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Abstract: In this communication, we report a review of our works  
on luminescent and magnetic bifunctional structures in the nanoscale range.  
The synthesis and characterisation of various colloidal nanostructures such as  
Y3Fe5–xAlxO12-TRITC, γ-Fe2O3–Cs2Mo6Br14@SiO2 and γ-Fe2O3-QDs will be 
presented. At the outset, the first synthesis of aluminium substituted garnet 
Y3Fe5–xAlxO12 by the citrate gel process and its surface modification by TRITC 
through grafting of 3-aminopropyltrimethoxysilane (g-APS) for hyperthermia 
application will be reported. Secondly, the synthesis of nanoparticles  
under restricted environments offered by water-in-oil microemulsions provides 
excellent control over particle size and shape and interparticle spacing.  
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These environments have been used in the synthesis of silica nanoparticles  
(50 nm) with a magnetic nanocrystalline core surrounded by optically active 
molybdenum atoms clusters. Finally, we will resume the preparation of 
composite magnetic-QD bioconjugable micelles by simultaneous encapsulation 
of hydrophobic CdSe/ZnS QDs (2–4 nm) and magnetic γ-Fe2O3 nanoparticles 
(3–4 nm) into water soluble micelles of synthetic functional PEG amphiphiles 
bearing a bioactivable terminal group. 

Keywords: silica; ferrites; clusters; quantum dots; magnetic; luminescence; 
multifunctional nanoparticles; biotechnology. 

Reference to this paper should be made as follows: Roullier, V.,  
Marchi-Artzner, V., Cador, O., Dorson, F., Aubert, T., Cordier, S.,  
Molard, Y., Grasset, F., Mornet, S. and Haneda, H. (2010) ‘Synthesis and 
characterisation of magnetic-luminescent composite colloidal nanostructures’, 
Int. J. Nanotechnol., Vol. 7, No. 1, pp.46–57. 
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luminescent nanoparticles, their surface functionalisation and conjugation with 
biomolecules for imaging and therapy purposes. 
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1 Introduction 

The number of application fields of optical or magnetic inorganic nanoparticles is 
continuously increasing. Inorganic luminescent materials have practical applications  
in a variety of devices from conventional TV to electroluminescent, plasma or field 
emission displays [1] and nowadays luminescent labelling is currently important  
in biotechnology [2,3]. At the time, magnetic nanoparticles are of great interest  
for researchers from a wide range of disciplines, including magnetic fluids,  
catalysis, biotechnology/biomedicine, magnetic resonance imaging, data storage, and 
environmental remediation [4,5]. 

Recently, magnetic/luminescent nanocomposite materials provide the possibility  
for enhanced multifunctional properties [6–27]. One advantage is that this type  
of bifunctional nanoparticles can be manipulated with magnets and detected by 
fluorescence. Specially, nanometre sized particles, such as quantum dots (QDs), metal 
atoms clusters or superparamagnetic oxides have interesting intrinsic physical properties 
such as optical, electronic and magnetic properties that are not available for either 
molecules or bulk counter part solids. 

In this communication, we report our work on luminescent and magnetic 
nanoparticles. The synthesis and characterisation of various bifunctional colloidal 
nanostructures as Y3Fe5–xAlxO12-rhodamine, γ-Fe2O3-Cs2Mo6Br14@SiO2 and γ-Fe2O3-
QDs are presented.  

The methods used for preparing multifunctional nanoparticles could be divided into 
three techniques: 

1 Direct grafting of organic dyes onto magnetic nanoparticles via reactive functional 
silane groups [28] (Scheme 1) 

2 Covering nanoparticles with silica using microemulsion process [27] 

3 Simultaneous encapsulation of hydrophobic CdSe/ZnS QDs (2–4 nm) and magnetic 
γ-Fe2O3 nanoparticles (3–4 nm) into micelles of synthetic functional amphiphilic 
PEG bearing a reactive terminal group [29]. 
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Scheme 1 Schematic grafting of functional organic silane molecules g-APS onto garnet 
nanoparticles via surface hydroxyl groups 

 

1 YAIG-TRITC 

Since 2001, the first synthesis of aluminium substituted Y3Fe5–xAlxO12 (YAIG) (average 
diameter was ca. 100 nm) by the citrate gel process and its surface modification  
through grafting of 3-aminopropyltrimethoxysilane (g-APS) for biology-related labelling 
has been reported [28]. The YAIG-TRITC showed a strong photoluminescence under  
UV excitation (Figure 1). Cytotoxicity assays were carried during a period of 13 days 
using two cell lines: human microglia and rat glioblastoma cells. The presence of the 
amine-functionalised YAIG particles did not affect either the cell viability or the culture 
growth rate. Hyperthermia application was the motivation of using this complex magnetic 
oxide. Indeed, for some in vivo applications as localised magnetic hyperthermia  
using induction heating, ferromagnetic or ferrimagnetic compounds generate heat in AC 
magnetic fields.  

Figure 1 Image showing the TRITC labelling visualisation of YAIG particles (inset: same 
particle in phase contrast) (see online version for colours) 

 

For a defined magnetic field, the maximum temperature of the particles could be limited 
by a correctly adjusted Curie temperature (TC) [4]. In order to understand the role  
of aluminium in the magnetic properties of our substituted garnet a complete study from  
5 K to 900 K was undertaken. The relation between site preference of cations and the 
structural variation was studied by DC magnetic measurements and the variation  
of magnetic moment of the compound with x < 0.7 indicates that aluminium cations 
replace iron cations in tetrahedral sites. The Curie temperature (TC) ranged from –40°C 
(for x ~ 2) to 280°C (for x ~ 0). Therefore it was possible to adjust TC at the temperature 
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necessary for hyperthermia experiments. By interpolation, it was found that the 
aluminium content corresponds to value for x of about 1.5. Nevertheless, at body 
temperature, the magnetisation of this compound (which decreases with increasing  
x value) is not high enough for efficient heating. Nevertheless, recently, Duguet and 
coworkers demonstrated that during hyperthermia process the increase of temperature 
induced by magnetic field could be controlled for manganese type-perovskite 
nanoparticles [30].  

2 γ-Fe2O3-Cs2Mo6Br14@SiO2 

Encapsulation of fluorescent dyes, quantum dots, magnetic nanoparticles in silica shells 
is useful for bio-labelling application, thanks to the easy functionalisation of silica 
surface, the high colloidal stability of silica-like particles and their non-toxicity [31,32]. 
Additionally, silica can protect the surface of the core from oxidation or photobleaching. 
For the preparation of monodispersed silica nanoparticles (with diameter < 100 nm)  
these methods can be roughly divided into techniques based on so-called Stöber  
method [33] and microemulsion process [34–36]. For imaging applications, the current 
probes (fluorescent dye, QD, lanthanides) encounter several challenges, such as poor 
photostability, limited tissue penetration and potential toxicity. To address these needs,  
it is important to develop near-infrared emission in order to improve tissue penetration 
depth [37] coupled with silica coating. During the last decade, we demonstrated  
that microemulsion process could be a simple and straightforward method for the 
encapsulation of a large variety of oxide nanoparticles (γ-Fe2O3, ZnFe2O4, CeO2)  
within monodisperse silica nanospheres [38–42]. More recently, Cs2Mo6X14@SiO2 
(X = Cl, Br, I) luminescent nanoparticles (diameter of 45 nm) were synthesised by  
water in oil microemulsion technique from Cs2Mo6X14 inorganic solids [43]. The present 
work described the preparation of magnetic/luminescent silica nanoparticles by mixing 
magnetic core γ-Fe2O3 and optically active Cs2Mo6Br14 metal atoms clusters. Recently, 
we propose to use molybdenum metal atom clusters as new probe. They emit in the near 
infra-red window (600–900 nm), a region of interest for bio-imaging, and are based  
on [Mo6X14]2– transition metal cluster units. Many research works have been devoted  
to molybdenum octahedral Mo6 clusters since the discovery of the AxMo6Y8 solid-state 
series (Y = S, Se, Te) in the early 1970s [43 and reference therein, 44]. They are based  
on [(Mo6Li

8)La
6] units (La = apical ligand, Li = inner ligand) that constitute the basic 

building blocks in molybdenum octahedral cluster chemistry. The Mo6 cluster is  
face-capped by eight inner ligands (Li) and is additionally bounded to six apical  
or terminal ligands (La). The physical properties of Mo6 solid state compounds are related 
to the number of electrons available for metal-metal bonding within the cluster (VEC) 
and to the strength of interaction between the units. Metallic electrons are located  
on 12 metal-metal bonding molecular orbitals of the molecular orbital diagram.  
Their full occupation leads to a close-shell configuration with a VEC of 24. In the 
AxMo6Y8 series, the units are strongly interconnected by double Li–a/La–i chalcogen 
bridges leading to band structures and transport properties with the possibility of VEC 
values lower than 24. Halogen ligands (Cl, Br, I) favour the formation of molecular 
compounds based on [Mo6Xi

8Xa
6]2– units with VEC values of 24 with 1 nm in size.  

A previous study using HAADF-STEM mode image presented in Grasset et al. [43] 
constitutes a remarkable result since it is possible to clearly distinguish the Mo6Br14 units 
inside the silica based hybrids nanoparticles. The morphology studies of these new 
bifunctional nanoparticles were performed by combined SEM (Scanning Electron 
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Microscopy), EELS-TEM (Electron Energy Loss Spectroscopy-Transmission Electron 
Microscopy) and HAADF-STEM (High Angular Annular Dark Field-Scanning 
Transmission Electron Microscopy) analysis. Figure 2 show STEM micrographs of  
γ-Fe2O3-Cs2Mo6Br14@SiO2 sample. The silica nanoparticles consisted of an arrangement 
of relatively uniform particles with a particle average diameter of 50 nm.  

Figure 2 STEM image γ-Fe2O3-Cs2Mo6Br14@SiO2 nanoparticles 

 

It is possible to observe that the γ-Fe2O3 occupied almost always the centre of the silica 
nanoparticles whereas the metal atoms clusters are placed around in order to maximise 
the photoluminescence emission (Figure 3). Indeed, irradiation at 546 nm of the modified 
silica particles induces the red phosphorescence of the embedded molybdenum  
clusters, as depicted in Figure 4. Magnetic characterisation was performed using  
a superconducting quantum interference device (SQUID). Zero-field-cooled (ZFC) and 
field-cooled (FC) magnetisation curves were obtained under an applied field of  
100 Oe between 5–300 K. They exhibited the typical behaviour of ferrite nanocrystals 
well dispersed in silica matrix [5,34–36]. To conclude with this second part, regarding the 
optical properties of tissues, it turns out that, owing to their phosphorescence  
in the near infrared region (580–900 nm), γ-Fe2O3-Cs2Mo6Br14@SiO2 nanoparticles could 
constitute relevant candidates in bio-imaging strategies coupling with magnetic resonance 
imaging [27]. The γ-Fe2O3 could be used for their significant capacity to produce 
predominantly T2-relaxation effects, which result in signal reduction on T2-weighted 
images (‘negative’ contrast) [45].  

Figure 3 HAADF-STEM image γ-Fe2O3-Cs2Mo6Br14@SiO2 nanoparticles 
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Figure 4 Optical microscopy image of γ-Fe2O3-Cs2Mo6Br14@SiO2 nanoparticles between  
two plates of glass under irradiation at λex = 546 nm (zoom × 25) (see online version  
for colours) 

 

3 γFe2O3-QD-water dispersible micelles 

The last part of this paper is regarding the simultaneous encapsulation of hydrophobic 
CdSe/ZnS QDs (2–4 nm) and magnetic γ-Fe2O3 nanocrystals (3–4 nm) into micelles  
of synthetic functional amphiphilic PEG bearing a reactive terminal group. This work  
is based on the recent method proposed by Dr. Marchi-Artzner’s group [46].  
This method used the dispersion of fluorescent quantum dots (QD) into a liquid crystal 
phase that provides either nanostructured material or isolated QD micelles depending  
on water concentration. In this work, the liquid crystal phase was obtained by using  
a mixture of pegylated gallate amphiphile composed of three undecanoyl aliphatic chains 
and a polyethylene glycol (34 units) bearing various terminal group such as OH, NH2, 
COOH, or recognition functions. The hydration of γFe2O3-QD/amphiphile mixtures 
resulted in the formation of different composite phase identified by small-angle X-ray 
scattering. This composite mesophase can be converted into isolated γFe2O3-QD-I 
micelles by dilution in water. The fluorescent γFe2O3-QD-I micelles, purified by size 
exclusion chromatography, are monodisperse with a hydrodynamic diameter of  
30 nm. The temperature dependence of the magnetisation of solution has been measured 
in Zero-Field Cooled (ZFC) and Field Cooled (FC) modes within an applied field of  
20 Oe (Figure 5). In ZFC mode the magnetisation passes through a broad maximum  
at Tmax = 16.5 K characteristic of the freezing of superparamagnetic nanoparticles due  
to magnetic anisotropy. On cooling the FC magnetisation coincides with the ZFC 
magnetisation at higher temperatures than 22 K then they split confirming the good 
monodispersity and dispersion of magnetic nanocrystals. 

The synergy between magnetic and luminescent properties was observed under  
an optical microscope. As observed on Figure 6, when a magnet is close to the  
aqueous solution containing the mixed micelles, the magnet attracts the quantum  
dots. 

The presence of PEG at the surface of γ-Fe2O3-QD-I micelles efficiently prevents the 
non-specific adsorption of nanocrystals onto lipidic and cellular membranes. In addition, 
the pegylated amphiphile was chemically modified to introduce a specific targeting 
recognition group at the polar headgroup. Therefore, the present method offers the 
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possibility to prepare either functional fluorescent nanoprobes or composite mesophases 
opening the route to the fabrication of new bioactive functional materials [29,47]. 

Figure 5 Zero-field-cooled (ZFC) and field-cooled (FC) magnetisation curves of a suspension  
of γ-Fe2O3-QD-I 

 

Figure 6 Optical microscopy image of γ-Fe2O3-QD-I micelles between two plates of glass under 
irradiation at λex = 400 nm (see online version for colours) 

 

In summary, we have reported different strategies to develop bifunctional structures  
in the nanoscale range. These nanostructures are expected to serve as luminescent 
markers when attached to bioligands and are capable of being driven in a magnetic  
field gradient. 
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