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ASYMPTOTIC PROPERTIES OF U-PROCESSES UNDER LONG-RANGE

DEPENDENCE

By C. Lévy-Leduc∗,‡, H. Boistard§, E. Moulines‡, M. S. Taqqu¶,† and V. A.

Reisen‖

CNRS/LTCI/TelecomParisTech ‡, Toulouse School of Economics §,

Boston University ¶ and Universidade Federal do Esṕırito Santo ‖

Let (Xi)i≥1 be a stationary mean-zero Gaussian process with

covariances ρ(k) = E(X1Xk+1) satisfying: ρ(0) = 1 and ρ(k) =

k−DL(k) where D is in (0, 1) and L is slowly varying at infinity.

Consider the U -process {Un(r), r ∈ I} defined as

Un(r) =
1

n(n − 1)

∑

1≤i6=j≤n

1{G(Xi,Xj)≤r} ,

where I is an interval included in R and G is a symmetric function.

In this paper, we provide central and non-central limit theorems for

Un. They are used to derive the asymptotic behavior of the Hodges-

Lehmann estimator, the Wilcoxon-signed rank statistic, the sample

correlation integral and an associated scale estimator. The limiting

distributions are expressed through multiple Wiener-Itô integrals.

1. Introduction. Since the seminal work by Hoeffding (1948), U -statistics have been

widely studied to investigate the asymptotic properties of many statistics such as the sample

variance, the Gini’s mean difference and the Wilcoxon one-sample statistic, see Serfling (1980)

for other examples. One of the most powerful tools used to derive the asymptotic behavior

of U -statistics is the Hoeffding’s decomposition [Hoeffding (1948)]. In the i.i.d and weak

dependent frameworks, it provides a decomposition of a U -statistic into several terms having

different orders of magnitudes, and in general the one with the leading order determines the

asymptotic behavior of the U -statistic, see Serfling (1980), Borovkova, Burton and Dehling

(2001) and the references therein for further details. A recent review of the properties of

U -statistics in various frameworks is presented in Hsing and Wu (2004).

In the case of processes having a long-range dependent structure, decomposition ideas are

also crucial. However, in the case of Gaussian long-memory processes, the classical Hoeffding’s

decomposition may not provide the complete asymptotic behavior of U -statistics because all

terms of this decomposition may contribute to the limit, see for example Dehling and Taqqu

(1991). In this case, the asymptotic study of U -statistics can be achieved by using an expansion

in Hermite polynomials, see Dehling and Taqqu (1989, 1991). For a large class of processes
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including linear and nonlinear processes, a new decomposition is discussed in Hsing and Wu

(2004). These authors use martingale-based techniques to establish the asymptotic properties

of U -statistics.

A very natural extension of U -statistics (which are random variables) is the notion of U -

processes which encompasses a wide class of estimators. For example, Borovkova, Burton and Dehling

(2001) study the Grassberger-Proccacia estimator which can be used to estimate the correla-

tion dimension. In Section 5 of their work, the authors investigate the asymptotic properties of

U -processes when the underlying observations are functionals of an absolutely regular process,

that is, short-memory processes. As far as we know, the asymptotic properties of U -processes

in the case of long-range dependence settings have not been established yet, and this is the

heart of the research discussed in this paper.

Consider the U -process defined by

(1) Un(r) =
1

n(n − 1)

∑

1≤i6=j≤n

1{G(Xi,Xj)≤r} , r ∈ I

where I is an interval included in R, G is a symmetric function i.e. G(x, y) = G(y, x) for all

x, y in R, and the process (Xi)i≥1 satisfies the following assumption:

(A1) (Xi)i≥1 is a stationary mean-zero Gaussian process with covariances ρ(k) = E(X1Xk+1)

satisfying:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large k.

Note that, for a fixed r, Un(r) is a U -statistic based on the kernel h(·, ·, r) where

h(x, y, r) = 1{G(x,y)≤r} ,∀x, y ∈ R and r ∈ I .(2)

We show in this paper that the asymptotic properties of the U -process Un(·) depends on

the value of D and on the Hermite rank m of the class of functions {h(·, ·, r) − U(r), r ∈ I},
defined in Section 2. We obtain the rate of convergence of Un(·) and also provide the limiting

process when D > 1/2, m = 2 and D < 1/m, m = 1, 2. The convergence rate in the former

case is of order
√

n whereas it is of order nmD/2/L(n)m/2 in the latter. These results are stated

in Theorems 1 and 2, respectively. They are applied to various types of quantile estimators.

The paper is organized as follows. In Section 2, the main theorems 1 and 2 are stated.

In Section 3, we derive the asymptotic properties of some quantile estimators. Section 4

presents new asymptotic results in the context of long-range dependence. In this section,

central and non-central limit theorems are provided for several statistics as an illustration of

the theory presented in Sections 2 and 3. These statistics are the Hodges-Lehmann estimator

[Hodges and Lehmann (1963)], the Wilcoxon-signed rank statistic [Wilcoxon (1945)], the sam-

ple correlation integral [Grassberger and Procaccia (1983)] and an associated scale estimator

proposed by Shamos (1976) and Bickel and Lehmann (1979). Finally, Section 5 develops the

proofs of the results stated in Section 2.
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2. Main results. We start by introducing the terms involved in the Hoeffding’s decom-

position [Hoeffding (1948)]. Recall the definition of Un(·) in (1) and let U(·) be defined as

U(r) =

∫

R2
h(x, y, r)ϕ(x)ϕ(y)dxdy , for all r in I ,(3)

where ϕ denotes the p.d.f of a standard Gaussian random variable and h is given by (2). For

all x in R, and r in I, let us define

h1(x, r) =

∫

R

h(x, y, r)ϕ(y)dy .(4)

The Hoeffding decomposition amounts to expressing, for all r in I, the difference

(5) Un(r) − U(r) =
1

n(n − 1)

∑

1≤i6=j≤n

[h(Xi,Xj , r) − U(r)] ,

as

(6) Un(r) − U(r) = Wn(r) + Rn(r) ,

where

(7) Wn(r) =
2

n

n∑

i=1

{h1(Xi, r) − U(r)} ,

and

(8) Rn(r) =
1

n(n − 1)

∑

1≤i6=j≤n

{h(Xi,Xj , r) − h1(Xi, r) − h1(Xj , r) + U(r)} .

We now define the Hermite rank of the class of functions {h(·, ·, r) − U(r), r ∈ I} which

plays a crucial role in understanding the asymptotic behavior of the U -process Un(·). We

shall expand the function (x, y) 7→ h(x, y, r) in a Hermite polynomials basis. We use Hermite

polynomials with leading coefficients equal to one which are: H0(x) = 1, H1(x) = x, H2(x) =

x2 − 1, H3(x) = x3 − 3x, . . . . We get

(9) h(x, y, r) =
∑

p,q≥0

αp,q(r)

p!q!
Hp(x)Hq(y) , for all x, y in R ,

where

(10) αp,q(r) = E[h(X,Y, r)Hp(X)Hq(Y )] ,

and where (X,Y ) is a standard Gaussian vector that is X and Y are independent standard

Gaussian random variables. Thus,

(11) E[h2(X,Y, r)] =
∑

p,q≥0

α2
p,q(r)

p!q!
.
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Note that α0,0(r) is equal to U(r) for all r, where U(r) is defined in (3). The Hermite rank of

h(·, ·, r) is the smallest positive integer m(r) such that there exist p and q satisfying p + q =

m(r) and αp,q(r) 6= 0. Thus, (9) can be rewritten as

(12) h(x, y, r) − U(r) =
∑

p,q≥0

p+q≥m(r)

αp,q(r)

p!q!
Hp(x)Hq(y) .

The Hermite rank m of the class of functions {h(·, ·, r) − U(r) , r ∈ I} is the smallest index

m = p + q ≥ 1 such that αp,q(r) 6= 0 for at least one r in I, that is, m = infr∈I m(r).

By integrating with respect to y in (9), we obtain the expansion in Hermite polynomials

of h1 as a function of x:

(13) h1(x, r) − U(r) =
∑

p≥1

αp,0(r)

p!
Hp(x) , for all x in R .

Let τ(r) be the smallest integer greater than or equal to 1 such that ατ,0(r) 6= 0, that is,

the Hermite rank of the function h1(·, r) − U(r). The Hermite rank of the class of functions

{h1(·, r) − U(r) , r ∈ I} is the smallest index τ ≥ 1 such that ατ,0(r) 6= 0 for at least one r.

Since τ(r) ≥ m(r), for all r in I, one has

(14) τ ≥ m .

In the sequel, we shall assume that m is equal to 1 or 2. As shown in Section 4, this covers

most of the situations of practical interest.

Theorem 1, given below, establishes the central-limit theorem for the U -process {√n(Un(r)−
U(r)), r ∈ I} when

D > 1/m and m = 2 .

Theorem 1. Let I be a compact interval of R. Suppose that the Hermite rank of the class

of functions {h(·, ·, r) − U(r) , r ∈ I} as defined in (12) is m = 2 and that Assumption (A1)

is satisfied with D > 1/2. Assume that h and h1, defined in (2) and (4), satisfy the three

following conditions:

(i) There exists a positive constant C such that for all s, t in I, u, v in R,

(15) E[|h(X + u, Y + v, s) − h(X + u, Y + v, t)|] ≤ C|t − s| ,

where (X,Y ) is a standard Gaussian vector.

(ii) There exists a positive constant C such that for all k ≥ 1,

(16) E[|h(X1 + u,X1+k + v, t) − h(X1,X1+k, t)|] ≤ C|u − v| ,

(17) E[|h(X1,X1+k, s) − h(X1,X1+k, t)|] ≤ C|t − s| .
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(iii) There exists a positive constant C such that for all t, s in I, and x, u, v in R,

(18) |h1(x + u, t) − h1(x + v, t)| ≤ C|u − v| ,

and

(19) |h1(x, s) − h1(x, t)| ≤ C|t − s| .

Then the U -process

{√n(Un(r) − U(r)), r ∈ I}
defined in (1) and (3) converges weakly in the space of cadlag functions D(I) equipped with

the topology of uniform convergence to the zero mean Gaussian process {W (r), r ∈ I} with

covariance structure given by

(20) E[W (s)W (t)] = 4 Cov(h1(X1, s), h1(X1, t))

+ 4
∑

ℓ≥1

{Cov(h1(X1, s), h1(Xℓ+1, t)) + Cov(h1(X1, t), h1(Xℓ+1, s))} .

Proof of Theorem 1. The proof of the theorem follows from the decomposition (6) and

Lemmas 9 and 10, given in Section 5.1. Lemma 9 states that {√nWn(r), r ∈ I} converges

weakly in the space of cadlag functions D(I) equipped with the topology of uniform conver-

gence and Lemma 10 states that supr∈I

√
nRn(r) = oP (1).

Remark 1. The set I in the previous theorem may be equal to [−∞,+∞] which involves

the two-point compactification of the real line. Since [−∞,+∞] is compact, all functions in

D([−∞,+∞]) are bounded. In fact, that space is isomorphic to D[0, 1].

When D < 1/m, Wn and Rn are not the leading term and the remainder term, respectively.

Note that, on one hand, for a fixed r, Corollary 2 of Dehling and Taqqu (1989) gives Rn(r) =

OP (n−DL(n)) for any D in (0, 1). On the other hand, if D < 1/τ , where τ is defined in

(14), Theorem 6 of Arcones (1994) implies that Wn(r) = OP (n−τD/2L(n)τ/2) and if D is

in (1/τ, 1/m), Wn(r) = OP (n−1/2) by Theorem 4 of Arcones (1994). Thus, if for instance,

τ = m = 2, Wn(r) and Rn(r) may be of the same order OP (n−DL(n)).

Hence, to study the case D < 1/m, we shall introduce a different decomposition of Un(·)
based on the expansion of h in the basis of Hermite polynomials given by (9). Thus, Un(r)

defined in (1) can be rewritten as follows

(21) n(n − 1){Un(r) − U(r)} = W̃n(r) + R̃n(r) ,

where

(22) W̃n(r) =
∑

1≤i6=j≤n

∑

p,q≥0

p+q≤m

αp,q(r)

p!q!
Hp(Xi)Hq(Xj)

and

(23) R̃n(r) =
∑

1≤i6=j≤n

∑

p,q≥0
p+q>m

αp,q(r)

p!q!
Hp(Xi)Hq(Xj) .
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Introduce also the Beta function

(24) B(α, β) =

∫ ∞

0
yα−1(1 + y)−α−βdy =

Γ(α)Γ(β)

Γ(α + β)
, α > 0, β > 0 .

The limit processes which appear in the next theorem are the standard fractional Brownian

motion (fBm) (Z1,D(t))0≤t≤1 and the Rosenblatt process (Z2,D(t))0≤t≤1. They are defined

through multiple Wiener-Itô integrals and given by

(25) Z1,D(t) =

∫

R

[∫ t

0
(u − x)

−(D+1)/2
+ du

]
dB(x), 0 < D < 1 ,

and

(26) Z2,D(t) =

∫ ′

R2

[∫ t

0
(u − x)

−(D+1)/2
+ (u − y)

−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 ,

where B is the standard Brownian motion, see Fox and Taqqu (1987). The symbol
∫ ′ means

that the domain of integration excludes the diagonal. The following theorem treats the case

D < 1/m where m = 1 or 2.

Theorem 2. Let I be a compact interval of R. Suppose that Assumption (A1) holds with

D < 1/m, where m = 1 or 2 is the Hermite rank of the class of functions {h(·, ·, r)−U(r) , r ∈
I} as defined in (12). Assume the following:

(i) There exists a positive constant C such that, for all k ≥ 1 and for all s, t in I,

(27) E[|h(X1,X1+k, s) − h(X1,X1+k, t)|] ≤ C|t − s| .

(ii) U is a Lipschitz function.

(iii) The function Λ̃ defined, for all s in I, by

(28) Λ̃(s) = E[h(X,Y, s)(|X| + |XY | + |X2 − 1|)] ,

where X and Y are independent standard Gaussian random variables, is also a Lipschitz

function.

Then, {
nmD/2L(n)−m/2 (Un(r) − U(r)) ; r ∈ I

}

converges weakly in the space of cadlag functions D(I), equipped with the topology of uniform

convergence, to

{2α1,0(r)k(D)−1/2Z1,D(1); r ∈ I} , if m = 1 ,

and to

{k(D)−1
[
α1,1(r)Z1,D(1)2 + α2,0(r)Z2,D(1)

]
; r ∈ I} , if m = 2 ,

where the fractional Brownian motion Z1,D(·) and the Rosenblatt process Z2,D(·) are defined

in (25) and (26) respectively and where

(29) k(D) = B((1 − D)/2,D) ,

where B is the Beta function defined in (24).

imsart-aos ver. 2009/08/13 file: paper1_AOS.tex date: December 23, 2009



ASYMPTOTIC PROPERTIES OF U-PROCESSES UNDER LONG-RANGE DEPENDENCE 7

The proof of Theorem 2 is given in Section 5.3.

Remark 2. The processes Z1,D and Z2,D are self-similar with mean 0. They are, however,

not normalized. One has

E[Z1,D(t)Z1,D(s)] = E[Z2
1,D(1)]

1

2

{
t2H1 + s2H1 − |t − s|2H1

}
,

E[Z2,D(t)Z2,D(s)] = E[Z2
2,D(1)]

1

2

{
t2H2 + s2H2 − |t − s|2H2

}
,

where H1 = 1 − D/2 ∈ (0, 1/2), H2 = 1 − D ∈ (0, 1/2) and

(30) E[Z2
1,D(1)] =

2k(D)

(−D + 1)(−D + 2)
,

(31) E[Z2
2,D(1)] =

4k(D)2

(−2D + 1)(−2D + 2)
,

with k(D) defined by (29). See Remark 4 below for justification. The non-Gaussian random

variables Z2
1,D(1) and Z2,D(1) are dependent. Their joint cumulants are given in (74).

Remark 3. The results of Theorem 2 can be extended to the two-parameter process

{U[nt](r) − U(r); r ∈ I, 0 ≤ t ≤ 1}. One can show that

{
nmD/2

L(n)m/2

(
U[nt](r) − U(r)

)
; r ∈ I, 0 ≤ t ≤ 1

}

converges weakly in D(I × [0, 1]), equipped with the topology of uniform convergence, to

{2α1,0(r)k(D)−1/2Z1,D(t); r ∈ I, 0 ≤ t ≤ 1} , if m = 1 ,

and to

{k(D)−1
[
α1,1(r)Z1,D(t)2 + α2,0(r)Z2,D(t)

]
; r ∈ I, 0 ≤ t ≤ 1} , if m = 2 .

3. Asymptotic behavior of empirical quantiles. We shall apply Theorems 1 and 2 in

the preceding section to empirical quantiles. Recall that if V : I −→ [0, 1] is a non-decreasing

cadlag function, where I is an interval of R, then its generalized inverse V −1 is defined by

V −1(p) = inf{r ∈ I, V (r) ≥ p}. This applies to Un(r) and U(r) since these are non-decreasing

functions of r. We derive in the following corollaries the asymptotic behavior of the empirical

quantile U−1
n (·) using Theorems 1 and 2.

Corollary 3. Let p be a fixed real number in [0, 1]. Assume that the conditions of The-

orem 1 are satisfied. Suppose also that there exists some r in I such that U(r) = p, that U is

differentiable at r and that U ′(r) is non null. Then, as n tends to infinity,

√
n(U−1

n (p) − U−1(p))
d−→ −W (U−1(p))/U ′(U−1(p)) ,

where W is a Gaussian process having a covariance structure given by (20).
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Proof of Corollary 3. By Lemma 21.3 in van der Vaart (1998) and the functional

Delta method (Theorem 20.8 in van der Vaart (1998)), we get that, as n tends to infinity,

√
n(U−1

n (p) − U−1(p)) = −√
n

(Un − U)(U−1(p))

U ′(U−1(p))
+ oP (1) .

The corollary then follows from Theorem 1.

Corollary 4. Let p be a fixed real number in [0, 1]. Assume that the conditions of The-

orem 2 are satisfied. Suppose also that there exists some r in I such that U(r) = p, that U is

differentiable at r and that U ′(r) is non null. Then, as n tends to infinity,

nmD/2

L(n)m/2
(U−1

n (p) − U−1(p))

converges in distribution to

−2k(D)−1/2 α1,0(U
−1(p))

U ′(U−1(p))
Z1,D(1) , if m = 1 ,

and to

−k(D)−1
{
α1,1(U

−1(p))Z1,D(1)2 + α2,0(U
−1(p))Z2,D(1)

}
/U ′(U−1(p)) , if m = 2 ,

where Z1,D(·) and Z2,D(·) are defined in (25) and (26) respectively, k(D) in (29) and αp,q(·)
is defined in (10).

The proof of Corollary 4 is based on similar arguments as the proof of Corollary 3 and is

thus omitted.

4. Applications. We shall use the results established in Sections 2 and 3 to study the

asymptotic properties of several estimators based on U -processes in the long-range dependence

setting.

4.1. Hodges-Lehmann estimator. Consider the problem of estimating the location parame-

ter of a long-range dependent Gaussian process. Assume that (Yi)i≥1 satisfy Yi = θ+Xi where

(Xi)i≥1 satisfy Assumption (A1). To estimate the location parameter θ, Hodges and Lehmann

(1963) suggest using the median of the average of all pairs of observations. The statistic they

propose is

θ̂HL = median

{
Yi + Yj

2
; 1 ≤ i < j ≤ n

}
= θ + median

{
Xi + Xj

2
; 1 ≤ i < j ≤ n

}
.

Define the U -process Un(r), r ∈ R by (1), where G(x, y) = (x + y)/2. The Hodges-Lehmann

estimator may be then expressed as

θ̂HL = θ + U−1
n (1/2) .
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If A and B are independent standard Gaussian variables,

(32) α1,0(r) = α0,1(r) = E[A1{A+B≤2r}] = −
∫

R

ϕ(2r − y)ϕ(y)dy = −ϕ(r
√

2)/
√

2 ,

using xϕ(x) = −ϕ̇(x), where ϕ̇ denotes the first derivative of ϕ. The quantities in (32) are

different from 0 for all r in R since ϕ is the p.d.f of a standard Gaussian random variable.

Thus, the Hermite rank m of the class of functions {1G(·,·)≤r − α0,0(r); r ∈ R} is equal to 1.

In order to derive the asymptotic properties of θ̂HL, we now check the conditions of Theorem

2. Let us check Condition (27). Note that for all k ≥ 1, X1 + X1+k ∼ N (0, 2(1 + ρ(k))), thus

if t ≤ s,

E[h(X1,X1+k, s)− h(X1,X1+k, t)] = Φ

( √
2s√

1 + ρ(k)

)
−Φ

( √
2t√

1 + ρ(k)

)
≤ 1√

π

|t − s|√
1 + ρ⋆

,

where Φ is the c.d.f of a standard Gaussian random variable and ρ⋆ = infk ρ(k) > −1. Hence

(27) holds. Similarly, |U(s) − U(t)| ≤ |Φ(
√

2s) − Φ(
√

2t)| ≤ π−1/2|t − s| and hence U is a

Lipschitz function. Let us now check Condition (28). Note that, if s ≤ t
∫ ∫ 1{s<x+y≤t}(|x| + |xy| + |x2 − 1|)ϕ(x)ϕ(y)dxdy =

∫ (∫ t−x

s−x
ϕ(y)dy

)
|x|ϕ(x)dx+

∫ (∫ t−x

s−x
|y|ϕ(y)dy

)
|x|ϕ(x)dx+

∫ (∫ t−x

s−x
ϕ(y)dy

)
|x2−1|ϕ(x)dx .

Using that ϕ(·) and |.|ϕ(·) are bounded and that the moments of Gaussian random variables

are all finite, we get (28). The assumptions of Theorem 2 are thus satisfied with m = 1 and

hence we get that
{
nD/2L(n)−1/2 (Un(r) − U(r)) ;−∞ ≤ r ≤ +∞

}

converges weakly in D([−∞,+∞]), equipped with the sup-norm, to

{−
√

2k(D)−1/2ϕ(r
√

2)Z1,D(1);−∞ ≤ r ≤ +∞} .

Here, U(r) =
∫

Φ(2r−x)ϕ(x)dx, U ′(r) = 2
∫

ϕ(2r−x)ϕ(x)dx, U(0) = 1/2
∫
(Φ(x)+Φ(−x))ϕ(x)dx =

1/2, U−1(1/2) = 0 and U ′(U−1(1/2)) = U ′(0) = 1/
√

π. Since, by (32), α1,0(U
−1(1/2)) =

α1,0(0) = −(2
√

π)−1, Corollary 4 implies that

(33) nD/2L(n)−1/2(θ̂HL − θ)
d−→ k(D)−1/2Z1,D(1) ,

where using (30), k(D)−1/2Z1,D(1) is a zero-mean Gaussian random variable with variance

2(−D + 1)−1(−D + 2)−1.

Let’s now compare the asymptotic behavior of the Hodges-Lehmann estimator with that of

the sample mean. Lemma 5.1 in Taqqu (1975) shows that the sample mean Ȳn = n−1∑n
i=1 Yi

satisfies the following non-central limit theorem

nD/2L(n)−1/2(Ȳn − θ)
d−→ k(D)−1/2Z1,D(1) .

We have thus proved

Proposition 5. In the long-memory framework with 0 < D < 1, the asymptotic behavior

of the Hodges-Lehmann estimator is Gaussian and given by (33). It converges to θ at the same

rate as the sample mean with the same limiting distribution. There is no loss of efficiency.
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4.2. Wilcoxon-signed rank statistic. Assume that (Yi)i≥1 satisfy Yi = θ+Xi where (Xi)i≥1

satisfy Assumption (A1). The Wilcoxon-signed rank statistic first proposed by Wilcoxon

(1945) can be used to test the null hypothesis (H0): “ θ = 0 ” against the one-sided al-

ternative (H1): “ θ > 0 ”, based on the observations Y1, . . . , Yn. It is defined as

Tn =
n∑

j=1

Rj1{Xj>0} ,

where the Rj ’s are the ranks of X1, . . . ,Xn. Thus Tn is the sum of the ranks of the positive

observations. Let us study this statistic under the null hypothesis. One will reject the null

hypothesis if the value of Tn is large. Following Dewan and Prakasa Rao (2005), Tn can be

written as

(34) Tn =
n∑

i=1

1{Xi>0} +
∑

1≤i<j≤n

1{Xi+Xj>0} =: nUn,1 +
n(n − 1)

2
Un,2 .

The Hermite rank of 1{·>0} − P(X1 > 0) equals 1, because E[X1(1{X1>0} − P(X1 > 0))] > 0.

We then deduce from Theorem 6 of Arcones (1994) that

(35) nD/2L(n)−1/2(Un,1 − P(X1 > 0)) = Op(1) .

The asymptotic properties of Un,2 can be derived from those of Un(0) where Un(·) is the

U -process defined in (1) with G(x, y) = x + y. Using the results obtained in the study of

the Hodges-Lehmann estimator, we obtain that α1,0(r) = α0,1(r) = −ϕ(r/
√

2)/
√

2, which is

different from 0 for all r in R since ϕ is the p.d.f of a standard Gaussian random variable.

Thus, the Hermite rank of the class of functions {1G(·,·)≤r − α0,0(r); r ∈ R} is equal to 1.

Using the same arguments as those used in the previous example, the assumptions of

Theorem 2 are fulfilled with m = 1. Since 2α1,0(0) = −2ϕ(0)/
√

2 = −1/
√

π, we get

(36) nD/2L(n)−1/2 (Un,2 − U2(0))
d−→ k(D)−1/2

√
π

Z1,D(1) ,

where U2(0) =
∫ ∫ 1{x+y>0}ϕ(x)ϕ(y)dxdy = 1/2 and k(D) is the constant given in (29). From

(34), (35) and (36), we get

2nD/2

n(n − 1)L(n)1/2
(Tn − nP(X1 > 0) − n(n − 1)U2(0)/2) =

nD/2

L(n)1/2
(Un,2 − U2(0)) + op(1)

d−→ k(D)−1/2

√
π

Z1,D(1) ,

which can be rewritten as follows

(37) nD/2L(n)−1/2
(

2

n(n − 1)
Tn − 1

n − 1
− 1/2

)
d−→ k(D)−1/2

√
π

Z1,D(1) .

We have thus proved

Proposition 6. In the long-memory case with 0 < D < 1, the asymptotic behavior of

the Wilcoxon-signed rank statistic Tn is Gaussian and given by (37).
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The Wilcoxon one-sample statistic Un,2 was also studied by Hsing and Wu (2004) pp. 1617-

1618 by using a different approach. We obtain the additional constant k(D)−1/2 in the limiting

distribution compared to their result.

4.3. Sample correlation integral. In the past few years, a lot of attention has been paid

to the estimation of the correlation dimension of a strange attractor. In many examples, the

correlation dimension α of an invariant probability measure µ can be expressed through the

correlation integral Cµ(r) = (µ×µ){(x, y) : |x− y| ≤ r} through Cµ(r) ≈ Crα, as r tends to

0, where C is a constant. For further details on the correlation dimension and its applications,

see Borovkova, Burton and Dehling (2001).

Grassberger and Procaccia (1983) proposed an estimator of the correlation dimension based

on the sample correlation integral Un(r), defined in (1) with G(x, y) = |x − y|. In this case,

α1,0(r) = α0,1(r) =
∫
R

x1{|x−y|≤r}ϕ(x)ϕ(y)dxdy =
∫
R

x[Φ(x + r) − Φ(x − r)]ϕ(x)dx, where,

as before, ϕ and Φ are the p.d.f. and the c.d.f. of a standard Gaussian random variable,

respectively. Using the symmetry of a standard Gaussian random variable, one gets α1,0(r) =

α0,1(r) = 0. Lengthy but straightforward computations lead to

(38) α2,0(r) = α0,2(r) = −α1,1(r) = ϕ̇(r/
√

2) ,

where ϕ̇ denotes the first derivative of ϕ. It is non-null if r 6= 0. Thus, for any compact interval

I which does not contain 0, the Hermite rank of the class of functions {1G(·,·)≤r−α0,0(r), r ∈ I}
is equal to 2.

Let us assume that (Xi)i≥1 satisfy Assumption (A1). In the case where D > 1/2, let us

check the assumptions of Theorem 1. Conditions (15) and (16) can be easily checked and

Condition (17) is fulfilled by using similar arguments as those used in the example of the

Hodges-Lehmann estimator. Conditions (18) and (19) are satisfied since

(39) h1(x, r) =

∫

R

1{|x−y|≤r}ϕ(y)dy = Φ(x + r) − Φ(x − r) ,

where Φ is the c.d.f of a standard Gaussian random variable. Thus, in the case where D > 1/2,

{√n(Un(r) − U(r)), r ∈ I}

converges weakly in D(I), equipped with the topology of uniform convergence, to the zero

mean Gaussian process {W (r), r ∈ I} with covariance structure given by

(40) E[W (s)W (t)] = 4 Cov(h1(X1, s), h1(X1, t))

+ 4
∑

ℓ≥1

{Cov(h1(X1, s), h1(Xℓ+1, t)) + Cov(h1(X1, t), h1(Xℓ+1, s))} ,

where h1 is given in (39).

If D < 1/2, with similar arguments as those used in the example on the Hodges-Lehmann

estimator, the assumptions of Theorem 2 are satisfied with m = 2 and we get using (38), that

{
k(D)nDL(n)−1 (Un(r) − U(r)) ; r ∈ I

}
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converges weakly in D(I), equipped with the topology of uniform convergence, to

(41) {ϕ̇(r/
√

2)(Z2,D(1) − Z1,D(1)2); r ∈ I} .

where I is any compact set of R which does not contain 0. Thus

Proposition 7. In the long-memory case with 1/2 < D < 1, the asymptotic behavior of

the sample correlation integral Un(r), r ∈ I is Gaussian with covariance (40). If 0 < D < 1/2

and if I is a compact set in R which does not contain 0, then the limit is non-Gaussian and

given in (41).

4.4. Shamos scale estimator. Assume that (Yi)i≥1 satisfy Yi = σXi where (Xi)i≥1 satisfy

Assumption (A1). The results of the previous subsection can be used to derive the properties

of the estimator of the scale σ proposed by Shamos (1976) and Bickel and Lehmann (1979).

From Y1, . . . , Yn, it is defined by

σ̂BL = c median{|Yi − Yj|; 1 ≤ i < j ≤ n} = c σ median{|Xi − Xj |; 1 ≤ i < j ≤ n} ,

where c = 1.0483. σ̂BL involves the median of the distance between observations. As is the case

for the standard deviation, if the Yi’s are transformed into aYi+b, then σ̂BL is multiplied by |a|.
Here G(x, y) = 1{|x−y|≤r}, U(r) =

∫
[Φ(x + r)−Φ(x− r)]ϕ(x)dx, U ′(r) = 2

∫
ϕ(x + r)ϕ(x)dx,

U−1(1/2) = 1/c and U ′(U−1(1/2)) = U ′(1/c) =
√

2ϕ(1/(c
√

2)).

By Corollary 3, we obtain that for D > 1/2,

(42)
√

n(σ̂BL − σ)
d−→ − cσW (1/c)√

2ϕ(1/(c
√

2))
,

where W is a Gaussian process having the covariance structure (20) with h1 given in (39).

Consider now the case D < 1/2. By (38), α2,0(U
−1(1/2)) = −α1,1(U

−1(1/2)) = −α1,1(1/c) =

ϕ̇(1/(c
√

2)). Hence, we deduce from Corollary 4 that, if D < 1/2,

(43)

k(D)nDL(n)−1(σ̂BL − σ)
d−→ cσϕ̇(1/(c

√
2))√

2ϕ(1/(c
√

2))
(Z1,D(1)2 − Z2,D(1)) =

σ

2
(Z2,D(1) − Z1,D(1)2) .

Let us now compare the asymptotic behavior of the Shamos scale estimator with that of the

square root of the sample variance estimator, σ̂n,Y = (
∑n

i=1(Yi − Ȳ )2/(n − 1))1/2. We have

n(n − 1)(σ̂2
n,Y − σ2) = σ2[n

n∑

i=1

(X2
i − 1) −

∑

1≤i,j≤n

XiXj + n] ,

so that by Lemma 14,

k(D)nDL(n)−1(σ̂2
n,Y − σ2)

d−→ σ2(Z2,D(1) − Z1,D(1)2) .

We apply the Delta method to go from σ2 to σ, setting f(x) =
√

x, so that f ′(σ2) =

1/(2
√

σ2) = 1/(2σ). We obtain

(44) k(D)nDL(n)−1(σ̂n,Y − σ)
d−→ σ

2
(Z2,D(1) − Z1,D(1)2) .

Thus,
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Proposition 8. In the long-memory case with 1/2 < D < 1, the asymptotic behavior

of the Shamos scale estimator σ̂BL is Gaussian and given in (42). If 0 < D < 1/2, it is

non-Gaussian and given by (43); in this case, σ̂BL converges to σ at the same rate as the

square root of the sample variance estimator with no loss of efficiency.

5. Proofs of Theorems 1 and 2.

5.1. Lemmas used in the proof of Theorem 1.

Lemma 9. Under the assumptions of Theorem 1, the process {√nWn(r), r ∈ I}, where

Wn(·) is defined in (7), converges weakly in the space of cadlag functions equipped with the

topology of uniform convergence to the zero mean Gaussian process {W (r), r ∈ I} with co-

variance structure given by

E[W (s)W (t)] = 4 Cov(h1(X1, s), h1(X1, t))

+ 4
∑

ℓ≥1

{Cov(h1(X1, s), h1(Xℓ+1, t)) + Cov(h1(X1, t), h1(Xℓ+1, s))} .

Proof of Lemma 9. Let us check that the assumptions of Theorem 9 in Arcones (1994)

hold for the class F of functions {h1(·, r) : r ∈ I} which is of rank τ ≥ m = 2 > 1/D. By

Assumption (A1) and since τ > 1/D, the condition (i”) of Theorem 9 in Arcones (1994) is

satisfied. We conclude the proof of the Lemma by observing that the condition (ii) of this

Theorem is also fulfilled. To check this condition, we have to prove that
∫ ∞

0
(N

(2)
[ ] (ε,F))1/2dε < ∞ ,

where N
(2)
[ ] (ε,F) is the bracketing number of the class F as defined on page 2269 in Arcones

(1994):

N
(2)
[ ] (ε,F) = min{N : ∃ measurable functions f1, . . . , fN and ∆1, . . . ,∆N such that

for each f ∈ F ,∃i ≤ N such that |fi−f | ≤ ∆i and where E(∆2
i (X)) ≤ ε2 for each i ≤ N} .

Let {ri, i = 0, . . . , N} be such that: for all i, |ri − ri−1| ≤ ε/C and for all r ∈ I, there

exists i such that |r − ri| ≤ ε. The smallest N satisfying this property is at most equal to

[|I|C/ε] + 1, where |I| denotes the length of I. Let us define for all i ≥ 1, fi = h1(·, ri) and

∆i = h1(·, ri)−h1(·, ri−1). Using (19) we first get E(∆2
i (X)) = E({h1(X, ri)−h1(X, ri−1)}2) ≤

C2|ri − ri−1|2 ≤ ε2. Now, let r ∈ I and 1 ≤ i ≤ N be such that, ri−1 ≤ r ≤ ri. Then, using

the fact that h1 is increasing with respect to its second argument leads to |fi −h1(·, r)| ≤ ∆i.

Thus, N
(2)
[ ] (ε,F) ≤ [|I|C/ε]+1 which yields condition (ii) of Theorem 9 in Arcones (1994).

Lemma 10. Under the assumptions of Theorem 1,

sup
r∈I

√
nRn(r) = oP (1) ,

where Rn is defined in (8).
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Proof of Lemma 10. We want to apply Lemma 5.2, P. 4307 of Borovkova, Burton and Dehling

(2001) to {√nRn(r), r ∈ I}. To do this, we prove that for all s, t ∈ I, δ > 0 such that

s ≤ t ≤ s + δ and s + δ ∈ I:

(45)
√

n|Rn(t) − Rn(s)|
≤ √

n|Rn(s + δ) − Rn(s)| + 2
√

n|Wn(s + δ) − Wn(s)| + 4
√

n|U(s + δ) − U(s)| .

Using the definition of Rn given by (8) and the fact that h, h1 and U are nondecreasing

functions with respect to r, we get:

Rn(t) − Rn(s) ≤ 1

n(n − 1)

∑

1≤i6=j≤n

{h(Xi,Xj , t) − h(Xi,Xj , s)} + {U(t) − U(s)}

≤ 1

n(n − 1)

∑

1≤i6=j≤n

{h(Xi,Xj , s + δ) − h(Xi,Xj , s)} + {U(s + δ) − U(s)} .

By adding and subtracting functions h1 evaluated at s + δ and s, we obtain:

Rn(t) − Rn(s) ≤ {Rn(s + δ) − Rn(s)} +
2

n

n∑

i=1

{h1(Xi, s + δ) − h1(Xi, s)} .

Adding and subtracting 2(U(s) − U(s + δ)) leads to:

Rn(t) − Rn(s) ≤ {Rn(s + δ) − Rn(s)} + {Wn(s + δ) − Wn(s)} + 2{U(s + δ) − U(s)} ,

where Wn is defined in (7). Thus,

(46) Rn(t) − Rn(s) ≤ |Rn(s + δ) − Rn(s)| + |Wn(s + δ) − Wn(s)| + 2|U(s + δ) − U(s)| .

Let us now find an upper bound for Rn(s)−Rn(t). Starting with the expression (8) for Rn(r)

and setting h(Xi,Xj , s) ≤ h(Xi,Xj , s + δ), U(s) ≤ U(s + δ) and h(Xi,Xj , t) ≥ h(Xi,Xj , s),

U(t) ≥ U(s) since h and U are non decreasing functions with respect to r, we obtain

Rn(s)−Rn(t) ≤ 1

n(n − 1)

∑

1≤i6=j≤n

[{h(Xi,Xj , s+δ)−h(Xi ,Xj , s)}−2{h1(Xi, s)−h1(Xi, t)}]

+ {U(s + δ) − U(s)}

≤ 1

n(n − 1)

∑

1≤i6=j≤n

[{h(Xi,Xj , s + δ) − h(Xi,Xj , s)} − 2{h1(Xi, s + δ) − h1(Xi, s)}]

+
2

n(n − 1)

∑

1≤i6=j≤n

[{h1(Xi, t)− h1(Xi, s)}+ {h1(Xi, s + δ)− h1(Xi, s)}] + {U(s + δ)−U(s)}

≤ {Rn(s + δ) − Rn(s)} +
4

n

∑

1≤i≤n

{h1(Xi, s + δ) − h1(Xi, s)} .

Adding and subtracting 4(U(s) − U(s + δ)) leads to:

(47) Rn(s) − Rn(t) ≤ |Rn(s + δ) − Rn(s)| + 2|Wn(s + δ) − Wn(s)| + 4|U(s + δ) − U(s)| .
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Combining (46) and (47), we get for all s, t ∈ I, δ > 0 such that s ≤ t ≤ s+ δ and s+ δ ∈ I:

√
n|Rn(t)−Rn(s)| ≤ √

n|Rn(s+δ)−Rn(s)|+2
√

n|Wn(s+δ)−Wn(s)|+4
√

n|U(s+δ)−U(s)| ,

which is (45). Remark that U is Lipschitz by Condition (19).

In Lemma 5.2, P. 4307 of Borovkova, Burton and Dehling (2001), the monotone Lipschitz-

continuous function Λ is here U , α = 1/2 and the process {Yn(t)} is here {√nWn(t)}. We

shall now verify that conditions (i) and (ii) of that lemma are satisfied. Condition (i) holds

because of Lemma 11 below. Condition (ii) involves {√nWn(t)}. Applying inequality (2.43)

of Theorem 4 in Arcones (1994) to f(·) = (h1(·, t) − h1(·, s)) − (U(t) − U(s)), which is, by

(14), of Hermite rank τ ≥ 2 > 1/D, we get using (19) that there exist some positive constants

C and C ′ such that:

E

[
|√n{Wn(t) − Wn(s)}|2

]
= E



{

2√
n

n∑

i=1

(h1(Xi, t) − h1(Xi, s)) − (U(t) − U(s))

}2



≤ C E

[
{(h1(X1, t) − h1(X1, s)) − (U(t) − U(s))}2

]
≤ C ′ |t − s|2 .

Thus condition (ii) of Lemma 5.2 in Borovkova, Burton and Dehling (2001) is satisfied with

r = 2 and monotone function g(t) = t. An application of this lemma concludes the proof.

Lemma 11. Under the assumptions of Theorem 1, there exist positive constants C and α

such that, for large enough n,

(48) E[{Rn(t) − Rn(s)}2] ≤ C
|t − s|
n1+α

, for all s, t ∈ I ,

where Rn is defined in (8).

Proof of Lemma 11. Note that Rn(t) − Rn(s) can be written as

Rn(t) − Rn(s) =
1

n(n − 1)

∑

1≤i6=j≤n

J(Xi,Xj) ,(49)

where

(50) J(x, y) = Js,t(x, y) = {h(x, y, t) − h(x, y, s)} − {h1(x, t) − h1(x, s)}
− {h1(y, t) − h1(y, s)} + {U(t) − U(s)}.

In the sequel, we shall drop for convenience the subscripts s and t. In view of the definition

of h, h1 and U in (2), (4) and (3) respectively, one has

(51) ‖J‖∞ ≤ 4 ,

that is, J is bounded. Then, by Conditions (17) and (19), for any Gaussian vector (Xi,Xj ,Xk,Xℓ),

one has

(52) E[|J(Xi,Xj)J(Xk,Xℓ)|] ≤ C E[|J(Xi,Xj)|] ≤ C |t − s| ,
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for some positive constant C. By the degeneracy of Hoeffding projections, expanding J into

the basis of Hermite polynomials leads to:

(53) J(x, y) =
∑

p,q≥0

cp,q(s, t)

p! q!
Hp(x)Hq(y) , with c0,p = cp,0 = 0 ,∀p ≥ 0 ,

where

(54) cp,q(s, t) = E[J(X,Y )Hp(X)Hq(Y )] ,

X and Y being independent standard Gaussian random variables. Therefore, using (52),

(55) |cp,q| ≤ E[J(X,Y )2]1/2(p! q!)1/2 ≤ C(p! q!)1/2|t − s|1/2 .

Remark that the sum in (53) is over p and q such that p + q ≥ m, since the Hermite rank of

J is greater than or equal to the Hermite rank of h. Using (49), we obtain that

(56) E[{Rn(t) − Rn(s)}2] ≤ 1

n2(n − 1)2

∑

1≤i1 6=i2≤n

1≤i3 6=i4≤n

E[J(Xi1 ,Xi2)J(Xi3 ,Xi4)] .

We shall consider 3 cases depending on the cardinality of the set {i1, i2, i3, i4}.
1) We first address the case where i1 = i3 and i2 = i4. Using (52), we get

1

n2(n − 1)2

∑

1≤i1 6=i2≤n

E[J(Xi1 ,Xi2)
2] ≤ C

n2
|t − s| ,

which is consistent with (48).

2) Let us now consider the case where the cardinality of the set {i1, i2, i3, i4} is 3 and

suppose without loss of generality that i1 = i3. Suppose also that ρ defined in Assumption

(A1) has the following property: there exists some positive ρ⋆ such that

(57) ρ(k) ≤ ρ⋆ < 1/13, for all k ≥ 1 .

If we apply the same arguments as in the previous case, we get a rate of order 1/n instead of

the desired rate 1/n1+α. To obtain the latter rate, we propose to approximate J by a smooth

function Jε using a convolution approach. More precisely, we define, for all x, y in R,

(58) Jε(x, y) =

∫
J(x − εz, y − εz′)ϕ(z)ϕ(z′)dzdz′ .

Thus,

(59)

E[J(Xi1 ,Xi2)J(Xi1 ,Xi4)] = E[Jε(Xi1 ,Xi2)J(Xi1 ,Xi4)] + E[(J − Jε)(Xi1 ,Xi2)J(Xi1 ,Xi4)] .

Applying Lemma 12 below to f = Jε and noting that, by Condition (15), ‖∂6Jε/∂x3∂y3‖ ≤
Cε−6|t − s|1/2, for some positive constant C, we obtain

E[Jε(Xi1 ,Xi2)J(Xi1 ,Xi4)] = E[
∑

p,q≥1

cp,q(Jε)

p! q!
Hp(Xi1)J(Xi1 ,Xi4)Hq(Xi2)]

≤ Cε−6|t − s|1/2
∑

p,q≥3

(p!q!)−1
√

(p − 3)!
√

(q − 3)! |E[Hp(Xi1)J(Xi1 ,Xi4)Hq(Xi2)]| ,
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ASYMPTOTIC PROPERTIES OF U-PROCESSES UNDER LONG-RANGE DEPENDENCE 17

where cp,q(Jε) is the (p, q)th Hermite coefficient of Jε. We shall apply Lemma 13 below with

Y1 = (Xi1 ,Xi4), Y2 = Xi2 , a1 = 2, a2 = 1, Γ0,1 = Id, Γ0,2 = 1, f1 = HpJ and f2 = Hq. Observe

that Id − Γ is a 3 × 3 matrix with ρ entries and hence ‖Id − Γ‖2 ≤ (a1 + a2)‖Id − Γ‖∞ =

3‖Id − Γ‖∞ = 3ρ⋆, where ‖A‖∞ is defined for a matrix A = (ai,j)i,j by ‖A‖∞ = maxi,j |ai,j|.
Hence, by (57), the condition on r⋆ of Lemma 13 is satisfied. Since J is bounded and f2 is of

Hermite rank larger than 2, Lemma 13 with [(2+1)/2] = 1 implies that there exists a positive

constant C such that

(60) |E[Hp(Xi1)J(Xi1 ,Xi4)Hq(Xi2)]| ≤ C
√

p! q! (|ρ(i4 − i2)| ∨ |ρ(i2 − i1)| ∨ |ρ(i4 − i1)|) .

Hence,

(61) E[Jε(Xi1 ,Xi2)J(Xi1 ,Xi4)] ≤ Cε−6|t − s|1/2 (|ρ(i4 − i2)| + |ρ(i2 − i1)| + |ρ(i4 − i1)|) .

Since, for example,
∑

1≤i2 6=i4≤n |ρ(i4 − i2)| ≤ n
∑

|k|<n |ρ(k)|, and since there exist posi-

tive constants C and δ such that |ρ(k)| ≤ C(1 ∧ |k|−D+δ), for all k ≥ 1, we obtain that∑
1≤i2 6=i4≤n |ρ(i4 − i2)| ≤ Cn2−D+δ. Hence,

(62)
1

n2(n − 1)2

∑

1≤i1 6=i2≤n

1≤i1 6=i4≤n

E[Jε(Xi1 ,Xi2)J(Xi1 ,Xi4)] ≤
Cε−6|t − s|1/2

n1+D−δ
.

We now focus on the last term in (59). By the Cauchy-Schwarz inequality and (52),

(63)
1

n2(n − 1)2

∑

1≤i1 6=i2≤n

1≤i1 6=i4≤n

E[(J − Jε)(Xi1 ,Xi2)J(Xi1 ,Xi4)]

≤ C
|t − s|1/2

n2(n − 1)

∑

1≤i1 6=i2≤n

E[(J − Jε)
2(Xi1 ,Xi2)]

1/2 .

Using (58), the Cauchy-Schwarz inequality and (51),

(64) E[(J − Jε)
2(Xi1 ,Xi2)]

=

∫

R2
{[J(x, y) − J(x − εz, y − εz′)]ϕ(z)ϕ(z′)dzdz′}2fi1,i2(x, y)dxdy

≤
∫

R2
{
∫

R2
[J(x, y) − J(x − εz, y − εz′)]2fi1,i2(x, y)dxdy}ϕ(z)ϕ(z′)dzdz′

≤ C

∫

R2
{
∫

R2
|J(x, y) − J(x − εz, y − εz′)|fi1,i2(x, y)dxdy}ϕ(z)ϕ(z′)dzdz′ ,

where fi1,i2 is the p.d.f of (Xi1 ,Xi2). By (50), Conditions (16) and (18),

(65)

∫

R2
{
∫

R2
|J(x, y) − J(x − εz, y − εz′)|fi1,i2(x, y)dxdy}ϕ(z)ϕ(z′)dzdz′

≤ Cε

∫

R2
[|z − z′| + |z| + |z′|]ϕ(z)ϕ(z′)dzdz′ ≤ Cε .
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Using (63), (64) and (65), we get

(66)
1

n2(n − 1)2

∑

1≤i1 6=i2≤n

1≤i1 6=i4≤n

E[(J − Jε)(Xi1 ,Xi2)J(Xi1 ,Xi4)] ≤ C
ε1/2|t − s|1/2

n
.

Note that (62) involves the factor ε−6 and (66) involves the factor ε1/2. By choosing ε = εn =

n−ν with 0 < ν < (D − δ)/6 in (62) and (66), we obtain a result consistent with (48).

If Condition (57) is not satisfied then let τ be such that ρ(k) ≤ ρ⋆ < 1/13, for all k > τ . In

the case where, for instance, |i2 − i4| ≤ τ then, using that J is bounded, Conditions (17) and

(19), we get that

1

n2(n − 1)2

∑

1≤i1 6=i2≤n

1≤i1 6=i4≤n,|i2−i4|≤τ

E[J(Xi1 ,Xi2)J(Xi1 ,Xi4)] ≤ C
τ |t − s|

n2
,

instead of (62), but the result is still consistent with (48).

The same result holds when |i1 − i4| ≤ τ or |i1 − i2| ≤ τ . Note also that the remaining sum

over the indices such that |i1 − i2| > τ , |i1 − i4| > τ and |i2 − i4| > τ can be addressed in the

same way as when Condition (57) is satisfied.

3) Now, we assume that the cardinal number of the set {i1, i2, i3, i4} equals 4 and that

Condition (57) holds. Thus, it is enough to majorize:

1

n4

∑

p1,p2≥1

p1+p2≥m

cp1,p2(s, t)

p1! p2!

∑

p3,p4≥1

p3+p4≥m

cp3,p4(s, t)

p3! p4!

∑

1≤i1,i2,i3,i4≤n

|{i1,i2,i3,i4}|=4

E[Hp1(Xi1)Hp2(Xi2)Hp3(Xi3)Hp4(Xi4)] .

By Lemma 3.2 P. 210 in Taqqu (1977), E[Hp1(Xi1)Hp2(Xi2)Hp3(Xi3)Hp4(Xi4)] is zero if

p1 + · · · + p4 is odd. Otherwise it is bounded by a constant times a sum of products of

(p1 + · · · + p4)/2 correlations. Bounding, in each product, all of them but two, by ρ⋆ < 1/3,

we get that E[Hp1(Xi1)Hp2(Xi2)Hp3(Xi3)Hp4(Xi4)] is bounded by

ρ⋆
p1+p2+p3+p4

2
−2 [ρ(i1 − i2)ρ(i3 − i4) + ρ(i1 − i3)ρ(i2 − i4) + ρ(i2 − i3)ρ(i1 − i4)

+ρ(i1 − i2){ρ(i2 − i4) + ρ(i2 − i3)} + ρ(i1 − i3){ρ(i3 − i4) + ρ(i3 − i2)}
+ρ(i1 − i4){ρ(i4 − i2) + ρ(i4 − i3)} + ρ(i4 − i3){ρ(i3 − i2) + ρ(i3 − i1)} + ρ(i2 − i4)ρ(i4 − i3)]

|E[Hp1(X)Hp2(X)Hp3(X)Hp4(X)]| .

where X is a standard Gaussian random variable. Note also that the hypercontractivity

Lemma 3.1 P. 210 in Taqqu (1977) yields

(67) |E[Hp1(X)Hp2(X)Hp3(X)Hp4(X)]| ≤ 3
p1+p2+p3+p4

2

√
p1! p2! p3! p4! .

Using that there exist positive constants C and ε such that |ρ(k)| ≤ C(1 ∧ |k|−D+ε), for all

k ≥ 1, we get

∑

1≤i1,i2,i3,i4≤n

|{i1,i2,i3,i4}|=4

ρ(i1 − i2)ρ(i3 − i4) = (
∑

1≤i1 6=i2≤n

ρ(i1 − i2))
2 ≤ C2n2(

∑

|k|<n

ρ(k))2 ≤ C2n4−2D+2ε ,
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and

∑

1≤i1,i2,i3,i4≤n

|{i1,i2,i3,i4}|=4

ρ(i1 − i2)ρ(i2 − i4) = n
n∑

i2=1

(
∑

1≤i1 6=i2≤n

ρ(i1 − i2))
2

= n
n∑

i2=1

(
i2−1∑

i1=1

ρ(i1 − i2) +
n∑

i1=i2+1

ρ(i1 − i2))
2 ≤ C2n

n∑

i2=1

i2−2D+2ε
2 ≤ C2n4−2D+2ε .

Hence

1

n4

∑

1≤i1,i2,i3,i4≤n

|{i1,i2,i3,i4}|=4

E[Hp1(Xi1)Hp2(Xi2)Hp3(Xi3)] ≤ Cn−2D+2ε(3ρ⋆)
p1+p2+p3+p4

2
−2
√

p1! p2! p3! p4! .

Thus, using the Cauchy-Schwarz inequality and (55), there exists a positive constant C such

that,

(68)

1

n4

∑

p1,p2≥1

p1+p2≥m

cp1,p2(s, t)

p1! p2!

∑

p3,p4≥1

p3+p4≥m

cp3,p4(s, t)

p3! p4!

∑

1≤i1,i2,i3,i4≤n

|{i1,i2,i3,i4}|=4

E[Hp1(Xi1)Hp2(Xi2)Hp3(Xi3)Hp4(Xp4)]

≤ C

n2D−2ε




∑

p1,p2≥1

p1+p2≥m

|cp1,p2(s, t)|√
p1! p2!

(3ρ⋆)
p1+p2

2
−1




2

≤ C|t − s|
n2D−2ε


∑

p1≥1

(3ρ⋆)p1−1




2

,

The result (48) follows with 2ε = D − 1/2 > 0 and by using that the last sum in the r.h.s of

(68) is finite by (57).

If Condition (57) is not satisfied, then let τ be such that

(69) sup
k>τ

ρ(k) ≤ 1

13
(1 − sup

1≤k≤τ
ρ(k)) .

In the case where, for instance, |i1 − i3| ≤ τ and |i2 − i4| ≤ τ , there is no need to use (69)

because we get using (52),

1

n2(n − 1)2

∑

1≤i1,i2,i3,i4≤n

|{i1,i2,i3,i4}|=4,|i1−i3|≤τ,|i2−i4|≤τ

E[J(Xi1 ,Xi2)J(Xi3 ,Xi4)] ≤ C
τ2|t − s|

n2
,

which is consistent with (48).

In the case where, for instance, |i1 − i3| ≤ τ and the other distances are larger than

τ , we apply the same method as in 2). What changes is the block diagonal matrix Γ0 in-

volved in Lemma 13. In fact, to evaluate E[Jε(Xi1 ,Xi2)J(Xi3 ,Xi4)] we expand Jε in Hermite

polynomials, so that we need to control E[Hp(Xi1)J(Xi3 ,Xi4)Hq(Xi2)]. We want to apply

Lemma 13 with Y1 = (Xi1 ,Xi3 ,Xi4), Y2 = Xi2 , f1 = HpJ , f2 = Hq. We let Γ0,1 be a

3 × 3 block diagonal matrix with a first block corresponding to the covariance matrix of

the vector (Xi1 ,Xi3) and a second block equal to 1, and we let Γ0,2 = 1, so that Γ0 is a
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4 × 4 matrix. Observe that ‖Γ−1
0 (Γ − Γ0)‖2 ≤ 4‖Γ−1

0 (Γ − Γ0)‖∞, where ‖Γ−1
0 (Γ − Γ0)‖∞ ≤

(sup1≤k≤τ ρ(k))(1− supk>τ ρ(k))−1 ≤ 1/13, by (69). Thus, ‖Γ−1
0 (Γ−Γ0)‖2 ≤ 4/13 < 1/3− η,

for some positive η. Hence, the condition on r⋆ of Lemma 13 is satisfied.

The remaining sum over indices where the distances between any two indices are larger

than τ can be addressed in the same way as when Condition (57) is satisfied.

Lemma 12. Let f : R
2 −→ R be a bounded function such that its derivative ∂6f/∂x3∂y3

exists. Let (X,Y ) be a standard Gaussian random vector. Assume that E

[(
∂i+jf(X,Y )/∂xi∂yj

)2]
<

∞, for all 1 ≤ i, j ≤ 3, then the Hermite coefficients of f defined by cp,q(f) := E[f(X,Y )Hp(X)

Hq(Y )] satisfy, for p, q ≥ 3

(70) |cp,q(f)| ≤ E[(∂6f(X,Y )/∂x3∂y3)2]1/2
√

(p − 3)!
√

(q − 3)! .

Proof of Lemma 12. Using that, for n ≥ 1, (Hn−1ϕ)′ = −Hnϕ, where ′ denotes the first

derivative, and 6 integrations by parts (3 with respect to x and 3 with respect to y), we get

that for p, q ≥ 3,

cp,q(f) =

∫

R2
∂6f(x, y)/∂x3∂y3Hq−3(y)ϕ(y)Hp−3(x)ϕ(x)dxdy ,

where ϕ is the p.d.f of a standard Gaussian random variable. (70) then follows from the

Cauchy-Schwarz inequality.

The following lemma is an extension of Corollary 2.1 in Soulier (2001).

Lemma 13. Let f1 and f2 be two functions defined on R
a1 and R

a2 , respectively. Let Γ

be the covariance matrix of the mean-zero Gaussian vector Y = (Y1, Y2) where Y1 and Y2

are in R
a1 and R

a2 , respectively. Assume that there exists a block diagonal matrix Γ0 of size

(a1 + a2) × (a1 + a2) built from Γ with diagonal blocks Γ0,1 and Γ0,2 of size a1 × a1 and

a2 × a2, respectively, such that r⋆ := ‖Γ−1/2
0 (Γ0 − Γ)Γ

−1/2
0 ‖2 ≤ (1/3− ε), for some positive ε.

In the previous inequality ‖B‖2 denotes the spectral radius of the symmetric matrix B. If at

least one function fi has an Hermite rank larger than τ , then there exists a positive constant

C(a1, a2, ε) such that

(71) |E[f1(Y1)f2(Y2)]| ≤ C(a1, a2, ε)‖f1‖2,Γ0,1‖f2‖2,Γ0,2(r
⋆)[(τ+1)/2] ,

where ‖fi‖2
2,Γ0,i

= (2π)−ai/2|Γ0,i|−1/2
∫

R
ai f2

i (x) exp(−xT Γ−1
0,i x/2)dx, i = 1, 2 and [x] denotes

the integer part of x.

Proof of Lemma 13. Let f be a function defined on R
a1+a2 such that f(Y ) = f(Y1, Y2) =

f1(Y1)f2(Y2). Note that E[f(Y )] = E[f(Γ
1/2
0 Z)], where the covariance matrix of Z is equal to

Γ
−1/2
0 ΓΓ

−1/2
0 . By the assumption on r⋆, the latter matrix is invertible and satisfies:

(Γ
−1/2
0 ΓΓ

−1/2
0 )−1 = [Ia1+a2 − Γ

−1/2
0 (Γ0 − Γ)Γ

−1/2
0 ]−1 = Ia1+a2 +

∑
k≥1(Γ

−1/2
0 (Γ0 − Γ)Γ

−1/2
0 )k.
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Let ∆ := (Γ
−1/2
0 ΓΓ

−1/2
0 )−1 − Ia1+a2 . By definition of the density of the multivariate Gaussian

distribution and the definition of the matrix ∆, we obtain that

|Γ−1/2
0 ΓΓ

−1/2
0 |1/2

E[f(Γ
1/2
0 Z)] =

∫

Ra1+a2

f(Γ
1/2
0 z) exp(−zT ∆z/2) exp(−zT z/2)

dz

(2π)(a1+a2)/2
.

Expanding exp(−zT ∆z/2) in series leads to

|Γ−1/2
0 ΓΓ

−1/2
0 |1/2

E[f(Γ
1/2
0 Z)]

=
∑

k≥0

(−1/2)k

k!

∫

Ra1+a2

f(Γ
1/2
0 z)(zT ∆z)k exp(−zT z/2)

dz

(2π)(a1+a2)/2
.

Set ν = [(τ + 1)/2], where [x] denotes the integer part of x. Using that f is of Hermite rank

at least τ and the previous equation, we get

|Γ−1/2
0 ΓΓ

−1/2
0 |1/2

E[f(Γ
1/2
0 Z)]

=
∑

k≥ν

(−1/2)k

k!

∫

Ra1+a2

f(Γ
1/2
0 z)(zT ∆z)k exp(−zT z/2)

dz

(2π)(a1+a2)/2
.

Since |∑k≥ν(−1/2)k(zT ∆z)k/k!| ≤ |zT ∆z|ν exp(|zT ∆z|/2)/(2νν!), we obtain

|Γ−1/2
0 ΓΓ

−1/2
0 |1/2 |E[f(Γ

1/2
0 Z)]|

≤ 1

2νν!

∫

Ra1+a2

|f(Γ
1/2
0 z)| |zT ∆z|ν exp(|zT ∆z|/2) exp(−zT z/2)

dz

(2π)(a1+a2)/2
.

Denoting by δ the spectral radius of ∆ gives

|Γ−1/2
0 ΓΓ

−1/2
0 |1/2 |E[f(Γ

1/2
0 Z)]|

≤ δν

2νν!

∫

Ra1+a2

|f(Γ
1/2
0 z)|(zT z)ν exp{(δ/2 − 1/2)zT z} dz

(2π)(a1+a2)/2
.

By the Cauchy-Schwarz inequality, we get

(72)

|Γ−1/2
0 ΓΓ

−1/2
0 |1/2 |E[f(Γ

1/2
0 Z)]| ≤ δν

2νν!

(∫

Ra1+a2

f2(Γ
1/2
0 z) exp(−zT z/2)

dz

(2π)(a1+a2)/2

)1/2

(∫

R
a1+a2

(zT z)2ν exp{(δ − 1/2)zT z} dz

(2π)(a1+a2)/2

)1/2

.

By definition of ∆, the spectral radius δ of ∆ satisfies δ ≤ ∑
k≥1(r

⋆)k ≤ r⋆/(1 − r⋆), where

r⋆ is the spectral radius of Γ
−1/2
0 (Γ0 − Γ)Γ

−1/2
0 . By assumption on r⋆, δ ≤ 1/2 − 3ε/2 which

implies that the second integral in (72) is convergent. The first integral in (72) satisfies

(73)

(∫

Ra1+a2

f2(Γ
1/2
0 z) exp(−zT z/2)

dz

(2π)(a1+a2)/2

)1/2

= ‖f1‖2,Γ0,1‖f2‖2,Γ0,2 .
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Finally, under the assumption on r⋆, the spectral radius δ0 of

(Γ
−1/2
0 ΓΓ

−1/2
0 )−1 =

∑
k≥0{Γ

−1/2
0 (Γ0−Γ)Γ

−1/2
0 }k satisfies δ0 ≤∑

k≥0(r
⋆)k = 1/(1−r⋆), so that

|Γ−1/2
0 ΓΓ

−1/2
0 |−1/2 ≤ (1−r⋆)−(a1+a2)/2 ≤ (2/3+ε)−(a1+a2)/2 ≤ (3/2)(a1+a2)/2. This establishes

(71).

5.2. Lemmas used in the proof of Theorem 2.

The following lemma proves joint convergence and provides the joint cumulants of the

limits (Z2,D(1), (Z1,D(1))2).

Lemma 14. Let (Xj)j≥1 be a stationary process satisfying Assumption (A1) with D < 1/2

and let a and b be two real constants. Then, as n tends to infinity,

k(D)
nD−2

L(n)



an

n∑

i=1

(X2
i − 1) + b

∑

1≤i,j≤n

XiXj





d−→
[
aZ2,D(1) + b(Z1,D(1))2

]
,

where
d−→ denotes the convergence in distribution, k(D) = B((1−D)/2,D) where B denotes

the Beta function, Z1,D(·) and Z2,D(·) are defined in (25) and (26) respectively. The cumulants

of the limit process are given in (74).

Proof of Lemma 14. We first prove that, for p ≥ 2, the pth cumulant κp of aZ2,D(1) +

b(Z1,D(1))2 is equal to

(74) κp = 2p−1(p − 1)! k(D)p
∫

[0,1]p
du1 . . . dup

∫

[0,1]p
dv1 . . . dvp

p∏

j=1

[aδ(uj − vj) + b] |uj − vj−1|−D, with v0 = vp ,

where k(D) = B((1 − D)/2,D), δ(x) = 1 if x = 0, and δ(x) = 0 else.

Using (25) and (26),

aZ2,D(1) + b(Z1,D(1))2 =

∫ ′

R2
K(x, y)dB(x)dB(y) + bσ2 ,

where

K(x, y) =

∫ 1

0

∫ 1

0
[aδ(u − v) + b](u − x)

−(D+1)/2
+ (v − y)

−(D+1)/2
+ dudv ,

and

σ2 = E[Z1,D(1)2] =

∫

R

[

∫ 1

0
(u − x)

−D+1
2

+ du]2dx =

∫ 1

0

∫ 1

0
[

∫

R

(u − x)
−D+1

2
+ (v − x)

−D+1
2

+ dx]dudv .

Using that for 0 < α < 1/2,

(75)∫

R

(u − x)α−1
+ (v − x)α−1

+ dx = |u − v|2α−1
∫ ∞

0
yα−1(1 + y)α−1dy = |u − v|2α−1B(α,−2α + 1) ,
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where B(·, ·) denotes the Beta function, we get

(76)

∫

R

(u − x)
−(D+1)/2
+ (v − x)

−(D+1)/2
+ dx = B((1 − D)/2,D)|u − v|−D = k(D)|u − v|−D .

Thus,

(77) σ2 = k(D)

∫ 1

0

∫ 1

0
|u − v|−Ddudv =

2k(D)

(−D + 1)(−D + 2)
.

Hence, using Proposition 4.2 in Fox and Taqqu (1987), we have that for p ≥ 2,

κp = 2p−1(p − 1)!

∫

Rp
K(x1, x2)K(x2, x3) . . . K(xp−1, xp)K(xp, x1)dx1 . . . dxp .

By definition of K, and with the convention xp+1 = x1,

∫

Rp
K(x1, x2)K(x2, x3) . . . K(xp−1, xp)K(xp, x1)dx1 . . . dxp

=

∫

[0,1]p
du1 . . . dup

∫

[0,1]p
dv1 . . . dvp

∫

Rp
dx1 . . . dxp

p∏

j=1

[aδ(uj − vj) + b](uj − xj)
−(D+1)/2
+ (vj − xj+1)

−(D+1)/2

=

∫

[0,1]p
du1 . . . dup

∫

[0,1]p
dv1 . . . dvp

p∏

j=1

[aδ(uj − vj) + b]

∫

R

(uj − xj)
−(D+1)/2
+ (vj−1 − xj)

−(D+1)/2

where v0 = vp since xj is associated with uj and vj−1. Using (76), we obtain the expression

(74) for the cumulants κp, p ≥ 2.

Let us now compute the limit as n tends to infinity of the cumulants of

An =
nD−2

L(n)

[
X ′(anId + b11′)X

]
=

nD−2

L(n)

[
X̃ ′Σ1/2 (anId + b11′)Σ1/2X̃

]
,

where X = (X1, . . . ,Xn)′, 1 = (1, . . . , 1)′, Id is the n× n identity matrix, Σ is the covariance

matrix of X and X̃ is a standard Gaussian random vector. Using Stuart and Ord (1987), p.

488, the pth cumulant of An is equal to

cump = 2p−1(p − 1)! Tr(Bp
n) ,

where Bn = nD−2L(n)−1
[
Σ1/2 (anId + b11′)Σ1/2

]
. But

Tr(Bp
n) =

(
nD−2

L(n)

)p

Tr
[{

(anId + b11′)Σ
}p]

=

(
nD−2

L(n)

)p ∑

1≤i1,i2,...,ip≤n

1≤j1,j2,...,jp≤n

Di1,j1ρ(j1 − i2)Di2,j2ρ(j2 − i3) . . .

Dip−1,jp−1ρ(jp−1 − ip)Dip,jpρ(jp − i1) ,
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where ρ is defined in Assumption (A1) and Di,j = anδ(i−j)+b. With the convention ip+1 = i1,

Tr(Bp
n) =

1

n2p

∑

1≤i1,i2,...,ip≤n

1≤j1,j2,...,jp≤n

p∏

ℓ=1

{
nD

L(n)
[anδ(iℓ − jℓ) + b]ρ(jℓ − iℓ+1)

}

=
1

n2p

∑

1≤i1,i2,...,ip≤n

1≤j1,j2,...,jp≤n

p∏

ℓ=1

{
nD

L(n)
[anδ(iℓ − jℓ) + b]ρ(jℓ−1 − iℓ)

}
,

where j0 = jp. Thus, as n tends to infinity,

Tr(Bp
n) →

∫

[0,1]p
du1 . . . dup

∫

[0,1]p
dv1 . . . dvp

p∏

j=1

[aδ(uj − vj) + b]

∫

R

|uj − vj−1|−D ,

with the convention v0 = vp, which gives the expected result.

Remark 4. It follows from Lemma 14 that E[ZD,1(1)
2] = σ2 where σ2 is given in (77).

Moreover, setting a = 1, b = 0 in (74), we get the expression (31) for E[ZD,2(1)
2].

Lemma 15. Under Assumption (A1) there exists a positive constant C such that, for n

large enough,

(78)
nD−2

L(n)
E[{

n∑

i=1

Xi}2] ≤ C , when D < 1 ,

(79)
n2D−2

L(n)2
E[{

n∑

i=1

(X2
i − 1)}2] ≤ C , when D < 1/2 ,

and

(80)
n2D−4

L(n)2
E[{

∑

1≤i6=j≤n

XiXj}2] ≤ C , when D < 1/2 .

Proof of Lemma 15. By Assumption (A1), ρ(k) = k−DL(k). Using the adaptation of

Karamata’s theorem given in Taqqu (1975), one gets

(81) if D < 1/m,
∑

|k|<n

|ρ(k)|m ∼ 2

(1 − mD)(2 − mD)
n1−mD(L(n))m .

The bound (78) follows from

E[{
n∑

i=1

Xi}2] ≤ (n +
∑

1≤i6=j≤n

|ρ(i − j)|) ≤ n(1 +
∑

|k|<n,k 6=0

|ρ(k)|) ,

and by setting m = 1 in (81).

imsart-aos ver. 2009/08/13 file: paper1_AOS.tex date: December 23, 2009



ASYMPTOTIC PROPERTIES OF U-PROCESSES UNDER LONG-RANGE DEPENDENCE 25

Let us prove (79). Given that E[Hp(Xi)Hq(Xj)] = p! δ(p − q)ρ(i − j)p, for all integers

p, q, i, j ≥ 1, we obtain

E[{
n∑

i=1

(X2
i − 1)}2] = E[

∑

1≤i,j≤n

H2(Xi)H2(Xj)]

= 2n + 2
∑

1≤i6=j≤n

ρ(i − j)2 ≤ 2n(1 +
∑

|k|<n,k 6=0

ρ(k)2) .

The bound (79) follows by using that D < 1/2 and (81) with m = 2.

Let us now prove (80). Note that

(82) E[(
∑

1≤i6=j≤n

XiXj)
2] =

∑

1≤i6=j≤n

1≤k 6=ℓ≤n

E(XiXjXkXℓ)

=
∑

1≤i6=j≤n

E(X2
i X2

j ) +
∑

1≤i,j,k,ℓ≤n

|{i,j,k,ℓ}|=4

E(XiXjXkXℓ) + 6
∑

1≤i,j,ℓ≤n

|{i,j,ℓ}|=3

E(X2
i XjXℓ) .

Writing X2
i = H2(Xi) + 1 and using that E[H2(Xi)H2(Xj)] = 2ρ(i − j)2, for all i, j ≥ 1, the

first term in the r.h.s of (82) satisfies

∑

1≤i6=j≤n

E(X2
i X2

j ) ≤ n2 + 2n
∑

|k|<n,k 6=0

ρ(k)2 .

Using Lemma 3.2 P. 210 in Taqqu (1977), the second term in the r.h.s of (82) satisfies, for

some positive constant C,

∑

1≤i,j,k,ℓ≤n

|{i,j,k,ℓ}|=4

E(XiXjXkXℓ) ≤ Cn2(
∑

|k|<n,k 6=0

|ρ(k)|)2 .

Writing X2
i = H2(Xi) + 1 and using Lemma 3.2 P. 210 in Taqqu (1977), the third term in

the r.h.s of (82) satisfies, for some positive constant C,

∑

1≤i,j,ℓ≤n

|{i,j,ℓ}|=3

E(X2
i XjXℓ) ≤ Cn(

∑

|k|<n

|ρ(k)|)2 + n2
∑

|k|<n

|ρ(k)| .

The last three inequalities lead to the expected result by using (81).

Lemma 16. Suppose that the assumptions of Theorem 2 hold, in particular D < 1/m

where m = 1 or 2. Then, R̃n defined in (23) satisfies the following property. There exist

positive constants α and C such that, for n large enough,

(83) a2
n E[(R̃n(t) − R̃n(s))2] ≤ C

|t − s|
nα

, for all s, t ∈ I ,

where I is any compact interval of R and an = nmD/2−2L(n)−m/2.
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Proof of Lemma 16. Set αp,q(s, t) = αp,q(t) − αp,q(s) for all s, t in R, where αp,q(·) is

defined in (10). Note that R̃n(t) − R̃n(s) can be written in two different ways. The first one,

using (23), is

(84) a2
nE[(R̃n(t) − R̃n(s))2]

= a2
n

∑

p,q≥0
p+q>m

αp,q(s, t)

p!q!

∑

p′,q′≥0

p′+q′>m

αp′,q′(s, t)

p′!q′!

∑

1≤i6=j≤n

1≤k 6=ℓ≤n

E[Hp(Xi)Hq(Xj)Hp′(Xk)Hq′(Xℓ)] .

The second is

(85) E[(R̃n(t) − R̃n(s))2] =
∑

1≤i6=j≤n

1≤k 6=ℓ≤n

E[J̃s,t(Xi,Xj)J̃s,t(Xk,Xℓ)] ,

where for all x, y in R and s, t in I,

J̃s,t(x, y) = (h(x, y, t) − h(x, y, s)) − (α1,0(t) − α1,0(s))(x + y) − (U(t) − U(s)) , if m = 1 ,

J̃s,t(x, y) = (h(x, y, t) − h(x, y, s)) − (α1,1(t) − α1,1(s))xy − 1

2
(α2,0(t) − α2,0(s))(x

2 + y2 − 2)

− (U(t) − U(s)) , if m = 2 .

To obtain these relations express R̃n(t) − R̃n(s) using (21), (5) and (22). We now consider 3

cases, depending on the cardinality of the set {i, j, k, ℓ}.
1) We start with the case of cardinality 2. In order to address the case where the sum is

over the set of indices {i, j, k, ℓ} such that i = k and j = ℓ, we use the decomposition (85).

We shall only focus on the case where m = 1 because the case m = 2 could be addressed in

the same way. We thus need to show that

(86) E[(R̃n(t) − R̃n(s))2] ≤ Cn4−D−α|t − s| .

Using that h, U and α1,0 are bounded functions, there exists a positive constant C such that

∑

1≤i6=j≤n

E[J̃2
s,t(Xi,Xj)] ≤ C

∑

1≤i6=j≤n

E [|h(Xi,Xj , t) − h(Xi,Xj , s)|

+|α1,0(t) − α1,0(s)|{(Xi + Xj)
2 + |Xi + Xj |} + |U(t) − U(s)|

]
.

Since Condition (27) holds and U , Λ̃, defined in (28) are Lipschitz functions, there exist

positive constants C1 and C2 such that

∑

1≤i6=j≤n

E[J̃2
s,t(Xi,Xj)] ≤ C1n(n − 1)|t − s| + C2|t − s|

∑

1≤i6=j≤n

E[(Xi + Xj)
2 + |Xj | + |Xj |]

≤ Cn(n − 1)|t − s| ,

which gives (86).

2) In order to deal with the sum over the set of indices {i, j, k, ℓ} having a cardinal number

equal to 3 i.e. for instance when k = i, we also use the decomposition (85). As previously, we
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focus on the case where m = 1. Using that h, U and α1,0 are bounded functions, Condition

(27), the Lipschitz property of U and Λ̃, there exists a positive constant C such that

∑

1≤i6=j≤n

1≤i6=ℓ≤n

E[J̃s,t(Xi,Xj)J̃s,t(Xi,Xℓ)] ≤ Cn3|t − s| ,

which gives (86).

3) Let us now consider the case where the sum is over the indices i, j, k, ℓ such that the

cardinal number of the set {i, j, k, ℓ} is equal to 4. Here, we shall use the decomposition (84).

Using that there exist positive constants C and ε such that

(87) |ρ(k)| ≤ C(1 ∧ |k|−D+ε) =: γ(k), for all k ≥ 1 ,

and Lemma 3.2 P. 210 in Taqqu (1977), we obtain

|E[Hp(Xi)Hq(Xj)Hp′(Xk)Hq′(Xℓ)]|

≤ C(1 ∧ |i − j|−(D+ε))
p+q+p′+q′

2 |E[Hp(X)Hq(X)Hp′(X)Hq′(X)]| ,

if we assume that |i−j| is the smallest distance between two different indices, namely |i−j| =

min{|i − j|, |i − k|, |i − l|, |j − k|, |j − l|, |k − l|}. Using (84) and (67),

a2
nE[(R̃n(t) − R̃n(s))2] ≤ a2

nn3
∑

|k|<n

k 6=0




∑

p,q≥0
p+q>m

|αp,q(s, t)|√
p! q!

(3γ(k))
p+q

2




2

,

where γ(k) is defined in (87). Using the Cauchy-Schwarz inequality, we obtain

a2
nE[(R̃n(t) − R̃n(s))2] ≤ E[(h(X,Y, t) − h(X,Y, s))2] a2

n n3
∑

|k|<n

k 6=0




∑

p,q≥0
p+q>m

(3γ(k))p+q


 ,

since if s ≤ t, for example,
∑

p,q≥0
p+q>m

α2
p,q(s, t)(p! q!)−1 ≤ E[(h(X,Y, t) − h(X,Y, s))2] =

∫
R2 1{s<|x−y|≤t}ϕ(x)ϕ(y)dxdy = U(t) − U(s) = |U(t) − U(s)|, where X and Y are inde-

pendent standard Gaussian random variables. Moreover, |U(t) − U(s)| ≤ C|t − s| since U is

a Lipschitz function. Let η be a positive constant such that η > 3. Then there is K ≥ 1 such

that ηγ(k) ≤ 1, for all k ≥ K. We may suppose without loss of generality that K = 1, that

is ηγ(k) ≤ 1, for all k ≥ 1. We then obtain that for large enough n,

(88) a2
nE[(R̃n(t) − R̃n(s))2] ≤ Cηm+1|t − s| a2

n n3



∑

|k|<n

k 6=0

γ(k)m+1







∑

p,q≥0
p+q>m

(
3

η

)p+q


 ,

where C is a positive constant. Observe that a2
nn3 = nmD−1L(n)−m. Recall also that γ(k) is

defined in (87) and note that
∑

k γ(k)m+1 may be finite or infinite even though D < 1/m.

imsart-aos ver. 2009/08/13 file: paper1_AOS.tex date: December 23, 2009
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If
∑

k γ(k)m+1 < ∞ then the result (83) follows with α = 1 − mD which is positive since

D < 1/m. If
∑

k γ(k)m+1 = ∞ then
∑

|k|<n γ(k)m+1 ∼ n1−(D−ε)(m+1) and the result follows

with α = D − ε(m + 1) if ε is chosen small enough to ensure that this quantity is positive.

Lemma 17. Under the assumptions of Theorem 2, R̃n defined in (23) satisfies, as n tends

to infinity,

sup
r∈I

anR̃n(r) = oP (1) ,

where an = n−2+mD/2L(n)−m/2, and m is the Hermite rank of the class of functions {h(·, ·, r)−
U(r) , r ∈ I} which is equal to 1 or 2.

Proof of Lemma 17. We want to apply Lemma 5.2, P. 4307 of Borovkova, Burton and Dehling

(2001) to {anR̃n(r), r ∈ I}. To do so, we first prove that for all s, t ∈ I, δ > 0 such that

s ≤ t ≤ s + δ and s + δ ∈ I:

(89) an|R̃n(t) − R̃n(s)| ≤ an|R̃n(s + δ) − R̃n(s)| + 2an|Λ̃(s + δ) − Λ̃(s)||
∑

1≤i6=j≤n

Xi|

+ 2ann(n − 1)|U(s + δ) − U(s)| , if m = 1 and D < 1 ,

where Λ̃ is defined in (28) and

(90) an|R̃n(t) − R̃n(s)| ≤ an|R̃n(s + δ) − R̃n(s)| + 2an|Λ̃(s + δ) − Λ̃(s)| [ |
∑

1≤i6=j≤n

XiXj|

+ |
∑

1≤i6=j≤n

(X2
i − 1)| ] + 2ann(n − 1)|U(s + δ) − U(s)| , if m = 2 and D < 1/2 .

Let us focus on the proof of (89), where m = 1 and D < 1, since the proof of (90) can be

obtained by using similar arguments. In view of the definition (21) of R̃n and the fact that

Un and U are non decreasing functions, we obtain

R̃n(t) − R̃n(s) ≤ R̃n(s + δ) − R̃n(s) + W̃n(s + δ) − W̃n(t) + n(n − 1)(U(s + δ) − U(s)) .

Remark that the monotonicity of h in (28) implies that Λ̃ is a non decreasing function and

that for p + q ≤ 2,

(91) |αp,q(s) − αp,q(r)| ≤ |Λ̃(s) − Λ̃(r)| , for all r, s .

Since p + q ≤ 2 and m = 1, we need to consider only p = 1, q = 0 and p = 0, q = 1 in (22),

we thus get

(92) W̃n(s + δ) − W̃n(t) ≤ 2(Λ̃(s + δ) − Λ̃(s)) |
∑

1≤i6=j≤n

Xi| .

In the same way, after switching s and t, we obtain

R̃n(s)−R̃n(t) ≤ R̃n(s+δ)−R̃n(s)+2(Λ̃(s+δ)−Λ̃(s))|
∑

1≤i6=j≤n

Xi|+2n(n−1)(U(s+δ)−U(s)) ,
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which gives (89).

In Lemma 5.2, P. 4307 of Borovkova, Burton and Dehling (2001), the monotone Lipschitz-

continuous function Λ is here 2U , the process {Yn(t)} is {anΛ̃(t)(
∑

1≤i6=j≤n Xi)} if m = 1,

and if m = 2, the process {Yn(t)} is {anΛ̃(t)(
∑

1≤i6=j≤n XiXj +
∑

1≤i6=j≤n(X2
i − 1))}.

Using Lemma 15 and the fact that the function Λ̃ defined in (28) is a Lipschitz func-

tion, the processes {Yn(t), t ∈ I} defined above satisfy the condition (ii) of Lemma 5.2 in

Borovkova, Burton and Dehling (2001) with r = 2. Using Lemma 16, the condition (i) of

Lemma 5.2 in Borovkova, Burton and Dehling (2001) is also satisfied. This concludes the

proof.

5.3. Proof of Theorem 2. Consider the decomposition (21). Since G(x, y) = G(y, x), one

has α1,0(r) = α0,1(r), α2,0(r) = α0,2(r) and W̃n defined in (22) satisfies

(93) W̃n(r) = 2(n − 1)α1,0(r)
n∑

i=1

Xi , if m = 1 ,

(94) W̃n(r) = α1,1(r)
∑

1≤i6=j≤n

XiXj + (n − 1)α2,0(r)
n∑

i=1

(X2
i − 1) , if m = 2 .

If m = 1, using Lemma 5.1 in Taqqu (1975), if r is fixed, nD/2−2L(n)−1/2W̃n(r) defined in

(93) converges in distribution to 2k(D)−1/2α1,0(r)Z1,D(1). Then, by the Cramer-Wold device,

if r1, . . . , rk are fixed real numbers, k(D)1/2nD/2−2L(n)−1/2(W̃n(r1), . . . , W̃n(rk)) converges in

distribution to (2α1,0(r1)Z1,D(1), . . . , 2α1,0(rk)Z1,D(1)).

In the same way, if m = 2, using Lemma 14 in Section 5.2 and the Cramer-Wold device,

k(D)nD−2L(n)−1(W̃n(r1), . . . , W̃n(rk)) converges in distribution to (α1,1(r1)(Z1,D(1))2 +

α2,0(r1)Z2,D(1), . . . , α1,1(rk)(Z1,D(1))2 + α2,0(rk)Z2,D(1)).

We now show that {nmD/2−2L(n)−m/2W̃n(r); r ∈ I} is tight in D(I). We shall do it in the

case m = 1. By (92), Lemma 15 in Section 5.2 and the fact that Λ̃ is a bounded Lipschitz

function, we get that there exists a positive constant C such that for all r1 < r2 in I,

(nD/2−2L(n)−1/2)2E[{W̃n(r2) − W̃n(r1)}2] ≤ C(Λ̃(r2) − Λ̃(r1))
2 ≤ C|r2 − r1|2 .

Using the Cauchy-Schwarz inequality, we obtain that for all r1, r2, r3 in I, such that r1 <

r2 < r3,

(nD/2−2L(n)−1/2)2E
[∣∣∣W̃n(r2) − W̃n(r1)

∣∣∣
∣∣∣W̃n(r3) − W̃n(r2)

∣∣∣
]
≤ C|r2−r1||r3−r2| ≤ C|r3−r1|2 .

The tightness then follows from Theorem 15.6 of Billingsley (1968). A similar argument holds

for m = 2.

Thus, {nmD/2−2L(n)−m/2W̃n(r); r ∈ I} converges weakly to {2α1,0(r)k(D)−1/2Z1,D(1); r ∈
I}, if m = 1 and to {k(D)−1

[
α1,1(r)Z1,D(1)2 + α2,0(r)Z2,D(1)

]
; r ∈ I}, if m = 2.

To complete the proof of Theorem 2 use (21) and Lemma 17 in Section 5.2, which ensures

that supr∈I nmD/2−2L(n)−m/2R̃n(r) = oP (1), as n tends to infinity.
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75634 Paris Cédex 13, France.

E-mail: celine.levy-leduc@telecom-paristech.fr

Hélène Boistard

Toulouse School of Economics

GREMAQ, Université Toulouse 1
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