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Abstract— In this contribution, Multi-Input Multi-Output
(MIMO) mixing systems are considered, which are instantaneous
and nonlinear but polynomial. We first address the problem of
invertibility, searching the inverse in the class of polynomial
systems. It is shown that Groebner bases techniques offer an
attractive solution for testing the existence of an exact inverse
and computing it.

By noticing that any nonlinear mapping can be interpolated
by a polynomial on a finite set, we tackle the general nonlinear
case. Relying on a finite alphabet assumption of the input
source signals, theoretical results on polynomials allow us to
represent nonlinear systems as linear combinations of a finite
set of monomials. We then generalize the first results to give a
condition for the existence of an exact nonlinear inverse. The
proposed method allows to compute this inverse in polynomial
form.

In the light of the previous results, we go further to the blind
source separation problem. It is shown that for sources in a finite
alphabet, the nonlinear problem is tightly connected with both
problems of underdetermination and of dependent sources. We
concentrate on the case of two binary sources, for which an easy
solution can be found. By simulation, this solution is compared
to techniques borrowed from classification methods.

Index Terms— nonlinear systems, polynomials, Groebner
bases, blind source separation, finite alphabet

I. INTRODUCTION

For the last decades, deconvolution and signal restoration
issues have been active research fields. In a multidimensional
context for instance, the problem of source separation has
received considerable attention [9], [11], [33], [30], [7]. It
consists in the restoration of several original signals from
the observation of several mixtures of them. Depending on
context, different approaches may be considered: if a strong
information on the mixing system is available, then non-
blind separation methods can be developped based on this
information. On the contrary, blind methods do not assume any
a priori knowledge of the mixing system but they generally
rely on the strong assumption of statistical independence of the
source signals: this is the case in “Independent Component
Analysis” (ICA) which is now a well recognized concept
which corresponds to blind separation of an instantaneous
linear mixture. Recently, other models have been considered,
such as convolutive [12], [42], [39] or nonlinear ones [45],
[31], [24].

In this paper, the case of a nonlinear mixture is tackled.
More precisely, the aim is to answer the following two

questions: (i) Does an inverse exist for a given nonlinear
mixture? (ii) If yes, propose a method for blind recovery of
the nonlinearly mixed sources. Both questions are obviously
challenging and are tackled in a restricted context that allows
to give an answer: polynomial nonlinearities are assumed to
answer (i) and a finite-alphabet assumption is added to deal
with (ii).

In the linear context, perfect invertibility conditions of
Multi-Input/Multi-Output (MIMO) linear time invariant sys-
tems are well-known and they reduce to left-invertibility of
matrices. The elements of the mixing and separating matrix
are either scalars in the instantaneous case, or polynomials
in the case of MIMO finite impulse response (FIR) filters.
Polynomials in the matrices may have several variables in the
case where multi-dimensional (e.g. images) and multi-channel
signals are considered (see e.g. [43], [49]). On the other hand,
we are not aware of any such general result in the nonlinear
case, although previous results include [3], which presents an
invertibility criterion but no method for computing the inverse
and [10] for a particular class of nonlinear systems. The gen-
eral class of nonlinear systems is often too wide to enable us
to deal with the associated problem and we should preferably
try to restrict to a smaller class of systems. Obtaining perfect
invertibility conditions on a class of nonlinear mixtures will
help considering such models in a blind context [29], [20].
This motivates our interest for polynomial systems, which to
a certain extent can be considered as one of the simplest form
of nonlinearity. In the first part of this paper we show that
methods exist which allow to compute a polynomial inverse (if
it exists) of a polynomial MIMO mixing system. We illustrate
their validity and effectiveness through examples.

The blind source separation problem serves as an example
of the utility of the previous considerations. This issue still
faces unanswered questions, in particular in the nonlinear
case, although this case has already been addressed [45],
[2]. Generally, specific structures have been assumed on the
nonlinear mixture: indeed, a general nonlinear mixture of
independent sources cannot be identified without additionnal
constraint on the mixture. For example, a conformal mapping
is assumed in [31]. First published in [35], more general results
concerning identifiability of a large class of nonlinearities
satisfying an addition theorem have been pointed out recently
in [21], [34]. Other structures have been introduced; the post-
nonlinear one is probably one of the most popular [45], [32],
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[36], [22], [5], [4], [6]. On the other hand, the case of sources
in a discrete or finite alphabet has been considered for long
[37], [47], [23], [25] and the strength of the discrete sources
assumption has been recognized. It indeed allows to relax
some usual assumptions, such as the statistical independence
of the sources [38], or to deal with underdetermined mixtures
—that is mixtures with more sources than sensors— [40], [13],
[17], [19]. However the nonlinear source separation problem
seems still open for discrete sources, although a geometrical
approach may appear as well suited [1]. In this paper, we show
how results from commutative algebra give more insight in the
case of nonlinear mixtures. We then propose a solution to blind
separation in the simple case of binary sources.

The new and original points in the paper are the following:
• We use tools borrowed from commutative algebra. These

powerful tools seem still ignored in the signal processing
community although they have been successfully applied
in many contexts (e.g. statistics [44], channel identifi-
cation [25]). We translate and apply the corresponding
results in a MIMO source separation context.

• We propose an equivalent linear model for any nonlinear
MIMO mixture of finite-alphabet sources.

• We apply the previous methods to the case of blind
separation of binary sources: in our particular case, a
separation is surprisingly obtained although the sources
of the equivalent linear model are not independent.

Section II describes the issue which is addressed in the paper.
Necessary mathematical tools and definitions are introduced in
Section III. Section IV explains how to compute a polynomial
inverse. If it does not exist, an alternative solution is shortly
discussed. Section V is concerned with the case of finite
alphabet sources. It is shown how an equivalent linear model
can be used by introducing virtual sources. The invertibility
issue is also addressed. Section VI is concerned with the
nonlinear blind source separation problem of two binary
sources. It is shown that in specific situations, ICA techniques
can be successful although the virtual sources introduced by
the equivalent linear model are dependent. Finally, Section VII
concludes the paper. All examples which have been computed
can be reproduced using Appendix III.

Throughout the paper, K denotes a field (the complex
numbers C or the real numbers R or possibly any subfield
of C). K[s] is the set of polynomials with coefficients in K
and variables s = (s1, . . . , sN ). E{.} is the mathematical
expectation of any random variable and Cum {.} stands for
the cumulant of a set of random variables.

II. PROBLEM STATEMENT

A. Source separation

We consider a set of Q sensors acquiring Q observation
signals which compose the vector valued signal (x(n))n∈Z =
((x1(n))n∈Z, . . . , (xQ(n))n∈Z)

T
. In a source separation con-

text, one assumes that these observations come from an-
other set of signals, called the sources and denoted by the
vector (s(n))n∈Z , ((s1(n))n∈Z, . . . , (sN (n))n∈Z)

T
. Both

the observations and the sources may be real or complex-
valued signals. We assume a deterministic relation between

the sources and the observations. More precisely, the paper
focuses on instantaneous nonlinear transforms of the sources.
Dropping the time index n, we thus write x = f(s) where f
is a nonlinear function, f : KN → KQ. Componentwise, the
corresponding mixing equations read:




x1 = f1(s1, . . . , sN )
...

...
xQ = fQ(s1, . . . , sN )

(1)

where f1, . . . , fQ constitute the components of f .
The source separation problem consists in recovering the

sources s1, . . . , sN from the observations x1, . . . , xQ. This is
equivalent to finding the inverse MIMO system g : KQ →
KN . In other words, we look for the components gi : KQ → K
of g = f−1 such that for all i:

si = gi(x1, . . . , xQ). (2)

The first contribution of this paper addresses the problem of
computing an inverse for a known and given mixing system
such as (1).

In the case where no information is available on the mixing
system (1), the separation problem is referred to as the
blind source separation problem. This issue, which consists in
estimating the sources from the observations only, is addressed
in the case of binary sources.

B. Nonlinear functions and polynomials
This paper focuses on the particular case where the func-

tions fi, i ∈ {1, . . . , Q} in (1) are polynomials, that is for all i,
fi ∈ K[s]. This restriction is partly justified by the difficulty to
tackle the nonlinear case because of its generality. In addition,
polynomials constitute an important class of nonlinear models
which may represent acceptable approximations of certain
nonlinearities. Finally, an important reason to deal with this
model is the following one.

Consider the case where the multidimensional source vector
belongs to a finite set: s ∈ A = {a(1), . . . ,a(na)}. Although
seemingly restrictive, this situation is highly interesting since
it occurs in digital communications, where the emitted source
sequences belong to a finite alphabet depending on the mod-
ulation used.

An important observation is that if s ∈ A and A is finite,
all instantaneous mixtures of the sources can be expressed as
polynomial mixtures. This follows immediately from the fact
that any function on a finite set can be interpolated by a poly-
nomial in a way similar to Lagrange polynomial interpolation
[16]. It follows that polynomial mixtures constitute the general
model of nonlinear mixtures in the case of sources belonging
to a finite alphabet. On the other hand, one should notice
that the well-known post-nonlinear model is not easier to deal
with in the case of finite alphabet sources [36]: generically,
a scalar variable which is a linear combination of discrete
sources has a number of distinct values equal to the number
of possible states of the source vector. Each of these distinct
values can be freely mapped to any value: hence one can
see that in the generic case, and for finite alphabet sources,
any nonlinear mapping can be represented by a post-nonlinear
mapping, which makes both problems equivalent.
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III. MATHEMATICAL PRELIMINARIES

A. Definitions

Assuming that the model (1) is polynomial, and in order be
able to resort to algebraic techniques, we will restrict the sep-
arator to the class of polynomial functions in x1, . . . , xQ, that
is: ∀i, gi ∈ K[x]. Then, algebra and Groebner basis techniques
are powerful methods for the study of multivariate polynomi-
als. They have been applied only recently in signal processing
[41], [49], [46]. It is out of the scope of this paper to explain
the associated notions (see [15] for a detailed introduction to
the subject) but we recall some basic definitions required here
for comprehension. We will introduce the definitions in K[s].
In the following, boldface letters denote N -tuples and for any
α ∈ NN we write: sα , sα1

1 . . . sαN

N .
Definition 1: Let h1, . . . , hp ∈ K[s] be polynomials. The

ideal generated by these polynomials in K[s] is the subset of
K[s] which consists of all linear combinations a1h1 + . . . +
aphp where a1, . . . , ap are polynomials in K[s]. It is denoted
by 〈h1, . . . , hp〉.

Definition 2: A monomial ordering ≺ on K[s] is a total
ordering relation on the set of monomials such that:
• if sα ≺ sβ then sα+γ ≺ sβ+γ

• ≺ is a well-ordering, that is, every nonempty collection
of different monomials has a smallest element under ≺.

A simple example of monomial ordering is the lexicographic
order, where by definition sα ≺ sβ if and only if in the vector
difference β−α, the left-most nonzero entry is positive. Here
is a set of monomials illustrating this order in K[s1, s2]:

1 ≺ s2 ≺ s2
2 ≺ . . .

≺ s1 ≺ s1s2 ≺ s1s
2
2 ≺ . . . ≺ s2

1 ≺ s2
1s2 ≺ . . .

Given a monomial ordering, for a polynomial which reads
h =

∑
α cαxα, its leading term is defined by LT(h) =

cαxα where cα is referred to as the leading coefficient and
xα, called the leading monomial, is the largest monomial
appearing in h in the ordering ≺. Then, we can also define
a division algorithm, which generalizes the division algorithm
in the case of one variable:

Theorem 1 (division algorithm): Let (h1, . . . , hp) be an or-
dered p-tuple of polynomials. Every polynomial h can be
written as:

h = a1h1 + . . . + aphp + r (3)

where ai, hi are polynomials and r is a linear combination
with coefficients in K of monomials, none of which is divisible
by any leading term of h1, . . . , hp. (possibly, r = 0).

If we consider the ideal I = 〈h1, . . . , hp〉, the division
algorithm provides a way to write any polynomial as the sum
h = hI + r where hI lies in I and no term of r is divisible
by any of the leading terms of h1, . . . , hp. Unfortunately, the
remainder r in this decomposition is not unique in general. A
remarkable exception is when the set of generators satisfy the
following definition.

Definition 3: The set {h1, . . . , hp} is a Groebner basis of
the ideal I = 〈h1, . . . , hp〉 if and only if the remainder r in
(3) is uniquely determined for all h ∈ K[s].

Importantly, there exist an algorithm, initially developped by
Buchberger for converting a given generating set to a Groebner
basis [8]. For a given ideal I, there may exist several Groebner
bases, which justifies that the notion of reduced Groebner basis
is introduced.

Definition 4: A reduced Groebner basis for a polynomial
ideal I is a Groebner basis G for I such that for all h in G:
• the leading coefficient of h is 1.
• no monomial of h lies in the ideal 〈LT(G− {h})〉 gen-

erated by the leading terms of the set G− {h}.
For a given monomial ordering, any ideal different from {0}
has a unique reduced Groebner basis.

B. Example

We illustrate the previous definitions: consider h1 = s1s2−
s1 + 1, h2 = s2

2 − 1 and h = s1s2 − s1 + s2 + 2 in K[s1, s2]
with lexicographic order. We define the ideal I = 〈h1, h2〉. A
possible remainder after division of h by (h1, h2) is s2 + 1
since indeed h = 1.h1 + 0.h2 + (s2 + 1) and neither s2 nor 1
can be divided by LT(h1) or LT(h2).

However, non uniqueness of the remainder can be observed
writing h = (s2 + 2).h1 − s1.h2. This is no surprise because
the set {h1, h2} is not a Groebner basis for I, which is related
to the fact that s2 + 1 = (s2 + 1).h1 − s1.h2 is a polynomial
with leading term lower than the leading terms of h1 and h2

(note indeed that a cancelling of the leading terms occured).
Going further, one can write −2s1 + 1 = h1 − s1.(s2 + 1) =
(−s1s2−s1+1).h1+s2

1.h2. Hence −2s1+1 and s2+1 belong
to I and one can prove {−2s1 +1, s2 +1} is a Groebner basis
of I. So is any set of polynomials in I set containing these
two polynomials. The reduced Groebner basis of I is the set
{s1 − 1/2, s2 + 1}.

IV. INVERTIBILITY

Based on the previous notions, we show that existing results
can be used to find a polynomial inverse to a given poly-
nomial MIMO system. Another question of great importance
would be to find a generic condition or a minimum number
of equations to ensure invertibility or separability as defined
in Section IV-B. This question will not be treated here and
still remains open. Finally, the reader should notice that the
results presented in this section require the exact knowledge
or a prior identification of the mixing system.

A. Perfect invertibility

The problem of finding a polynomial gi such that (2) is
satisfied is a particular case of the subalgebra or subring mem-
bership problem [15], [26]: to see this, we shall now put our
problem differently and precise some notations.

In the present context of non blind inversion, the polyno-
mials fi ∈ K[s], i ∈ {1, . . . , Q} are given, and the inversion
condition (2) should be written correctly

si = gi(f1(s), . . . , fQ(s)). (4)

For ease of notation, we will no longer write explicitly the
dependence of f1, . . . , fQ in s. Restricting ourself to poly-
nomial inverses, gi(f1, . . . , fQ) is a polynomial expression in
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f1, . . . , fQ with coefficients in K. Let K[f ] be the subset of
K[s] consisting of all such expressions. Introduce the variables
x1, . . . , xQ (of course, they will represent the observations)
and consider the set K[x] of polynomials in these variables.
Any element of K[f ] can be obtained by sustituting f1, . . . , fQ

for x1, . . . , xQ in a polynomial of K[x]. Then, the initial prob-
lem amounts to saying whether si ∈ K[f ] or equivalently
whether a polynomial gi ∈ K[x] exists or not such that (4) is
satisfied. The answer is provided by the following theorem [15,
p.334] which requires to work in the set K[s,x] of polynomials
in the variables s1, . . . , sN , x1, . . . , xQ:

Theorem 2: Fix a monomial ordering in K[s,x] where any
monomial involving one of s1, . . . , sN is greater than all mono-
mials in K[x]. Let G be a Groebner basis of the ideal 〈f1 −
x1, . . . , fQ − xQ〉 ⊂ K[x, s]. Given h ∈ K[s], let g be the
remainder of h on division by G. Then:

1) h ∈ K[f ] if and only if g ∈ K[x].
2) if h ∈ K[f ], then h = g(f1, . . . , fQ) is an expression of

h as a polynomial in f1, . . . , fQ.
Monomial orderings satisfying the condition in the above the-
orem are called elimination orderings for s1, . . . , sN . One
should note that this condition is satisfied by the lexicographic
order in K[s,x] but other monomial orderings also satisfy
this condition [15]. The invertibility result will not depend
on the chosen ordering, but different inverses may be found.
The method for perfect inversion with a polynomial separator
then follows from the above proposition which can be applied
successively to the polynomials s1, . . . , sN in K[s]. It reads:

1) Choose in K[s,x] an elimination ordering for s1, . . . , sN

and define I = 〈f1 − x1, . . . , fQ − xQ〉.
2) Compute a Groebner basis G of I.
3) For i = 1 . . . N , compute the division of si by G. If

the remainder gi of the division is in K[x], we have
si = gi(f1, . . . , fQ) (that is, gi satisfies (2)), other-
wise, si cannot be recovered exactly by a polynomial
in f1, . . . , fQ.

1) Example: Throughout the paper, we will consider the
example provided by the following equations:





x1 = f1(s1, s2) = 3s2
1 + 2s1s2 + 4s2

2 + 7s1 + 4s2

x2 = f2(s1, s2) = −3s2
1 + 5s1s2 + 2s1 + s2

x3 = f3(s1, s2) = −3s1 + 6s2

x4 = f4(s1, s2) = 6s2
1 − s1s2 + 4s2

2 + 3s1 − 9s2

(5)

Groebner basis computation and polynomial division are im-
plemented in many computer algebra systems. Using the lex-
icographic order in K[s1, s2, x1, x2, x3, x4], the following in-
verse of (5) has been computed (see Appendix III):

{
s1 = 17

144x1 − 1
12x2 − 1

432x2
3 − 91

432x3 − 7
72x4

s2 = 17
288x1 − 1

24x2 − 1
864x2

3 + 53
864x3 − 7

144x4

Remark 1: The method which has been described of course
also applies when the polynomials f1, . . . , fQ each have
total degree one. In this case, the mixture is actually a
linear instantaneous one and consists in a simple matrix
product. The above computation is then similar to a Gaus-
sian elimination procedure [15, p.91].

B. Separability

The previous section gives a condition to be able to recover
exactly one source with a polynomial expression of the obser-
vations. If not possible, it may sometimes be enough to recover
a function (here, a polynomial function) of each source instead
of recovering the source itself (e.g. in blind separation). A
simple example of this particular case is given by the mixing
system x1 = s2

1 + s2
2, x2 = s2

1 − s2
2 where one can easily

recover s2
1 and s2

2 and may not be interested in s1 and s2. It
would hence be interesting to be able to describe K[f ] which
is the set of polynomials in s1, . . . , sN which can be obtained
as polynomial expressions in the observations x1, . . . , xQ. One
would in this case be more particularly interested in knowing
something about K[si] ∩ K[f ] which are the polynomials in
si only which can be computed using the observations only.
Unfortunately, K[f ] does not have the structure of an ideal in
K[s] and hence cannot be described by a set of generators.
In the case where the system is not invertible by the previ-
ous method, we hence propose the following solution to this
difficulty:

1) For i ∈ {1, . . . , N}, test for algebraic dependence be-
tween f1, . . . , fQ and si, that is test whether there exist
a polynomial δ such that δ(si, f1, . . . , fQ) = 0. This
problem admits an algebraic solution [26, p.84].

2) For i ∈ {1, . . . , N}, if f1, . . . , fQ and si are algebraically
dependent, then try to determine whether simple poly-
nomials in the variable si only belong to K[f ].

The above procedure should be interesting mainly to dis-
card situations where no solution should be expected from
polynomial methods, that is situations where there exists no
algebraic dependence between the polynomials f1, . . . , fQ and
si. In addition, even if these polynomials are algebraically
dependent, one has no information whether there exist or not
polynomials in K[si] ∩K[f ]. Finally, the minimum degree of
the polynomials in K[si]∩K[f ], if any, is not known. For large
values of this degree and for computational load reasons, one
may not be able to get an answer to the second step of the
procedure.

1) Example: We consider the system in Equation (5) where
only x1, x2 and x3 are observed. (That is, the mixing system
has 2 sources, 3 sensors and the last equation in (5) is ignored).
In this case, one can check with the previous method that the
system is no longer invertible. However, one can also check
that there exist algebraic relations between the polynomials
f1, f2, f3 in Equation (5) and si for i = 1, 2. Going further,
one can compute (see Appendix III):





s2
1 + b1s1 = (2b1 − 15

7 )s2 + 5
28x1 − 3

14x2 − 5
252x2

3

+ (− b1
3 + 23

84 )x3

s2
2 + b2s2 = (b2 − 7

4 )s2 + 1
16x1 + 1

8x2 + 1
48x2

3 + 11
48x3

Choosing b1 = 15/14 (resp. b2 = 7/4), one thus obtains the
separation of the sources, that is a polynomial in s1 (resp. s2)
only, which is expressed depending on x1, x2 and x3 only.

V. FINITE-ALPHABET SOURCES

Section IV-A describes a method for computing a perfect
inverse of a polynomial MIMO mixture. If the latter does not
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exist, Section IV-B shows how, giving up the exact restitution
of the sources, one can possibly separate them only. Even this
is however not always possible and consequently, il should be
interesting to use general nonlinearities. According to Section
II-B, the general case of nonlinear functions can be treated
with polynomials if the sources belong to a finite alphabet:
this point is detailed in the present section. We first study the
vector space of nonlinear mixtures on a finite set to derive
an equivalent linear model. Then, we generalize the previous
results on invertibility.

A. Nonlinear mixtures of finite-alphabet sources

1) Vector space of polynomial functions on a zero-dimensional
variety: We assume now that the sources belong to a finite
alphabet. Hence the multidimensional source vector belongs
to a finite set s ∈ A = {a(1), . . . ,a(na)} where na is the
number of elements in A. For all i, let (a(i)

1 , . . . , a
(i)
N ) be the

coordinates of a(i) and let us introduce the ideals in K[s]:

∀i ∈ {1, . . . , na} I{a(i)} , 〈s1 − a
(i)
1 , . . . , sN − a

(i)
N 〉

(6)

IA ,
na⋂

i=1

I{a(i)} (7)

It is a well-known fact that the set of all polynomials vanishing
on any given subset of KN is an ideal. Actually, one can
see that I{a(i)} is the ideal of polynomials vanishing at point
a(i) and that the intersection ideal IA is also the ideal of all
polynomials vanishing onA. Going further, two polynomials f
and f̃ define the same function on A if and only if f−f̃ ∈ IA.
In this situation, it is common to identify all polynomials f̃
such that f − f̃ ∈ IA and consider only one representative
f of this set (see [15] for details): by definition, the set of
all representatives corresponds to the quotient space K[s]/IA.
Nonlinear functions of the discrete sources in A are thus in
one-to-one correspondence with the elements of K[s]/IA. In
addition, we have the following property, which is the key to
find an equivalent linear model to a nonlinear mixture.

Property 1: Let 〈LT(IA)〉 be the ideal generated by all
leading terms in IA and let M(IA) , {sα, sα /∈ 〈LT(IA)〉}.
The quotient space K[s]/IA is a finite dimensional vector
space of dimension na which is isomorphic to: S , span(M(IA)).
Each element of K[s]/IA has a unique representative as a K-
linear combination of monomials in M(IA).

Proof: Based on the specificity of IA, this property
is classically known when K = C [16, p.43]. The proof in
[16] can be adapted when K ( C: IA indeed consists of all
polynomials vanishing on A and A itself is the variety defined
such that any polynomials in IA vanishes on A.
Importantly, a fundamental property of a Groebner basis G =
{h1, . . . , hp} of IA is that1 〈LT(IA)〉 = 〈LT(h1), . . . , LT(hp)〉.
Hence the set M(IA) can be deduced from the computation of
a Groebner basis of IA: M(IA) consists indeed of all monomi-
als which cannot be divided by any of LT(h1), . . . , LT(hp).
According to Property 1, this gives a basis of K[s]/IA and
thus also a finite basis composed of monomials for the vector

1This property is often considered as the definition of a Groebner basis.

space of nonlinear functions on A. This is the basic idea
which allows us in the next section to transform a nonlinear
mixture into a linear model. Before that, we explain how a
Groebner basis for IA can be easily obtained in the particular
case where A is a cartesian product. This case is important,
since A necessarily has this form for statistically independent
sources, which will be considered later.

Property 2: Assume A = A1 × · · · × AN where for i =
1, . . . , N , Ai , {ã(1)

i , . . . , ã
(li)
i } is the set of all possible

values of the i-th component. Let:

∀i ∈ {1, . . . , N}, qi(si) ,
li∏

k=1

(si − ã
(k)
i )

Then, IA = 〈q1, . . . , qN 〉 and {q1, . . . , qN} is the reduced
Groebner basis of IA for any monomial ordering ≺.

Proof: This property can be found in [44]. We prove it
in Appendix I for completeness.

2) From a polynomial mixture to a linear equivalent model:
As explained in Section II-B, any nonlinear mixture of finite
alphabet sources reduces to a polynomial mixture and a con-
sequence of Property 1 is that we know explicitly the finite
dimensional vector space of nonlinear transforms. We can then
introduce new variables and define the column vector s̃ which
contains the monomials in M(IA). Using Property 1, we obtain
that there exists a matrix Ã such that:

∀s ∈ A x = f(s) = Ãs̃ (8)

In so doing, we have transformed any nonlinear instanta-
neous mixture into a linear mixture of the extended source
vector s̃. The number of entries in s̃ is na: it is precisely the di-
mension of the vector space K[s]/IA representing all nonlinear
functions from A to K and this corresponds to the number of
points in A as one intuitively expects. The minimum number
of monomials required to represent all nonlinear mappings
from A to K are hence listed in M(IA) (or in s̃). Finally,
note that except in specific cases, s̃ includes the monomials
s1, . . . , sN , which is the reason why s̃ appears as a vector
containing “virtual” sources in addition to the true ones.

Let us see some consequences in the context of blind source
separation: one may wish to reduce nonlinear blind separation
of discrete sources to a problem of blind separation of an
instantaneous linear mixture. However, this differs from the
well-known case of blind separation of independent sources
(a.k.a. independent component analysis or ICA), because of
two major difficulties which appear:

• contrary to an ICA context, the sources are no longer mu-
tually independent, but are linked by algebraic equations.
Indeed, the virtual sources s̃ are monomials depending
on s1, . . . , sN .

• the model will in most situations become largely under-
determined since very often, the number of sensors is
limited, which generally implies N < na.

It follows that nonlinear mixtures, dependent sources and un-
derdetermination are related challenging issues in blind sepa-
ration of finite-alphabet sources.
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3) Example: case of binary sources: We illustrate the previ-
ous discussion in the case of N binary sources. Using Property
2, one immediately obtains that 〈s2

1 − 1, . . . , s2
N − 1〉 is a

Groebner basis for IA when A = {−1;+1}N . It follows that
〈LT(IA)〉 = 〈s2

1, . . . , s
2
N 〉 and the monomials not in 〈LT(IA)〉

are M(IA) = {sα1
1 . . . sαN

N ;∀i, 0 ≤ αi ≤ 1}: if indeed a
monomial contains sαi

i in factor with αi ≥ 2, then s2
i divides

the monomial, which proves that it belongs to 〈LT(IA)〉. Ac-
cording to Property 1, we deduce that there is an isomorphism
between the following spaces:

C[s]/IA ∼= span(sα1
1 . . . sαN

N ; ∀i, 0 ≤ αi ≤ 1)

and consequently, any polynomial (or nonlinear) function of
the sources can be written as a C-linear combination of the
above monomials. The original nonlinear model hence trans-
forms into the model given by Equation (8) where na = 2N

and s̃ contains all monomials sα1
1 . . . sαN

N ;∀i, 0 ≤ αi ≤ 1 (this
includes in s̃ a constant term 1 and the monomials s1, . . . , sN ).
Actually, in the case of binary sources, this result can be seen
more pragmatically by the fact that ∀i, s2

i = 1 and hence
any monomial can be obviously simplified and reduces to one
among the given ones.

In particular, for two binary sources, any scalar observation
of a polynomial (and also nonlinear) mixture of the sources
can be written as:

x = as1s2 + bs1 + cs2 + d, (9)

where a, b, c and d are scalar constants.
4) Example: case of PAM4 sources: In the case of N PAM4

telecommunication sources, which are sources which take four
different possible values, we have that the polynomials qi

defined in Property 2 have degree four. Using Property 2, it
follows that the set of monomials to be considered in s̃ is
given by M(IA) = {sα1

1 . . . sαN

N ; ∀i, 0 ≤ αi ≤ 3}.

B. Computing an inverse on a zero-dimensional variety

Section IV-A describes a method for computing a perfect
inverse of a polynomial MIMO mixture with no restriction on
the sources. If we assume that the sources are in a finite al-
phabet, it is sufficient that the polynomials gi, i ∈ {1, . . . , N}
of the inverse system satisfy:

∀s ∈ A si = gi(f1(s), . . . , fQ(s)) (10)

and they need not verify the above equation for all s in KN . In
other terms, the inverse gi should be such that si−gi(f1, . . . , fQ)
vanishes identically on A, that is:

si − gi(f1, . . . , fQ) ∈ IA.

We can prove a generalization of Theorem 2 that is conceptu-
ally equivalent to considering the quotient space K[s]/IA. We
need the following definition:

Definition 5: The sum of two ideals I = 〈h1, . . . , hp〉 and
J = 〈hp+1, . . . , hn〉 is the ideal I+J , {u+v; u ∈ I, v ∈ J}.
It is generated by the union of generating sets of I and J, that
is: I + J = 〈h1, . . . , hp, hp+1, . . . , hn〉.
The following proposition then holds:

Proposition 1: Fix a monomial ordering in K[s,x] where
any monomial involving one of s1, . . . , sN is greater than all
monomials in K[x]. Let G be a Groebner basis of the ideal
IA + 〈f1 − x1, . . . , fQ − xQ〉 ⊂ K[x, s]. Given h ∈ K[s], let
g be the remainder of h on division by G. Then:

1) g ∈ K[x] if and only if there exists r ∈ IA such that
h− r ∈ K[f ].

2) if the above condition holds, then g(f1, . . . , fQ) is an
expression such that h− g(f1, . . . , fQ) ∈ IA.

Proof: The proof is an adaptation of the proof of Theo-
rem 2: it is sketched in Appendix II.
Similarly to Section IV-A, the method for computing an in-
verse follows from the above proposition.

1) Choose in K[s,x] an elimination ordering for s1, . . . , sN

and find for IA a generating set 〈q1, . . . , qP 〉 (e.g. use
Property 2 if possible or use (7) otherwise). Define I =
〈f1 − x1, . . . , fQ − xQ, q1, . . . , qP 〉.

2) Compute a Groebner basis G of I.
3) For i = 1 . . . N , compute the division of si by G. If

the remainder gi of the division is in K[x], we have
si = g(f1, . . . , fQ) for all s in A, otherwise, si cannot
be recovered exactly by a polynomial in f1, . . . , fQ.

Let us stress that a nonlinear inverse exists if and only if a
polynomial inverse exists since polynomial transforms cover
the general case of nonlinear transforms for finite alphabet
sources. In the case of finite alphabet sources, Proposition
1 thus provides an answer for the general question of the
existence of a nonlinear inverse.

1) Example: Assume that for all i the sources si belong
to {± 1

2 ;± 3
2}. This is typically the case of PAM4 telecom-

munication sources. Defining x1, x2 and x3 as in (5), the
following equalities hold for all (s1, s2) in {± 1

2 ;± 3
2}2 (see

Appendix III):




s1 = − 32864
52732215x2x

5
3 + 17600

10546443x2x
4
3 + 153488

3515481x2x
3
3

− 132800
1171827x2x

2
3 − 900538

1953045x2x3 + 44740
43401x2

− 417616
807277479435x9

3 + 16
1055264679x8

3 + 2223128
29899165905x7

3

+ 127768
1423769805x6

3 − 121412
31639329x5

3 − 177568
31639329x4

3

+ 10508731
130279590x3

3 + 474367
27342630x2

3 − 2547283
5911920x3 + 5715

13616

s2 = − 16432
52732215x2x

5
3 + 8800

10546443x2x
4
3 + 76744

3515481x2x
3
3

− 66400
1171827x2x

2
3 − 450269

1953045x2x3 + 22370
43401x2

− 208808
807277479435x9

3 + 8
1055264679x8

3 + 1111564
29899165905x7

3

+ 63884
1423769805x6

3 − 60706
31639329x5

3 − 88784
31639329x4

3

+ 10508731
260559180x3

3 + 474367
54685260x2

3 − 576643
11823840x3 + 5715

27232

This illustrates that with PAM4 sources, the mixture (5) can be
exactly inverted using x1, x2 and x3 only. Actually, using this
method, it appears that for the considered discrete sources, no
more than two of the observations (in the above example, x2

and x3) in Equation (5) are required for exact inversion.

VI. BLIND SEPARATION OF TWO BINARY SOURCES

We now consider the particular case of two binary sources
(that is ∀i ∈ {1, 2}, si ∈ {−1;+1}) and show how the above
results allow to solve the nonlinear blind separation of two
such sources. The case of binary sources has already been
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considered from different point of views (see among others
[40], [17], [19]) and it has long been noticed that discrete
sources can be blindly separated even in an underdetermined
scenario. The approach described here concerns specifically
the nonlinear case but it is complementary to existing ones in
the underdetermined case.

A. MIMO blind separation of a nonlinear mixture of two bi-
nary sources

1) Model and assumptions: So far, only non-blind inversion
of a known mixing system has been considered and thus,
contrary to the context of ICA, no statistical assumption has
been made, such as mutual independence of the sources. We
introduce it now and show that it allows one to separate blindly
nonlinear mixtures of two sources. More precisely, we will
consider two sources which are referred to as Binary Phase
Shift Keying (BPSK) in a digital communication context, that
is we assume:

A1. s1, s2 are binary (∀i, si ∈ {−1;+1}), centered and
mutually independent.

According to Section V-A.2 and the example in Equation (9)
of Section V-A.3, any nonlinear mixture of the above two
BPSK sources can be written as a linear combination of the
monomials 1, s1, s2, s1s2. For a mixture on the Q sensors of
x, this can be written:

x = A




s1

s2

s1s2


 + B (11)

where A is a Q×3 matrix and where the Q×1 column vector
B corresponds to the contribution of the constant monomial 1:
this is actually equivalent to writing Eq. (8) where the constant
monomial 1 is treated separately and not included in s̃. Noting
now that E{s1} = E{s2} = E{s1s2} = 0, one can introduce
the centered observations

xc , x−B = x− E{x} (12)

and the above model simplifies to:

xc = A




s1

s2

s1s2


 (13)

In addition, we have the following key property:
Lemma 1: The sources s1, s2 and s3 = s1s2 where s1, s2

satisfy A1 are mutually dependent. Nevertheless they are cen-
tered, uncorrelated, pairwise independent and their fourth-order
cross-cumulants vanish, that is:

Cum {si, sj} = 0 except if i = j, (14)
Cum {si, sj , sk, sl} = 0 except if i = j = k = l. (15)
Proof: The lemma can be checked easily after expressing

the cumulants as functions of the moments and using assump-
tion A1. (14) and (15) then follow, whereas Cum {s1, s2, s3} =
1 6= 0 shows that the sources are mutually dependent. Finally,
one easily proves pairwise independence by writing all pair-
wise probability density functions.
Many source separation methods have been developped re-
lying on properties in Equations (14) and (15) only. Among

these, we find the algorithms in [11] (referred to as CoM2)
or in [9] (referred to as JADE). It follows that these classical
ICA algorithms allow to separate the three sources s1, s2 and
s3 = s1s2 where s1, s2 satisfy A1. Consequently, the same
algorithms will succeed in separating a nonlinear mixture of
two binary sources on three or more sensors (Q ≥ 3). We sum
up and stress this fact in the following proposition:

Proposition 2: Any ICA method which relies only on sec-
ond and fourth order cumulants, will successfully separate
instantaneous and linear mixtures of the sources s1, s2, s3,
where s1, s2 are given by A1 and s3 = s1s2. The same
ICA method, when applied on a nonlinear mixture of the
two sources s1, s2 on three or more sensors, will lead to the
recovery of s1, s2, s3 up to permutation and scaling ambiguity
(the scaling ambiguity reduces to a sign ambiguity since the
sources are binary).

2) Simulations: For illustration purpose, we considered the
following nonlinear mixing system:





x1 = cos(s1 − s2 + 2)
x2 = cos(s1) + 1.32s2 + 0.56s1s2 + log(1 + 0.215s1s2)
x3 = exp(s1 + s2)

(16)
We have simulated realizations of two BPSK sources and
we have mixed them according to (16). The data have been
centered and the algorithm in [11] has been applied to these
centered observations xc as defined in (12). The sources s1, s2

as well as the fictive source s3 = s1s2 have been successfully
separated. Typical results are given in Figure 1 in the noiseless
case and in Figure 2 with 20dB additive noise on the sensors.
Figure 3 represents the average value of the mean square error
(MSE) on the three sources s1, s2, s3 = s1s2 for different
number of samples and for different values of SNR. The results
have been obtained by averaging on 1000 Monte-Carlo runs.
They clearly confirm the ability of classical algorithms to
separate a nonlinear mixture of two BPSK sources on three or
more sensors.

B. Blind separation of a nonlinear mixture of two binary sources
on one sensor

It is well known that in the case of discrete sources, under-
determined mixtures can be sucessfully separated [13], [40],
[19]. The similarity between the underdetermined case and the
nonlinear case invites us to see the possibilities to separate
binary sources mixed nonlinearly on one sensor only.

1) Noiseless case: We first consider the ideal case when
no noise is present.

a) Separation method: According to the example in Sec-
tion V-A.3, the general form of a nonlinear mixture of two
binary sources is given by (9). Using the method in Section
V-B (and working with four parameters a, b, c and d), we easily
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obtain that for all (s1, s2) ∈ {−1,+1}2 (see Appendix III):

s1 =
1

2(a2 − b2)(b2 − c2)

[
bx3 + (−ac− 3bd)x2

+ (−a2b + 2acd− 3b3 − bc2 + 3bd2)x

+(a3c+a2bd− 5ab2c+ac3−acd2 +3b3d+ bc2d− bd3)

]

(17)

This equation shows that s1 can be recovered when (a2 −
b2)(b2 − c2) 6= 0 (which amounts to say that a2 6= b2 and
b2 6= c2). s2 has a similar expression where b and c should
only be exchanged. It follows that the nonlinear mixture of
two binary sources given by (9) can be inverted under the
condition: a2 6= b2, a2 6= c2 and b2 6= c2. This condition
holds generically for mixtures which have coefficients drawn
from a continuous joint probability density function. Relying
on previous equation, it is immediate to recover the sources
after identification of a, b, c and d. This is easy as soon as one
has noticed that x actually takes only 4 distinct values, say
ξ1, ξ2, ξ3 and ξ4. Then, we obtain:
• d = (ξ1 + ξ2 + ξ3 + ξ4)/4
• |a|, |b|, |c| are given by the values of |ξi + ξj − 2d|/2,

where i 6= j, 1 ≤ i, j ≤ 4.
• Observing x only, some inherent indeterminacies neces-

sarily remain. First, the permutation ambiguity between
s1, s2 and the fictive source s3 = s1s2 cannot be re-
moved: since the three sources play an identical role, this
yields a permutation ambiguity on a, b and c. In addition,
there will remain a sign ambiguity on two of the sources,
but not on the third one because of the relation s3 = s1s2.
It implies that a mixture equivalent to (9) can be obtained
by choosing arbitrarily the sign of two of the coefficients,
for instance a and b. The sign of the third coefficient c
can then be uniquely determined by estimating the sign
of E{x3} = 6abc.

Remark 2: It is interesting to make a connection between
Section V-A and the above result which actually consti-
tutes a particular case. Indeed, the condition that a2 6= b2,
a2 6= c2 and b2 6= c2 ensures that x takes four distinct
values, which each correspond to one value of (s1, s2).
Consequently, it should be no surprise that the mixture
can be inverted in this case.
Now, we can caracterize all nonlinear transforms from the
finite set {ξ1, ξ2, ξ3, ξ4} of values of x to C: they indeed
constitute a vector space of dimension 4 and they can
be expressed as linear combinations of the monomials
1, x, x2, x3. This easy result is a particular case, the gen-
eralization of which is given by Property 2 (and Property
1). The original sources s1 and s2 are indeed recovered
depending on these monomials only in Equation (17).
b) Simulations: We illustrate the previous paragraph with

the mixture:

x = log
(

1 +
1

(0.2 + s1 + 0.3s2)2

)
(18)

One can then easily identify that this nonlinear equation is
equivalent to (9) with : a ≈ 0.3608, b ≈ 0.2600, c ≈ 0.1427

and d ≈ 0.8459. Simulations show that in noise-free condi-
tions, almost perfect separation can be obtained blindly with
the method in paragraph VI-B.1.a: this is illustrated by Figure
4. The only difficulty in this noiseless case consists in esti-
mating the sign of E{x3} in the case where it is close to zero.
Since this situation may occur depending on the particular
mixing system, some mixtures are more difficult to separate
using this method. The case of noisy observations is treated
in the next section.

2) Noisy case: The above method is not applicable when
there is additive noise on the sensor: different methods which
can cope with this situation are now presented and discussed.
More precisely, we assume that we observe x̃ = x+ε where ε
is a Gaussian centered random variable with variance σ2 and
x is the noiseless nonlinear mixture of the sources s1, s2 (that
is, x is given by (18) in the case of previous example or by (9)
in the general case). The noise term ε is assumed independent
of the sources s1, s2.

a) Separation methods: Following the ideas of exact in-
version in the noiseless case, a solution one may think of
consists in blindly identifying the coefficients of the mixing
system (9) and then computing the exact inverse to recover the
sources. From the discussion in Section VI-B.1.a, the problem
amounts to estimating the values ξ1, . . . , ξ4 from the noisy
observations. Fortunately, as noticed in [18], x̃ follows a law
given by a mixture of Gaussians whose centers are given
by ξ1, . . . , ξ4. In this situation, there exist well-known tech-
niques to estimate ξ1, . . . , ξ4 from the data: the Expectation-
Maximization (EM) algorithm seems appropriate for this pur-
pose, although other methods exist (see [28]).

As a byproduct of the EM algorithm [48], it is well known
that we easily obtain the maximum a posteriori (MAP) esti-
mates of the values of x ∈ {ξ1, . . . , ξ4}. Hence, we are able to
classify the samples of x̃ according to the noiseless value of
x ∈ {ξ1, . . . , ξ4}. Then, from the value of x ∈ {ξ1, . . . , ξ4}, it
is possible to trace back the value of the source vector (s1, s2)
up to a sign and permutation ambiguity. We hence considered
this separation method for comparison purposes.

Finally, another method for separating the sources from a
unique observation sensor consists in introducing additional
virtual measurements as proposed in [13], [14] for the case of
underdetermined mixtures. With the model (9), one can define
the column vector x = (x, x2, x3)

T
. Then, the linear model

(11) (or equivalently (13) with centered observations) holds
with the matrix A given by Equation (19). It is then possible
to simply apply an ICA algorithm such as CoM2 [11] or JADE
[9]: this allows to separate the sources s1, s2 and s3 = s1s2.

b) Simulations: We implemented the EM algorithm in
the simplified case where the variance of the noise is known.
In practice, the variance should be estimated. However this
simplified case gives an indication of the performance which
can be expected from this method, which is given here only
for comparison purpose. The initial value of the EM algorithm
has been initialized as the result of a K-means step. Then, the
three methods described above for recovering the sources have
been considered and compared:

1) EM + inversion: the sources have been recovered using
the exact inverse expression of the estimated system. A
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A =




a b c
2(ad + bc) 2(ac + bd) 2(ab + cd)

a3 + 3ab2 + 3ac2 + 3ad2 + 6bcd 3a2b + 6acd + b3 + 3bc2 + 3bd2 3a2c + 6abd + 3b2c + c3 + 3cd2


 (19)

hard decision (sign function) has then been applied on
the estimated sources to eliminate residual noise.

2) EM + MAP: we considered the result of the MAP clas-
sification and mapped it to the corresponding sources.

3) virtual meas. + ICA: the signals x2 and x3 have been
computed and considered as additional observations be-
fore performing ICA (in our simulations, we used the
JADE algorithm [9]). A hard decision (sign function) has
then been applied on the estimated sources to eliminate
residual noise.
Note that when the variance σ2 of the noise ε is known,
this information can be used to obtain an unbiased esti-
mate of the covariance of the vector of virtual measure-
ments, leading probably to an improved performance of
the method.

Figure 5 and Table I shortly illustrate the validity of the third
separation method (virtual meas. + ICA) in the case when the
mixture is given by (18). Figure 5 shows the MSE obtained
on the reconstructed sources (before elimination of residual
noise with a hard decision) and Table I gives the Bit Error
Rate (BER) (after applying a sign function). All values have
been obtained by averaging on 1000 Monte-Carlo runs. One
can notice that in low noise conditions, the nonlinear mixture
is perfectly inverted.

Tables II and III compare the three separation methods de-
scribed above. One can see in Table II that resorting to MAP
estimation gives better results than using the exact inversion
formula: this is no surprise since the exact inverse is only valid
in the noiseless case. However, the method considering virtual
measurements outperforms the classification by MAP: this is
actually due to the difficulty of initializing the EM algorithm
which may get trapped in a local maximum [17]. If a good
initialization point was given to the EM algorithm, the EM +
MAP separation method would outperform all the other ones.
Note also that these results are not specific to the mixture (18).
According to the simulations in Table II, they remain when the
mixture is given by (9) with randomly generated parameters
a, b, c, d. Finally, another advantage of the proposed method of
virtual measurements is illustrated in Table III where one can
see that the execution time is constant. Again, this advantage
is due to the difficulty of initializing the EM algorithm: if
badly initialized, it may converge slowly or even require a
new initialization step.

It follows from these observations that the proposed method
is complementary to the (EM + MAP) classification and one
can hence think about combining both in order to improve the
quality of the result: one apparently attrative solution consists
in using the result given by (virtual meas. + ICA) as an ini-
tialization point to the (EM + MAP) method. This has been
tried and results are given on the line indicated by ICA + EM
+ MAP in Table II.

VII. CONCLUSION

In this paper, we have illustrated that algebraic methods
constitute powerful methods to deal with the particular class
of polynomial MIMO systems. They offer an attractive answer
to the problem of their inversion. Many interesting signals,
such as telecommunication ones, admit a finite number of
values: in this case, the former tools show that there is more
flexibility concerning inversion. In addition, we have shown
that there exist a linear model which is equivalent to the
original nonlinear one. In a blind context, this equivalent linear
model suffers from the problem of underdetermination and of
dependency between virtual sources. Finally, we have applied
our result to the problem of blind separation of two binary
sources mixed nonlinearly: based on the specificity of these
sources, and although the virtual sources of the equivalent
model are not independent, classical ICA algorithms succeed
to separate the virtual sources.

APPENDIX I
PROOF OF PROPERTY 2

Proof: For any ideal I and for the polynomial with
distinct roots q1(s1) =

∏l1
k=1

(
s1 − ã

(k)
1

)
, we have [16, p.45]

(see Definition 5 for the sum of two ideals):

I + 〈q1〉 =
l1⋂

k1=1

(
I + 〈s1 − ã

(k1)
1 〉

)

It follows that we can write:

〈q1, . . . , qN 〉 = 〈q2, . . . , qN 〉+ 〈q1〉
=

⋂

k1

(
〈q2, . . . , qN 〉+ 〈s1 − ã

(k1)
1 〉

)

and decomposing similarly 〈q2, . . . , qN 〉+ 〈s1 − ã
(k1)
1 〉:

〈q1, . . . , qN 〉 =
⋂

k1k2

(
〈q3, . . . , qN 〉+ 〈s1 − ã

(k1)
1 , s2 − ã

(k2)
2 〉

)

Il we repeat further this operation, we finally obtain:

〈q1, . . . , qN 〉 =
⋂

k1...kN

〈s1 − ã
(k1)
1 , . . . , sN − ã

(kN )
N 〉 = IA

Finally, to prove that {q1, . . . , qN} is a Groebner basis,
observe that the qi are univariate polynomials. Their terms
are hence ordered independently of the ordering ≺ on K[s]
and their leading terms are sl1

1 , . . . , slN
N respectively. One can

then check that these polynomials satisfy the criterion on the
S-polynomials [15, p.82] for {q1, . . . , qN} to be a Groebner
basis. Finally, one can verify that {q1, . . . , qN} is indeed a
reduced Groebner basis.
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APPENDIX II
PROOF OF PROPOSITION 1

Proof: The proof is very similar to the proof of Theorem
2 in [15, p.334].

Choose q1, . . . , qP in K[s] such that IA = 〈q1, . . . , qP 〉 and
let I = IA + 〈f1 − x1, . . . , fQ − xQ〉 = 〈q1, . . . , qP , f1 −
x1, . . . , fQ − xQ〉. If g is the remainder of h on division by
the Groebner basis G of I, we can write:

h = B1(s,x)(f1 − x1) + · · ·+ BQ(s,x)(fQ − xQ)
+ C1(s,x)q1 + · · ·+ CP (s,x)qP + g

where B1, . . . , BQ, C1, . . . , CP are in K[s,x]. If g ∈ K[x],
substituting fi for xi in the above expression, we obtain:

h = C1(s, f)q1 + . . . CP (s, f)qP + g(f1, . . . , fQ)

and thus with r = C1(s, f)q1 + . . . CP (s, f)qP ∈ IA, we have
h− r = g(f1, . . . , fQ) ∈ K[f ]

Conversely, assume there is r ∈ IA such that h− r ∈ K[f ].
Then we can write h− r = g̃(f1, . . . , fQ) for a polynomial g̃
in K[x]. Similarly to [15, p.315, Eq. (4)], we can write:

g̃(f1, . . . , fQ) = g̃(x1, . . . , xQ)+E1(f1−x1)+· · ·+EQ(fQ−xQ)

where E1, . . . , EQ are in K[s,x]. Then:

h = g̃(x1, . . . , xQ) + E1(f1 − x1) + · · ·+ EQ(fQ − xQ) + r

Now let G′ = G ∩ K[x] and ˜̃g be the remainder of the
division of g̃ by G′. We have then: h = hI + ˜̃g + r, where
hI ∈ I.

Relying on the elimination property of the ordering, we can
use the same arguments as in [15, p.335] to prove that ˜̃g is
the remainder of division of h by G. Hence we have ˜̃g = g,
which proves that g ∈ K[x].

The second part of the proposition follows from the above
arguments.

APPENDIX III
IMPLEMENTATION OF THE PROVIDED EXAMPLES

In this appendix, we show how the results in the paper are
obtained using a computer algebra system. We used SINGU-
LAR [27] which is a software freely available on the web.

A. Example from Section IV-A

The ring should first be defined, and then the polynomials
corresponding to Equation (5):

ring r=0,(s1,s2,x1,x2,x3,x4),lp;
poly f1= 3*s1ˆ2+2*s1*s2+4*s2ˆ2+7*s1+4*s2;
poly f2=-3*s1ˆ2+5*s1*s2+2*s1+s2;
poly f3=-3*s1+6*s2;
poly f4=6*s1ˆ2-s1*s2+4*s2ˆ2+3*s1-9*s2;

The following lines define the ideal I, compute its Groebner
basis (denoted G1) and perform the division of s1, s2 by G1:

ideal I1=f1-x1,f2-x2,f3-x3,f4-x4;
ideal G1=groebner(I1);
reduce(s1,G1); reduce(s2,G1);

B. Example from Section IV-B

The following lines show that s1, s2 cannot be recovered from
x1, x2, x3 only:

ideal I2=f1-x1,f2-x2,f3-x3;
ideal G2=groebner(I2);
reduce(s1,G2); reduce(s2,G2);

We then test the algebraic dependence between f1, f2, f3 :

LIB "algebra.lib";
algDependent(ideal(f1,f2,f3))[1];

The example in Section IV-B is then obtained by computing
in the ring denoted r2:

ring r2=(0,b1,b2),(s1,s2,x1,x2,x3,x4),lp;
ideal G2=imap(r,G2);
reduce((s1ˆ2+b1*s1),G2);
reduce((s2ˆ2+b2*s2),G2);

C. Example from Section V-B

The only difference in the case of finite alphabet sources is
that we should enter and define the ring IA (The first line
switches back to the working ring denoted r since we defined
r2 above).

setring r;
ideal Ia=

(s1-1/2)*(s1-3/2)*(s1+1/2)*(s1+3/2),
(s2-1/2)*(s2-3/2)*(s2+1/2)*(s2+3/2);

ideal I3=f1-x1,f2-x2,f3-x3,Ia;
ideal G3=groebner(I3);
reduce(s1,G3); reduce(s2,G3);

D. Example how to derive Equation (17)

ring r3=(0,a,b,c,d),(s1,s2,x),lp;
ideal I4=a*s1*s2+b*s1+c*s2+d-x,s1ˆ2-1,

s2ˆ2-1;
ideal G4=groebner(I4);
reduce(s1,G4); reduce(s2,G4);
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Fig. 1. Typical results for the inversion of the nonlinear system given by
(16) (no additive noise).
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mixing
sytem

separation
method

SNR in dB
10 20 30 40 50

Eq.(16)

EM + inversion 3.51e-1 1.18e-1 1.20e-1 1.40e-1 1.15e-1
EM + MAP 2.20e-1 6.93e-2 9.24e-2 1.22e-1 8.59e-2

virtual meas. + ICA 1.63e-1 1.83e-2 1.88e-4 0 0
ICA + EM + MAP 2.08e-1 1.10e-2 0 0 0

random
EM + inversion 2.75e-1 1.83e-1 1.31e-1 8.10e-2 3.48e-2

EM + MAP 1.76e-1 1.28e-1 1.10e-1 7.15e-2 2.94e-2
virtual meas. + ICA 1.68e-1 5.98e-2 1.99e-2 7.56e-3 2.91e-3

TABLE II
AVERAGE BER FOR DIFFERENT SEPARATION METHODS (5000 SAMPLES, 1000 MONTE-CARLO REALIZATIONS).
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Fig. 2. Typical results for the inversion of the nonlinear system given by
(16) (20dB noise).
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Fig. 3. Average MSE on the reconstruction of the sources versus SNR for
different number of samples for the mixing system given by (16).
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separation result in the noiseless case.
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Fig. 5. Nonlinear mixture of two BPSK sources on one sensor: average MSE
versus SNR in dB (mixture given by Eq. (18)).
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`````````Samples
SNR (dB) 0 10 20 30 40

500 0.3297 0.1873 0.0203 0.0002 0
5000 0.3267 0.1614 0.0184 0.0002 0

50000 0.3130 0.1490 0.0182 0.0002 0

TABLE I
NONLINEAR MIXTURE OF TWO BPSK SOURCES ON ONE SENSOR:

AVERAGE BER VERSUS SNR IN dB (MIXTURE GIVEN BY EQ. (18)).

separation
method

SNR in dB
10 20 30 40 50

EM + MAP 3.53e-1 1.96e-1 1.45e-1 1.24e-1 1.21e-1
virtual meas. + ICA 1.33e-1 1.33e-1 1.34e-1 1.33e-1 1.34e-1

TABLE III
AVERAGE EXECUTION TIME FOR THE (EM + MAP) ALGORITHM AND THE

ICA ALGORITHMS ON VIRTUAL MEASUREMENTS (5000 SAMPLES, 1000
MONTE-CARLO REALIZATIONS, RANDOMLY DRIVEN MIXING SYSTEM).
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