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Upper semicontinuous attractors for 3D hyperviscous flow

Introduction

In this paper, we study the robustness, or upper semicontinuity of the global attractors of the Leray-Hopf weak solutions of modified three dimensional Navier-Stokes equations. We regularized the 3D Navier-Stokes system by adding a high order artificial viscosity term to the conventional system ∂u ε ∂t + ε(-△) l u ε -ν△u ε + (u ε .∇) u ε + ∇p = f (x) , in Ω × (0, ∞) div u ε = 0, in Ω × (0, ∞) , u ε (x, 0) = u ε 0 , in Ω, p(x + Le i , t) = p(x, t), u ε (x + Le i , t) = u ε (x, t) i = 1, 2 , 3, t ∈ (0, ∞) (1.1) where Ω = (0, L) 3 with periodic boundary conditions and (e 1 , ..., e d ) is the natural basis of R d . Here ε > 0 is the artificial dissipation parameter, u ε is the velocity vector field, p is the pressure, ν > 0 is the kinematic viscosity of the fluid and f is a given force field. For ε = 0, the model is reduced to 3D Navier-Stokes system.

Mathematical model for such fluid motion has been used extensively in turbulence simulations (see e.g. [START_REF] Bartello | Coherent structures in rotating three-dimentional turbulence[END_REF][START_REF] Basdevant | A study of barotropic model flows: intermittency, waves and predictability[END_REF][START_REF] Legras | Dritschel, A comparison of the contour surgery and pseudo-spectral methods[END_REF]). For further discussion of theoretical results concerning (1.1 ), see [START_REF] Avrin | The Asymptotic Finite-dimensional Character of a Spectrally-hyperviscous Model of 3D Turbulent Flow[END_REF][START_REF] Avrin | Singular initial data and uniform global bounds for the hyperviscous Navier-Stokes equations with periodic boundary conditions[END_REF][START_REF] Cannone | About the regularized Navier-Stokes equations[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Ou | Upper Semicontinuous Global Attractors for Viscous Flow[END_REF][START_REF] Ou | Analysis Of Regularized Navier-Stokes Equations I[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF][START_REF] Younsi | Effect of hyperviscosity on the Navier-Stokes turbulence[END_REF].

In the work [START_REF] Younsi | Effect of hyperviscosity on the Navier-Stokes turbulence[END_REF], the strong convergence of the solution of this problem to the solution of the conventional system as the regularization parameter goes to zero, was established for each dimension d ≤ 4.

For the 3D Navier-Stokes system weak solutions of problem are known to exist by a basic result by J. Leray from 1934 [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], only the uniqueness of weak solutions remains as an open problem. Then the known theory of global attractors of infinite dimensional dynamical systems is not applicable to the 3D Navier-Stokes system.

The theory of trajectory attractors for evolution partial differential equations was developed in [START_REF] Chepyzhov | Trajectory attractors for evolution equations[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF], which the uniqueness theorem of solutions of the corresponding initial-value problem is not proved yet, e.g. for the 3D Navier-Stokes system (see [START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF][START_REF] Chepyzhov | Trajectory attractors for evolution equations[END_REF][START_REF] Sell | Global attractors for the three-dimensional Navier-Stokes equations[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF]). Such trajectory attractor is a classical global attractor but in the space of weak solutions defined on [0, ∞), with the corresponding semigroup being simply the translation in time of such solutions. A compact set A ⋐ E is said to be a global attractor of a semigroup {S(t), t > 0} acting in a Banach or Hilbert space E if A is strictly invariant with respect to {S(t)} : S(t)A = A ∀t ≥ 0 and A attracts any bounded set B ⊂ E : dist(S(t)B, A) → 0 (t → ∞) (see [START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF], [START_REF] Chepyzhov | Trajectory attractors for evolution equations[END_REF], [START_REF] Sell | Global attractors for the three-dimensional Navier-Stokes equations[END_REF], [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF], [START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]).

In this article, we study the upper semicontinuity, of the global attractors of the Leray-Hopf weak solutions of a regularized 3D Navier-Stokes equations, as the artificial dissipation ε goes to 0. While there exist other examples of such robustness in the literature of the Navier-Stokes equations, the specific emphasis on the regularized problem is new for the 3D Navier-Stokes equations and is of interest. This would bean extension of the earlier work on Ou and Sritharan for the 2D Navier-Stokes equations, see references [START_REF] Ou | Upper Semicontinuous Global Attractors for Viscous Flow[END_REF] and [START_REF] Ou | Analysis Of Regularized Navier-Stokes Equations I[END_REF]. It is now known that there is a global attractor A 0 for the Leray-Hopf weak solutions of the 3D Navier-Stokes equations, see Sell [START_REF] Sell | Global attractors for the three-dimensional Navier-Stokes equations[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF] and Chepyzhov [START_REF] Chepyzhov | On the convergence of solutions of the Leray-alpha model to the trajectory attractor of the 3D Navier-Stokes system[END_REF].

The main object of this paper to show that there is a global attractor, which one might denote by A ε , for the regularized problem (1.1 ), and that the family {A ε } is upper semicontinuous at ε = 0. Moreover, we can modify the argument described above so that the final result will have broader applicability by allowing the family of forcing functions f ε to vary with ε, for ε > 0.

The family of sets A ε , 0 < ε ≤ 1 is robust at A 0 , or is upper semicontinuous with respect to ε at ε 0 = 0, provided that, for every ε 0 > 0, there is a neighborhood (23.13) in [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF].

O (ε 0 ) of 0 ∈ R and a neighborhood N ε0 (A 0 ) of A 0 , such that A ε ⊂ N ε0 (A 0 ), for every ε ∈ O (ε 0 ) with ε > 0, see
The paper is organized as follows. In Section 2, we present the relevant mathematical framework for the paper. In Section 3, we recall the definition of the trajectory attractor A 0 of the conventional 3-D Navier-Stokes equations. In Section 4, we study the regularized problem (see equation (1.1 )), then we show the existence of trajectory attractor A ε . In Section 5, we present the main result of this paper, that is, a theorem on the upper semicontinuity on the attractors A ε . Finally, an application of our general results to the study of the robustness of the system (1.1 ) with a perturbed external force.

Preliminary

We denote by H m per (Ω), the Sobolev space of L-periodic functions endowed with the inner product

(u, v) = |α|≤m (D α u, D α v) L 2 (Ω) and the norm u m = |α|≤m ( D α u 2 L 2 (Ω) ) 1 2 .
We define the spaces V m as completions of smooth, divergence-free, periodic, zeroaverage functions with respect to the H m per norms. V ′ m denote the dual space of V m and V denote the space V 0 .

We present the topology to be used for generating the neighborhood of robustness. Let F any vector space. A metric d (f, g) on F is said to be invariant if

d (f, g) = d (f -g, 0) for all f , g ∈ F.
A Fréchet space is a complete topological vector space whose topology is induced by a translation invariant metric d (f, g). Given a Banach space X, with norm . X and 1 ≤ p < ∞ , we denote by L p loc [0, ∞; X) the Fréchet space of mesurable functions f : [0, ∞) → X that are p-integrable over [0, T ], for each 0 < T < ∞ , endow with the metric

d (f, g) = ∞ n=1 2 -n min( f -g L p (0, n; X) , 1).
We denote by L p loc (0, ∞; X) the Fréchet space of mesurable functions f : (0, ∞) → X that are p-integrable over [t 0 , T ], for each 0 < t 0 ≤ T < ∞ endow with the metric

d (f, g) = ∞ n=2 2 -n min( f -g L p ( 1 n , n; X) , 1).
Similarly for p = ∞, we will let L ∞ loc (0, ∞; X) denote the collection of all functions f : (0, ∞) → X with the property that, for all τ and T with 0 < T < ∞ , one has ess sup 0<s<T f X < ∞. We denote by C [0, ∞; X) the space of strongly continuous functions from [0, ∞) to X, endowed with the topologie of the uniform convergence over compact sets and by C w [0, ∞; X) the space of weakly continuous functions from [0, ∞) to X. We denote by

L ∞ C = L ∞ (R, X) ∩ C (R, X) the Fréchet space L ∞ C endow with the L ∞
loc -topology, wich is the topology of uniform convergence on bounded sets.

Let E be a complete metric space with metric d. We write B r for the open ball centre 0 ∈ E and radius r. The following quantity is called the Hausdorff (non-symmetric) semidistance from a set

X to a set Y in a Banach space E dist E (X, Y ) = sup x∈X inf y∈Y . E .
Let M be a subset of E and let R + = [0, ∞). A mapping σ = σ (u, t), where σ : M × [0, ∞) → M is said to be a semiflow on M provided the following hold 1) σ (w, 0) = w, for all w ∈ M.

2) The semigroup property holds, i. e, σ ((w, s) , t) = σ (w, s + t) for all w ∈ M and s, t ∈ R + .

3) The mapping σ : M × (0, ∞) → M is continuous.

If in addition the mapping σ : M × [0, ∞) → M is continuous we will say that the semiflow is continuous at t = 0. Here we use t > 0 in order that the Robustness Theorem 23.14 in [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF] is valid, see Sell [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF] and Hale [START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF]. For any u ∈ M the positive trajectory through u is defined as the set γ + (u) = {σ (t) u, t ≥ 0}. For any set B ⊂ M we define the positive hull H + (B) and the omega limit set ω (B) as follows

H + (B) = Cl M γ + (B) and ω (B) = ∩ τ ≥0 H + (σ (τ ) B) . If A ⊂ E and ε > 0 we write N ε (A) = {z ∈ E, inf a∈A d (z, a) < ε}.
for the open ε-neighbourhood of A.

We denote by A the Stokes operator Au = -△u for u ∈ D (A) .We recall that the operator A is a closed positive self-adjoint unbounded operator, with

D (A) = {u ∈ V 0 , Au ∈ V 0 }. We have in fact, D (A) = V 2 .
The spectral theory of A allows us to define the powers A l of A for l ≥ 1, A l is an unbounded self-adjoint operator in V 0 with a domain D(A l ) dense in V 2 ⊂ V 0 . We set here

A l u = (-△) l u for u ∈ D A l = V 2l .
The space D A l is endowed with the scalar product and the norm

(u, v) D(A l ) = (A l u, A l v), u D(A l ) = {(u, u) D(A l ) } 1 2 .
Now define the trilinear form b(., ., .) associated with the inertia terms

b (u, v, w) = 3 i,j=1 Ω u i ∂v j ∂x i w j dx
Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = -b (u, w, v) . (2.1)
Hereafter, c i ∈ N ,will denote a dimensionless scale invariant positive constant which might depend on the shape of the domain. The trilinear form b (., ., .) is continuous on

V m1 (Ω) × V m2+1 (Ω) × V m3 (Ω), m i=1,2,3 ≥ 0 |b (u, v, w)| ≤ c 0 u m1 v m2+1 w m3 , m 3 + m 2 + m 1 ≥ 3 2 (2.2)
see [START_REF] Constantin | Navier-Stokes Equations[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF]. The continuity property of the trilinear form enables us to define (using Riesz representation theorem) a bilinear continuous operator

B (u, v); V 2 × V 2 → V ′ 2 will be defined by B (u, v) , w = b (u, v, w) , ∀w ∈ V 2 .
We recall some inequalities that we will be using in what follows.

Young's inequality

ab ≤ ǫ p a p + 1 qǫ q p b q , a, b, ǫ > 0, p > 1, q = p p -1 . (2.3) Poincaré's inequality λ 1 u 2 ≤ u 2 1 for all u ∈ V 0 , (2.4) 
where λ 1 is the smallest eigenvalue of the Stokes operator A.

Navier-Stokes equations

The conventional Navier-Stokes system can be written in the evolution form

∂u ∂t + νAu + B (u, u) = f, t > 0, div u = 0, in Ω × (0, ∞) and u (x, 0) = u 0 , in Ω, (3.1) 
let f ∈ L ∞ (0, ∞; V 0 ) be given. We will say that a function u is a weak solution of the 3D Navier-Stokes of Class LH (Leray-Hopf ) on [0, ∞) provided that u (x, 0) = u 0 (x) ∈ V 0 , and the following properties hold

1) u ∈ L ∞ (0, ∞; V 0 ) ∩ L 2 loc [0, ∞; V 1 ). 2) du dt ∈ [L 4 3 loc 0, ∞; V ′ 1
). Taking the inner product of (3.1 ) with u, and using (2.3 ) we have

d dt u (t) 2 + 2ν ∇u 2 = 2 f, u . (3.2)
by application of Young's inequality and the Poincaré's Lemma, yields

d dt u (t) 2 + ν ∇u 2 ≤ f 2 νλ 1 , (3.3) 
using the Poincaré Lemma and Gronwall's inequality, to get

u (t) 2 ≤ e -νλ1(t-t0) u (t 0 ) 2 + 1 ν 2 λ 2 1 f
2 1e -νλ1(t-t0) ,with 0 < t 0 < t,

3) which implies that

u (t) 2 ≤ e -νλ1(t-t0) u (t 0 ) 2 + 1 ν 2 λ 2 1 f 2 .
(3.4)

Integrating (3.
2 ) over [t 0 , t] we find that

u (t) 2 + 2ν t t0 A 1 2 u (s) 2 ds ≤ u (t 0 ) 2 + 2 t t0 f (s) , u (s) ds. (3.5)
4) The function u satisfies the following equality

u (t) -u (t 0 ) , v +ν t t0 A 1 2 u (s) , A 1 2 v ds+ t t0 B (u (s) , u (s)) , v ds = t t0 f, v ds, (3.6 
) for all v ∈ V 1 and for all t ≥ t 0 ≥ 0.

The proof of the following theorem is given in [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF].

Theorem 3.1. Let f ∈ V ′ 1 and u 0 ∈ V 0 be given. Then for every T > 0, there exists a weak solution u (t) of (3.1 ) from the space L 2 (0, T ; V 1 )∩L ∞ (0, T ; V 0 ), such that u (x, 0) = u 0 and u (t) satisfies the energy equality (3.6 ). Moreover (see [START_REF] Temam | Navier-Stokes Equations[END_REF]), u(.) is weakly continuous from [0, T ] into V 0 , the function u ∈ C w ([0, T ] ; V 0 ) and consequently u (x, 0) = u 0 (x) ∈ V 0 . Let W is the set of all Leray-Hopf weak solutions u (.) of equation (3.1 ) 

in the space L ∞ (0, ∞; V 0 ) ∩ L 2 loc [0, ∞; V 1
) that satisfy the following properties

• du dt ∈ L 4 3
loc (0, ∞; V ′ 1 ); • for almost all t and t 0 , with t > t 0 > 0, inequalities (3.5 ,3.6 ) are valid. Let X 0 denote the Fréchet space used to define the Leray-Hopf weak solutions. Thus

ϕ ∈ X 0 = L ∞ (0, ∞; V 0 ) ∩ L 2 loc [0, ∞; V 1 )
, where ϕ ∈ C w [0, ∞; V 0 ) and we let F 0 denote a compact, translation invariant set of forcing functions f in

L ∞ C = L ∞ R, L 2 (Ω) ∩ C R, L 2 (Ω)
where the topology on the Fréchet space L ∞ C is the topology of uniform convergence on bounded sets in R.

Then, we use the Leray-Hopf solutions of the 3D Navier-Stokes equations with ε = 0 to generate a semiflow π 0 on F 0 × X 0 , where

π 0 (τ ) (f, ϕ) = f τ , S 0 (f, τ ) ϕ for τ ≥ 0, f τ (t) = f (τ + t)
and u (t) = S 0 (f, t) ϕ is the Leray-Hopf solution of the 3D Navier-Stokes equations that satisfies u (0) = S 0 (f, 0) ϕ = ϕ (0). By using the theory of generalized weak solutions, as in Sell [START_REF] Sell | Global attractors for the three-dimensional Navier-Stokes equations[END_REF] or [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF] , we note that π 0 has a trajectory attractor A 0 ⊂ F 0 × X 0 see Theorem 65.12 in [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF], and Chepyzhov [START_REF] Chepyzhov | On the convergence of solutions of the Leray-alpha model to the trajectory attractor of the 3D Navier-Stokes system[END_REF][START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF].

The regularized Navier-Stokes system

Using the operators defined in the previous section, we can write the modified system (1.1 ) in the evolution form

∂ t u ε + εA l u ε + νAu ε + B (u ε , u ε ) = f (x) , in Ω × (0, ∞) div u ε = 0, in Ω × (0, ∞) , u ε (x, 0) = u ε 0 , in Ω. (4.1)
The existence and uniqueness results for initial value problem (1.1) can be found in J. L. Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF]Remark 6.11].

In three dimensions, the following theorem collects the main result in this work Theorem 4.1. For l ≥ 5 4 , ε > 0 fixed, f ∈ L 2 (0, T ; V ′ 0 ) and u ε 0 ∈ V 0 be given. There exists a unique weak solution of (4.1) which satisfies

u ε ∈ L 2 (0, T ; V l ) ∩ L ∞ (0, T ; V 0 ) , ∀T > 0.
We introduce the following result of the convergence of u ε as the regularized parameter ε → 0 Theorem 4.2. For l ≥ 3 2 , ε > 0 fixed, f ∈ L 2 (0, T ; V ′ 0 ) and u ε 0 ∈ V 0 be given. i) There exists a unique weak solution of (4.1) which satisfies

u ε ∈ L 2 (0, T ; V l ) ∩ L ∞ (0, T ; V 0 ) , ∀T > 0.
ii) This weak solution u ε converges strongly in L 2 (0, T ; V 0 ) as ε → 0 to u a weak solution of the Navier-Stokes equations.

The above theorem is established directly by using of a general result [23, Theorem 3.9.]. For ε > 0, we let π ε denote the semiflow on F 0 × X 0 generated by the weak solutions of regularized 3D Navier-Stokes equations of (4.1 ). Thus

π ε (τ ) = (f τ , S ε (f, τ ) ϕ) , (4.2) 
where

u ε 0 = ϕ and u ε (t) = S ε (f, t) ϕ = S ε (f, t) u ε 0 (4.
3) is the weak solution of (4.1 ) that satisfies ϕ (0) = u ε 0 . Regarding the existence of the attractor A ε when ε > 0, we use especially the related papers of Chepyzhov and Vishik, such as [START_REF] Chepyzhov | Trajectory attractors for evolution equations[END_REF][START_REF] Chepyzhov | On the convergence of solutions of the Leray-alpha model to the trajectory attractor of the 3D Navier-Stokes system[END_REF] to show that the system (4.1 ) possesses a global attractor. For ε > 0, we consider the trajectory space K ε of the modified Navier-Stokes equations (4.1 ). K ε is the union of all weak solutions u ε ∈ X 0 that satisfy (4.1 ), see (6.163) in [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF].

Using the described scheme in [START_REF] Chepyzhov | Trajectory attractors for evolution equations[END_REF], we construct the spaces S b

S b = {v (.) ∈ L ∞ (0, T ; V 0 ) ∩ L 2 b (0, T ; V 1 ), ∂ t v (.) ∈ L 2 b (0, T ; D(A l 2 ) ′ )} with norm v S b = v L 2 b (0,T ;V1) + v L ∞ (0,T ;V0) + ∂ t v L 2 b (0,T ;D(A l 2 ) ′ )
where

v L 2 b (0,T ;V1) = sup t≥0 ( t+1 t v (s) 2 1 ds) 1 2 , v L ∞ (0,T ;V0) = ess sup t≥0 v and ∂ t v L 2 b (0,T ;V ′ l ) = sup t≥0 ( t+1 t v (s) 2 V ′ l ds) 1 2 .
We need a topology in the space K ε . We define on X 0 the following sequential topology which we denote Γ. By definition, a sequence of functions {v n } ⊆ X 0 converges to a function v ∈ X 0 in the topology Γ as n → ∞ if, for any T > 0,

v n → v weakly in L 2 (0, T ; V 1 ); v n → v weak- * in L ∞ (0, T ; V 0 ) and v n → v strongly in L 2 (0, T ; V 0 ), as n → ∞.
We consider the topology Γ on K ε . It is easy to prove that the space K ε is closed in Γ. From the definition of K ε , it follows that π ε K ε ⊂ K ε for all t ≥ 0.

Corollary 4.3. If u ε (t) is a solution of (4.1 ), then the following inequalities hold for all t > 0

u ε (t) 2 ≤ e -νλ1t u ε 0 2 + f 2 ν 2 λ 2 1 , (4.4) 
t+1 t u ε (s) 2 ds ≤ e -νλ1t νλ 1 u ε 0 2 + f 2 ν 2 λ 2 1 , (4.5) 
ν t+1 t u ε (s) 2 1 ds ≤ e -νλ1t νλ 1 u ε 0 2 + f 2 ν 2 λ 2 1 + f 2 νλ 1 . (4.6) 
Proof. Taking the inner product of (4.1 ) by u ε , we obtain

d dt u ε 2 + 2ε A l 2 u ε 2 + 2ν ∇u ε 2 = 2 (f, u ε ) . (4.7) 
Applying Young's inequality and using the Poincaré Lemma, we obtain

d dt u ε 2 + ν ∇u ε 2 ≤ f 2 νλ 1 . (4.8) 
Using the Gronwall's inequality over [0, t], we obtain (4.4 ). Integrating (4.4 ) over [t, t + 1] we find (4.5 ). Integrating (4.8 ) over [t, t + 1] we find

ν t+1 t ∇u ε (s) 2 ds ≤ f 2 νλ 1 + u ε (t) 2 . (4.9) 
Applying inequality (4.4 ), we get (4.6 ).

We recall the following result Lemma 4.4. Let f ∈ L 2 (0, T ; V ′ 1 ), then, for any solution u ε (t) of problem (1.1) the time derivative du ε dt is uniformly bounded in L 2 (0, T ; V ′ l ). A simple consequence of Lemma 3.6 [START_REF] Younsi | Effect of hyperviscosity on the Navier-Stokes turbulence[END_REF] is the following Corollary

Corollary 4.5. Let f ∈ L 2 (0, T ; V ′ 1 ), then any solution u ε (t) of (4.1 ) satisfies t+1 t ∂ t u ε (s) 2 D(A l 2 ) ′ ds ≤ C 3 , (4.10) 
C 3 is a positive constant independent of ε .

Moreover, due to estimates (4.4 ) and (4.10 ), we also have the uniform estimate.

Proposition 4.6. Let f ∈ L 2 (0, T ; V ′ 1 ), then any solution u ε (t) of (4.1 ) satisfies the inequality

π ε (u ε ) 2 S b ≤ c 7 e -νλ1t νλ 1 u ε (0) 2 + c 7 f 2 ν 2 λ 2 1 + C 4 (4.11)
where the positive constant C 4 is independent of ε.

Proposition 4.7. For l ≥ 3 2 and f ∈ L ∞ C a time independent functions, π ε is a continuous family of semiflows on X 0 . Proof. Since u ε ∈ L 2 (0, T ; V l ) and du ε dt ∈ L 2 (0, T ; V ′ l ), u ε is almost everywhere equal to an uniform continuous function from [0, T ] to the space V 0 . The continuity of u ε is a direct consequence of [START_REF] Temam | Navier-Stokes Equations[END_REF]Lemma 1.4. ChIII,Sec1].

From the result of the strong convergence, there exists ε 1 > 0, such that

u ε (t) -u ε0 (t) ≤ ǫ, ∀ǫ ≥ 0, for each ε ≤ ε 1 , (4.12) 
it follows from (4.12 ) that lim ε→ε0 π ε (t)π ε0 (t) goes to 0, for all 0 ≤ t ≤ T .

This shows that π ε is continuous semiflow on X 0 and π ε approximates π 0 uniformly for t in compact sets in [0, ∞).

From Proposition 4.6 it follows that K ε ⊂ S b for all ε > 0 and for all τ > 0. Also Proposition 4.6 implies that the semigroup π ε has absorbing set in K ε for all ε > 0 and for all τ > 0 (We note, that this absorbing set does not depend on ε, since the constant C 4 in (4.11 ) is independent of ε), bounded in S b and inequality (4.11 ) implies that absorbing set is compact in Γ. The continuity of π ε is proved. These facts are sufficient to state that π ε has a global attractor A ε . Such that A ε ⊂ F 0 × X 0 , bounded in S b and compact in Γ. For a more detailed, see [START_REF] Chepyzhov | On the convergence of solutions of the Leray-alpha model to the trajectory attractor of the 3D Navier-Stokes system[END_REF][START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF][START_REF] Chepyzhov | Trajectory attractors for evolution equations[END_REF].

Upper semicontinuity of attractors

We now prove the robustness property for the global attractor A ε . We have shown in Proposition 4.7 the continuity of the family of semiflows π ε on X 0 . Having done this, We can simply invoke Theorem 23.14 in [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF] to complete the proof of the robustness for the family of attractors A ε at ε = 0. We denote by

B R = {u ε (x, t) , 0 ≤ t, 0 < ε < 1; π ε (u ε ) 2 S b ≤ R} with R = c 7 e -νλ1t νλ 1 u ε (0) 2 + c 7 f 2 ν 2 λ 2 1 +C 4 , u ε (x, t
) is a family of solutions of system (4.1 ), and the norms of u ε (x, t) in S b are uniformly bounded, see Proposition 4.7.

It is sufficient to show that a small δ-neighbourhood of attractor A 0 is an absorbing set and π ε approximates π 0 on B R uniformly for all t in [0, ∞), see [START_REF] Hale | Upper semicontinuity of attractors for approximations of semigroups and partial differential equations[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF].

Theorem 5.1. For l ≥ 3 2 , for ε > 0 the family of semiflows π ε generated by the weak solutions of the regularized 3D Navier-Stokes equations (4.1 ) admits a compact attractor {A ε , 0 < ε ≤ 1} which attracts bounded sets of V 0 and is contained in the absorbing balls B R where R is independent of ε. Moreover,

d X 0 (A ε , A 0 ) → 0, as ε → 0. Proof. Since A 0 is a global attractor, for any bounded set B R0 = {u (x, 0) ∈ V, u (x, 0) ≤ R 0 } ⊂ V , we have d X 0 π 0 B R0 , A 0 → 0, as t → ∞.
(5.1)

Thus, there exists δ > 0 such that

d X 0 π 0 B R0 , A 0 ≤ δ 2 , for t ≥ t δ . (5.2) Consequently π 0 (t) B R0 ⊂ N δ (A 0 ), for t ≥ t δ , (5.3) 
where N δ (A 0 ) be the δ-neighborhood of A 0 . This shows that N δ (A 0 ) is an absorbing set. Since π ε approximates π 0 uniformly for all t ≥ 0, then for any δ > 0, there are ε 1 > 0 and t 0 ≥ 0 such that

π ε (B R ∩ B R0 ) ⊂ N δ (A 0 ), for 0 < ε < ε 1 , t ≥ t 0 . (5.4) Since the attractor A ε is contained in B R ∩ B R0 , we have π ε (A ε ) ⊂ N δ (A 0 ), for ε ≤ ε 1 , t ≥ t 0 . ( 5 

.5)

Since A ε is an invariant set, we deduce that

A ε ⊂ N δ (A 0 ), for 0 < ε < ε 1 , t ≥ t 0 . (5.6)
Moreover, since δ is arbitrary, we obtain the upper semicontinuity of A ε , at ε 0 = 0

d X 0 (A ε , A 0 ) → 0, as ε ∈ O (ε 0 ) . (5.7)
One can modify the argument described above so that the final result will have broader applicability by allowing the family of forcing functions to vary with ε, for ε > 0. Thus, we consider the regularized Navier-Stokes system (4.1 ) with a perturbed external force f ε in place of f , for ε > 0. Then (4.1 ) becomes

∂ t u ε + εA l u ε + νAu ε + B (u ε , u ε ) = f ε (x) , in Ω × (0, ∞)
div u ε = 0, in Ω × (0, ∞) , u ε (x, 0) = u ε 0 , in Ω.

(5.8)

We show that the trajectory attractor of the perturbed system (5.8 ) coincides with the trajectory attractor A ε of the unperturbed system (3.1 ). Our results rely on the work of Hale ([15]) who show that the limit behaviour is valid even through F ε , where F ε denote a compact, translation invariant set of perturbed forcing functions to vary with ε, for ε > 0 and satisfy the condition ω(H + (f ε )) = ω(H + (f )).

(5.9)

Thus we would use F ε in place of F 0 , for ε > 0. Moreover, by using a metric d on the L ∞ C-toplogy, see [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF] for some samples, we can note that (5.9 ) is equivalent to saying that for every δ > 0 there is an ε 1 > 0 and T δ = T (δ) ≥ 0 such that d X 0 (f ε , F 0 ) ≤ δ, for 0 < ε ≤ ε 2 and f ε ∈ F ε (5.10) for any t ≥ T δ , that is

F ε ⊂ N δ F 0 , for 0 < ε ≤ ε 2 , (5.11) 
where N δ denotes the δ-neighborhood of F 0 in L ∞ C. The resulting argument for robustness will then depend on two parameters λ = (ε, δ), where λ → (0, 0). The following statement generalizes Theorem 5.1

Theorem 5.2. Under the above conditions, the trajectory attractor of the perturbed 3D Navier-Stokes system (5.8 ) coincides with the trajectory attractor A ε of the non-perturbed system (3.1 ). Moreover, the perturbed attractor of (5.8 ) is upper semicontinuous with respect to ε at ε = 0.

Proof. The existence of trajectory attractor A ε is treated above. The proof follows from formulas (5.9 ), (5.11 ) and Theorem 5.1 .

Proposition 4.7 can be used to extend the 2D result of Ou and Sritharan [START_REF] Ou | Upper Semicontinuous Global Attractors for Viscous Flow[END_REF] to l-lplacian with l > 1.