∗}) <∗

a (f, P ) and thus yields a contradiction with <∗

b being more averse

to imprecision than <∗

a.

6.3 Proof of Proposition 2

Since Πa and Πb are symmetric, there exist αa and αb such that Πa = {(1 −

αa)(
1
2
, 1

2
+αa(t, 1−t)|t ∈ [0, 1]} and Πb = {(1−αb)(

1
2
, 1

2
+αb(t, 1−t)|t ∈ [0, 1]}.

For all f ∈ F , P, Q ∈ P, α ∈ (0, 1), i = a, b, (f, αP + (1 − α)Q, αP + (1 −

α)Q) <i (f, P, Q) iff:

min
p∈ϕi(αP+(1−α)Q)

Epu(f) ≥ min
(π,1−π)∈Πi

(

π min
p∈ϕi(P )

Epu(f) + (1 − π) min
p∈ϕi(Q)

Epu(f)

)

.

Since the ϕi are linear, we then obtain:

α min
p∈ϕi(P )

Epu(f) + (1 − α) min
p∈ϕi(Q)

Epu(f)

≥

(

1 + αi

2

)

min

(

min
p∈ϕi(P )

Epu(f), min
p∈ϕi(Q)

Epu(f)

)

+

(

1 − αi

2

)

max

(

min
p∈ϕi(P )

Epu(f), min
p∈ϕi(Q)

Epu(f)

)

Furthermore, if both a and b prefer (f, P ) to (f, Q), then (f, αP + (1 −

α)Q, αP + (1 − α)Q) <i (f, P, Q) iff α ≥ 1−αi

2
.

Thus if <b is more averse to conflict than <a, then 1−αa

2
≥ 1−αb

2
and thus

Πa ⊆ Πb. Conversely, if Πa ⊆ Πb, then <b is more averse to conflict than <a.
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6.4 Proof of Proposition 3

Assume without loss of generality that Ω = {1, 2}. Let δ1 = (1, 0), δ2 = (0, 1)

and δ12 = {p = (p1, p2) ∈ [0, 1]2|p1 + p2 = 1}. Any set P ∈ P can be written

in a unique way as: P = γ1δ1 + γ2δ2 + γ3δ12, with γ1, γ2, γ3 ≥ 0 such that

γ1 + γ2 + γ3 = 1.

For all R = γ1δ1 + γ2δ2 + γ3δ12, and all θ ∈ [0, 1], we have:

ϕ(R) =

(

γ1 +
(1 − θ)γ3

2

)

δ1 +

(

γ2 +
(1 − θ)γ3

2

)

δ2 + θγ3δ12.

Let P = λ1δ1+λ2δ2+λ3δ12, Q = λ′

1δ1+λ′

2δ2+λ′

3δ12 and α ∈ [0, 1], θ ∈ [0, 1].

Without any loss of generality, let us assume that λ′

1 + 1−θ
2

λ′

3 ≥ λ1 + 1−θ
2

λ3.

Consider a first case where θ = 0. Then

ϕ(P ) =

(

λ1 +
λ3

2

)

δ1 +

(

λ2 +
λ3

2

)

δ2,

ϕ(Q) =

(

λ′

1 +
λ′

3

2

)

δ1 +

(

λ′

2 +
λ′

3

2

)

δ2.

Simple computations show that

Π ⊗ (aδ1 + (1 − a)δ2, bδ1 + (1 − b)δ2)

=

(

1 + α

2
a +

1 − α

2
b

)

δ1 +

(

1 − α

2
a +

1 + α

2
b

)

δ2 + (b − a) αδ12

if a ≤ b.

If R is such that ϕ(R) = Π ⊗ (ϕ(P ), ϕ(Q)), then we must have

ϕ(R) =
(

γ1 +
γ3

2

)

δ1 +
(

γ2 +
γ3

2

)

δ2 = Π ⊗ (ϕ(P ), ϕ(Q))

=

(

1 + α

2
a +

1 − α

2
b

)

δ1 +

(

1 − α

2
a +

1 + α

2
b

)

δ2 + (b − a) αδ12,

where a = λ1 + λ3

2
and b = λ′

1 +
λ′

3

2
.

Therefore, we must have α = 0 and thus θ ≥ α.

Conversely, if θ = α = 0, for R = Π⊗(P, Q), ϕ(R) = Π⊗(ϕ(P ), ϕ(Q)) and

thus for all P, Q ∈ P, there exists R ∈ P such that Π⊗(ϕ(P ), ϕ(Q)) = ϕ(R).

Let suppose now that θ > 0. We show first that (i) implies (ii). Consider
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the case where λ2 = 1 and λ′

1 = 1. Then:

Π ⊗ (ϕ(P ), ϕ(Q)) = Π ⊗ (δ2, δ1)

=
1 − α

2
δ1 +

1 − α

2
δ2 + αδ12.

If R is such that ϕ(R) = Π ⊗ (ϕ(P ), ϕ(Q)), then we must have:

ϕ(R) =

(

γ1 +
(1 − θ)γ3

2

)

δ1 +

(

γ2 +
(1 − θ)γ3

2

)

δ2 + θγ3δ12

= Π ⊗ (ϕ(P ), ϕ(Q)) =
1 − α

2
δ1 +

1 − α

2
δ2 + αδ12.

Thus γ3 = α
θ

and for α > θ, γ3 > 1 which yields a contradiction.

We now show that (ii) implies (i). Assume that θ ≥ α and consider two

subcases.

Case where λ′

2 +
(1−θ)λ′

3

2
≥ λ2 + (1−θ)λ3

2
(it correponds to the case where

Q ⊆ P ).

Simple computations show that

Π ⊗ (a1δ1 + a2δ2 + (1 − a1 − a2)δ12, b1δ1 + b2δ2 + (1 − b1 − b2)δ12)

=

(

1 + α

2
a1 +

1 − α

2
b1

)

δ1 +

(

1 + α

2
a2 +

1 − α

2
b2

)

δ2

+

[(

1 + α

2

)

(1 − a1 − a2) +

(

1 − α

2

)

(1 − b1 − b2)

]

δ12

if a1 ≤ b1 and a2 ≤ b2.

If R is such that ϕ(R) = Π ⊗ (ϕ(P ), ϕ(Q)), we must have

ϕ(R) =

(

γ1 +
(1 − θ)γ3

2

)

δ1 +

(

γ2 +
(1 − θ)γ3

2

)

δ2 + θγ3δ12

= Π ⊗ (ϕ(P ), ϕ(Q))

=

(

1 + α

2
a1 +

1 − α

2
b1

)

δ1 +

(

1 + α

2
a2 +

1 − α

2
b2

)

δ2

+

[(

1 + α

2

)

(1 − a1 − a2) +

(

1 − α

2

)

(1 − b1 − b2)

]

δ12

where a1 = λ1+ 1−θ
2

λ3, a2 = λ2+ (1−θ)
2

λ3, b1 = λ′

1+
1−θ
2

λ′

3 and b2 = λ′

2+
(1−θ)

2
λ′

3.
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Therefore, we have:

γ1 +
(1 − θ)γ3

2
=

1 + α

2
a1 +

1 − α

2
b1

γ2 +
(1 − θ)γ3

2
=

1 + α

2
a2 +

1 − α

2
b2

θγ3 =

(

1 + α

2

)

(1 − a1 − a2) +

(

1 − α

2

)

(1 − b1 − b2),

which leads to

γ1 =
1 + α

2
λ1 +

1 − α

2
λ′

1

γ2 =
1 + α

2
λ2 + +

1 − α

2
λ′

2

γ3 =

(

1 + α

2

)

λ3 +

(

1 − α

2

)

λ′

3,

which are three values between 0 and 1. In fact, when Q ⊆ P , there always

exists R such that ϕ(R) = Π ⊗ (ϕ(P ), ϕ(Q)) as soon as θ > 0. R is simply:

R =

(

1 + α

2

)

P +

(

1 − α

2

)

Q.

Case where λ2 + (1−θ)λ3

2
≥ λ′

2 +
(1−θ)λ′

3

2
.

Simple computation gives that

Π ⊗ (a1δ1 + a2δ2 + (1 − a1 − a2)δ12, b1δ1 + b2δ2 + (1 − b1 − b2)δ12)

=

(

1 + α

2
a1 +

1 − α

2
b1

)

δ1 +

(

1 − α

2
a2 +

1 + α

2
b2

)

δ2

+

[(

1 + α

2

)

(1 − a1 − b2) +

(

1 − α

2

)

(1 − b1 − a2)

]

δ12

if a1 ≤ b1 and a2 ≥ b2.

If R is such that ϕ(R) = Π ⊗ (ϕ(P ), ϕ(Q)), then we must have

ϕ(R) =

(

γ1 +
(1 − θ)γ3

2

)

δ1 +

(

γ2 +
(1 − θ)γ3

2

)

δ2 + θγ3δ12

= Π ⊗ (ϕ(P ), ϕ(Q))

=

(

1 + α

2
a1 +

1 − α

2
b1

)

δ1 +

(

1 − α

2
a2 +

1 + α

2
b2

)

δ2
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+

[(

1 + α

2

)

(1 − a1 − b2) +

(

1 − α

2

)

(1 − b1 − a2)

]

δ12

where a1 = λ1+ 1−θ
2

λ3, a2 = λ2+ (1−θ)
2

λ3, b1 = λ′

1+
1−θ
2

λ′

3 and b2 = λ′

2+
(1−θ)

2
λ′

3.

To show that there exists R, we first show that we can find γ3 such that

1 ≥ γ3 ≥ 0 and such that

θγ3 =

(

1 + α

2

)

(1 − a1 − b2) +

(

1 − α

2

)

(1 − b1 − a2).

Then we must have:

γ3 =
1

2

[

λ3 + λ′

3 +
α

θ
(λ′

1 − λ1 + λ2 − λ′

2)
]

.

Since λ′

1 + 1−θ
2

λ′

3 ≥ λ1 + 1−θ
2

λ3 and λ2 + (1−θ)λ3

2
≥ λ′

2 +
(1−θ)λ′

3

2
we have:

λ′

1 − λ1 ≥
1 − θ

2
(λ3 − λ′

3)

λ2 − λ′

2 ≥
1 − θ

2
(λ′

3 − λ3)

and thus

λ′

1 − λ1 + λ2 − λ′

2 ≥ 0.

Therefore γ3 ≥ 0.

On the other hand, since θ ≥ α,

γ3 ≤
1

2
[λ3 + λ′

3 + λ′

1 − λ1 + λ2 − λ′

2] = [λ2 + λ3 + λ′

1 + λ′

3 − 1] ≤ 1.

That means that we can always find a γ3 that fits for the size of the prob-

ability interval Π ⊗ (ϕ(P ), ϕ(Q)).

It remains to be shown that we can find γ1 and γ2 that can adjust for

the margins. Let χ be the size of the probability interval Π ⊗ (ϕ(P ), ϕ(Q)).

Once χ is fixed, and thus γ3 = χ

θ
, we can find γ1 and γ2 values such that

ϕ(R) = τδ1 + (1 − χ − τ) δ2 + χδ12 for any τ ∈
[

(1−θ)
2

χ

θ
, 1 − χ

θ
+ (1−θ)

2
χ

θ

]

.

On the other hand, the weight on δ1 in the decomposition of Π⊗(ϕ(P ), ϕ(Q))

is equal to 1+α
2

(

λ1 + 1−θ
2

λ3

)

+ 1−α
2

(

λ′

1 + 1−θ
2

λ′

3

)

with

χ =
1

2
[θ (λ3 + λ′

3) + α(λ′

1 − λ1 + λ2 − λ′

2)] .
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For χ fixed, to minimize τ ′ = 1+α
2

(

λ1 + 1−θ
2

λ3

)

+ 1−α
2

(

λ′

1 + 1−θ
2

λ′

3

)

, we have to

consider λ1 = λ′

1 = 0. Then

χ =
1

2
[θ (λ3 + λ′

3) + α(λ′

3 − λ3)] ,

while

τ ′ =
1 + α

2

1 − θ

2
λ3 +

1 − α

2

1 − θ

2
λ′

3

=
1 − θ

2

1

2
(λ3 + λ′

3 + α(λ3 − λ′

3))

=
1 − θ

2

1

2

1

θ
(θ (λ3 + λ′

3) + α(λ′

3 − λ3) + α (θ(λ3 − λ′

3) − (λ′

3 − λ3)))

=
(1 − θ)

2

χ

θ
+

1 − θ

2

1

2

α

θ
(1 − θ)(λ′

3 − λ3).

Since we have also λ′

1 + 1−θ
2

λ′

3 ≥ λ1 + 1−θ
2

λ3, then τ ′ ≥ (1−θ)
2

χ

θ
: for a

fixed χ, the lowest weight on δ1 that can be observed for Π⊗ (ϕ(P ), ϕ(Q)) can

be obtained by some γ1 and γ2. Using a similar proof, the same result holds

for the lowest weight on δ2 that can be observed for Π ⊗ (ϕ(P ), ϕ(Q)), which

means that the highest weight on δ1 that can be observed for Π⊗(ϕ(P ), ϕ(Q))

can also be obtained by some γ1 and γ2.

Therefore, there exists R such that ϕ(R) = Π ⊗ (ϕ(P ), ϕ(Q)).

6.5 Proof of Proposition 4

Let p, q ∈ ∆({1, 2}), with p 6= q. For all α, θ ∈ [0, 1], we have:

Π ⊗ (ϕ({p}), ϕ({q})) = Π ⊗ ({p}, {q})

Thus ϕ (Π ⊗ ({p}, {q})) = Π ⊗ (ϕ({p}), ϕ({q})) iff ϕ (Π ⊗ ({p}, {q})) = Π ⊗

({p}, {q}), which implies θ = 1. Thus if Π and ϕ commute, it must be the case

that θ = 1. The converse is trivial.

6.6 Proof of Proposition 5

We use the same notations as in the proof of Proposition 3. We have:

Π ⊗ (ϕ(δ12), ϕ(δ1)) = Π ⊗ (
1 − θ

2
δ1 +

1 − θ

2
δ2 + θδ12, δ1)
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=

(

1 + α

2

1 − θ

2
+

1 − α

2

)

δ1 +

(

1 − α

2

1 − θ

2

)

δ2

+

[(

1 + α

2

)

(1 −
1 − θ

2
) −

(

1 − α

2

)

(
1 − θ

2
)

]

δ12.

On the other hand:

ϕ (co (δ12 ∪ {δ1})) = ϕ (δ12) =
1 − θ

2
δ1 +

1 − θ

2
δ2 + θδ12.

Thus if Π ⊗ (ϕ(δ12), ϕ(δ1)) = ϕ (co (δ12 ∪ {δ1})), it implies that

1 − α

2

1 − θ

2
=

1 − θ

2
,

and thus α = θ = 1. Thus (i) implies (ii). The converse is trivial.
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