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ABSTRACT. We derive the three-point function of th&lS; WZNW model in the minisuperspace
limit by Wick rotation from theHB+ model. The result is expressed in terms of Clebsch-Gordan
coefficients of the Lie algebr&/(2,R). We also introduce a covariant basis of functions4ibs,
which can be interpreted as bulk-boundary propagators.
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1. Introduction

The AdS; Wess—Zumino—Novikov-Witten model is interesting in parkar due to its string theory
applications. A conjecture for the spectrum of this mode$ waoposed by Maldacena and Ooguri
[1], but the full solution of the model is still missing. Indlsense of the conformal bootstrap, a
full solution means the computation of the three-point fiores of primary fields on the sphere,
and the proof of crossing symmetry of the four-point funetio(Equivalently, the computation of
operator product expansions of primary fields, and the pobtieir associativity.)

The conjectured spectrum of thédSs WZNW model is fairly complicated, as it contains
both discrete and continuous series of representatiortseas{tmmetry algebra, and their images
under the so-called spectral flow automorphism. On the ditwed, as a geometrical spaeg]Ss is
related by Wick rotation to the Euclidean spaég, and theAdSs WZNW model is often assumed
to be related to théZ;” WZNW model. The spectrum of the latter model is much simgsrit
contains only a continuous series of representations,rmﬂéf model has been fully solved [2, 3].
An additional difficulty of theAd.S3 WZNW model is that the grougd.Ss, which is the universal
cover of SL(2,R), has no realization as a group of finite-dimensional madrick follows that
writing a simple basis of functions a#d.S3 is more difficult than in the cases 6f.(2, R) or H;
Similarly, it is in general more complicated to write furtis on the Anti-de Sitter spac&dS,



than on its Euclidean versioﬁj. Some works like [4] which are purportedly abodiS; actually
deal witth, thereby avoiding this difficulty (and other ones).

The presence of discrete representations and the lack divdous basis of functions cAdS;
are two difficulties of theddSs WZNW model which also affect its minisuperspace limit (also
known as the zero-mode approximation), where the modetesdio the study of functions on the
AdS3 space. It is therefore interesting to solve the model inlthig. We will do this by starting
from the well-understood minisuperspaH§ model [5] and using Wick rotation. The main object
we wish to compute is the minisuperspace analog of the apegpabduct expansion, namely the
product of functions omdSs. (Equivalently, the minisuperspace three-point funcion

We will start with a study of certain bases of functions 4dS;, SL(2,R) and H; (Sec-
tion 2). In particular we will construct functions ofidSs which transform covariantly under the
symmetries, and which can be interpreted as bulk-boundamyagators. Then we will study the
Clebsch-Gordan coefficients of the Lie algebfé2, R) (Section 3). Due to the symmetries of the
AdS3 WZNW model in the minisuperspace limit, the products of fiots on AdS; can be ex-
pressed in terms of these coefficients. We will check ther afbtaining these products of functions
by Wick rotation fromH3+ (Section 4). In conclusion we will comment on the Wick ratatiand
on the problem of solving thddS; WZNW model (Section 5).

2. Hf, SL(2,R), AdS; and functions thereon

In this section we will review the geometries of the spaHg‘s SL(2,R)andAdSs, and introduce
bases of functions on these spaces. The sense in which suatiofis form bases of certain func-
tional spaces will be explained in section 2.4. Wh‘llgL andSL(2,R) can be viewed as spaces of
two-dimensional matricesidSs; cannot, and this will make the descriptions of functions4etts
more complicated.

2.1 Geometry and symmetry groups
Let us start with the grou'L(2, R) of real, size two matrices of determinant one. This group is
not simply connected, since the subgroup of the matrices

gr = ( cosT SiIl’T) (21)

—S8SInT COST

is a non-contractible loop. Therefore, there exists a usalecovering group, sometimes called
SL(2,R), which we will call AdSs. If SL(2,R) elements are parametrized using three real coor-
dinates(p, 0, 1) as

B <cosh,ocos7' + sinh pcos @ sinh psin @ + cosh psin 7 ) 2.2)

sinh psin @ — cosh psinT cosh p cos 7 — sinh p cos 8

wheref andr are2r-periodic, thenAdSs is obtained by decompactifying. Elements 0fAdS;
can alternatively be parametrized as doubtgts: (g, I) whereg € SL(2,R) andI is the integer
part of . Writing o~ = I + F, the group multiplication ofAd.S3 can be written as

(9.0)(¢", ') = (99, I+ T+ F(9)+ F(g') — F(g9')) - (2.3)



TheU (1) subgroup of the matriceg € SL(2,R) decompactifies into aR subgroup of elements
G, € AdS3, which we parametrize as

G, —eXpT( 10). (2.4)

The group structures oldSs andSL(2,R) lead to left and right actions by group multiplication,
in the AdSs case(Gr,GRr) - G = GLGGR, which will be symmetries of the models under consid-
eration. More precisely, the geometrical symmetry grouy bf2, R) is %M, where
we must divide by the centéf, = {id, —id} of SL(2,R) as its left and right actions are identi-
cal. The geometrical symmetry group 4fiSs is %, where the center afldSs is freely
generated by—id,0) = (p = 0,0 = 0,7 = 7) and therefore isomorphic ®. These geometrical
symmetry groups are not simply connected; their first funefsial groups ar&? in the case of
SL(2,R) andZ in the case ofAdSs. This is the origin of the spectral flow symmetries of the
corresponding WZNW models. (See for instance [1].)

Then ng is the space of hermitian, size two matrices of determinana, evhich can be
parametrized using three real coordinated, 7) as

b ej (900?h P eje sinh p . (2.5)
e "% sinh p e™7 cosh p

We have chosen identical namgs 6, 7) for the coordinates oif; and AdSs, thereby defining
a bijection between these two spaces. This bijection gigesto a mapb(p,0,7) — ®(p,0,ir)
from the analytic functions 0|1i{3+ to the analytic functions omldSs, which is called the Wick
rotation. Our bijection however does not relate the mawixfs of ;™ and SL(2,R) which we
have given. Notice thakl;" is not a group, rather a group coset, namgfy(2, C)/SU(2). The
geometrical symmetry group (6{3* is %22’@, whose elements act onh € H; by k- h = khk'.

2.2 Functions:t-bases

In both casesSL(2,R) and H", the existence of a matrix realization allows us to writections
which transform very simply under the symmetries. In theeaafsH;", we can indeed introduce
the following “z-basis” of functionsbZ(h), parametrized by their spine C and isospin: € C:

2 1 , _
i) = L L@ OR (1P = Bk = Jex + d9, (), (26)
cx+d
where we denoté! = (2%). Similarly, we can introduce the following:‘basis” of functions
@{L”tR( )on SL(2,R), with (¢1,,tr) € R%:

; 25 +1 2j . —
B n(9) = = [(L=t)g (") |7 sign™ (1, —t1)g (f') = ‘I’iL”tR(ngggR)

= |(crtr + dg)(cptr + dp)[* sign™ (cgtp + dr)(cptr +dr) @07, Ly opinins (9) . (27)

cptp+dr’cptptdr

where we denotg; = (Zf fli) andgr = (Z}’j gg) The parityn € {0, 3} is the same for both

actions of SL(2,R) on itself by multiplications from the left and from the rigtgee the factor



sign?"(cptr+dg)(crtr +dr)), because the parity characterizes the action of the ¢esufogroup
ZQ.

In the case ofAdS3, writing a similar "t-basis* of functions is more complicated. We define
t-basis functionSD{’La,tR on AdSs by the assumption that they transform covariantly undetdfie
and right actions ofAidSs on itself, in a way which generalizes the transformatiorpprty of the
t-basis function@{ﬁm on SL(2,R) eq. (2.7). (TheAdSs parametery € [0,1) generalizes the
SL(2,R) parameter € {0, %}.) The appropriate generalization of the transformatiapprty has
been written in [6] (Section 4.1); itinvolves a functiof(G|t) on AdSs x R such thatV (G'G|t) =
N(G'|Gt) + N(GJt) andVn € Z, N((id,I)|t) = I, where ifG = (g,1) = ((¢}),I) then
Gt =gt = jfig. For instance/N (G|t) can be taken as the number of tint&s crosses infinity as
G’ moves from(id, 0) to G, in which caseV (G|t) € Z, and[G] = N(G|t) — 3sign(t + 2) — L is

at-independent integer. Then, the axiom dgfr”, is

)0, (GL'GGR) = |(crtr + dp)(cpty, + dp)|? 2ToWCLi)=NEritmigle, - (G12.8)

This axiom is obeyed by

B1(6) = T ermien Gt |1~y )g ()Y (2.9)
provided the functiom(G|tr, tr) satisfies

n(G;'GGRltr,tr) — n(G|Grtr, Grtr) = N(GL|tr) — N(GRltg) . (2.10)
This implies that the function(id|tz., tg) should satisfy

n(id|ty, Gtg) — n(id|G~ 1, tg) = N(Gttr) + N(G|tg) , (2.11)

which, usingGt = gt = 2t and the properties ¥ (G/|t), amounts to

n(id|tr, ngig) — n(id| jﬁfoa,tR) = Lsign(t;, — 2) + Ssign(tp + ¢) . (2.12)

A solution is found to be

n(idltr,tr) = isign(t, —tr), (2.13)

thenn(G|tr, tr) — sign(t, — tg) is the number of timegt, crosses wheng runs fromid to
G. Let us now study the behaviour of G|t tg) as a function of,, ¢t for a generic choice df:.
Notice thatﬁ(tL,tR) = n(G]tL,tR)—l—[G]—i—% = % [sign ((tL — %)(tR + %l) + c%) — 1] sign(tR—l—

%) takes valued), +1, and jumps between these values occur on the hyperbola withation
(1,—tr)g ("#) = 0. These values and these jumps are shown on the following plot

tr +00

Al F———————————

tr (2.14)



We now propose that certain linear combinations of the ionst@{’L‘ftR can be interpreted as
bulk-boundary propagators. These combinations are

1
j —2ira B 2j
q).ZtLJR?N)(G) = A dOé € 2 Né‘gL”tR(G) = 6N,n(G\tL,tR) |(17 _tL)g (t{%){ J . (215)

We interpret(tz,tr, N) € R x R x Z as coordinates on the boundaryA4dSs. The action of the
symmetry groupAdSs x AdSs on the boundary is then given by

(GrL,GR) - (tr,tr, N) = (9rtL, grtR, N — N(GL|tL) + N(GRltr)) , (2.16)
and the behaviour OI{’LOftR under the action ofid.S5 x AdS;3 (2.8) implies the following behaviour
J .
of <I>(tL’tR7N).
®, oG GGR) = |(crtr + dr)(crty +dp)[¥ @ oo (G). (2.17)
2.3 Functions:m-bases

The t-bases of functions behave simply under symmetry transftoms, butt-bases inH; and
AdSs are not related by the Wick rotation. This is because theirmegalizations (2.2) and (2.5)
on which thet-bases are built are themselves not related by the WickaatatVe will therefore in-
troduce the more complicated:“bases” of functions, which are better suited to the Wicktioh.
In the case ofd; , them-basis functionsbﬁ;%m(h) are defined as

o), - (h) = / d?z /T IMETI TSI (h) with m—m e Z. (2.18)

The numbersn,m can be written in terms of an integer € Z and a momentunp, which is
imaginary in theH;” model:

m:%(n—i—p) , m:%(—ner). (2.19)

The explicit expression fob’, .,(h) is found to be

P(—j + ") + 52
L(jn| + D)I(-2j — 1)
X F(—j+ 2 g oL 1y 1) —sinn?p) . (2.20)

‘I)fﬁ,m(h) =- e P ginhl™l p cosh? p

Notice that this obeys the so-called reflection property

e g D@D Ti+ml(—i—m)
& Rl @il i 2.21
m,m Rm,m m,m Rm,m F(—2]—1) F(]+1+m)F(]+1—m) ( )
P(2j+1)  D(=j+")r(—j + 52)

L(=2j =)0+ 14 22yp 41 4 Iy

.(2.22)

J J — 7
whereR;, ;, = Ry, ,, due ton = m —m € Z.



We will use the functions onldSs obtained from the above functioniﬁnm(h) by the Wick
rotationT — 7. In order for the resulting functions to be delta-functi@rmalizable, we now need
to assume the momentuprto be real, instead of imaginary in thﬂ‘%r case. We do not introduce a
new notation for the resulting functions ehlSs, but still call them@{mm(G) or cI)inm

In contrast ta-basis functionsyn-basis functions omdSs do not transform simply under the
action of theAdSs; x AdS3 symmetry group. However, they do transform simply undersitteon
of theR x R subgroup made of pail($7,, , G, ), whereG. was defined by eq. (2.4):

(G, GGry) = € IR (G) (2.23)

Notice that the identity>,GG_, = G impliesm — m € Z. (In the particular case FL(2, R),
we have the additional identiy,,, = id, which impliesm, m € %Z.) Introducing

a€0,1) such that m,mea+7, (2.24)

this parametew is identical to the parameter of the t-basis functionsb{fftR (2.9). We will look
for a relation of the type

V=0 [t iy tem ()" a0 (1) 90,029

wherec’® is a normalization factor. We can check that the right-hadd ef this relation obeys
the transformation property (2.23), thanks to the behavemy (2.8) of@{’L‘ftR. To see this it is
useful to notice that the integrand in eq. (2.25) is contirsuthrought;, = co andig = oo, as can

be deduced from the behaviour of the phase faetdr”(“1t.tr) of &), which is depicted in
the diagram (2.14). This makes it possible to perform tetitis of the variableg,, o r such that
tr,r = tan 3¢ gr. The normalization factor/® is easily computed in the limjt — oo, where

the dependences of the integrandtgrandit i factorize. We find

) 42] . 2 .
go=__ T BT (2.26)
sinm(j — ) sinw(j + «)

2.4 Completeness of the bases of functions

We have been considering functions on a spaceith X € {H;,SL(2,R), AdS;}. GivenX,

let us consider the space of complex-valued square-iftegfanctionsZ?(X) with the scalar
product (f,g) = fX dp fg, where the invariant measure can be written in all threescase
dp = sinh2p dp df dr. Although our functionsb do not necessarily belong t6?(X), they
form orthogonal bases in the same sensé¢eé¥|p € R} is an orthogonal basis of the space of
functions onR. Namely, there exist se8x of values of the parameters afi®;,,b € Bx} of the
corresponding functions such that any pdirg) of smooth, compactly supported functions &n
obeys(f,g9) = > yep, V() (f, Pp) (Ps,g), whereN(b) is a normalization factor, and the sum
Y beB, DECOMES an integral whenever it involves continuous paesie



More specifically, thec-bases of functions are

Hf: {®l|je-L+iR;,zeC}, (2.27)
SL(2,R): {®]", |j € —3+iRy, (tr,tr) € R%n e {0,1}}
U {®]", |j€—1—1iN, (tr,tp) €R%*n=j mod 1}, (2.28)
AdSs . {®]°, |j € =3 +iRy, (tr,tr) € R* € [0,1)}
U {®, 15 € (—3,00), (tr,tr) ER*,a=j mod 1}, (2.29)

and the corresponding-bases are

Hi: (@), nli€—-L+iRy,m+meiRm—meZ}, (2.30)
SL2,R):  {®), mlj € —3 +iRy,m+m € IZ,m—meZ}
U{®), nli€—-1-iNmme£(j+1+N)}, (2.31)
AdSs:  {®), nlj € —L+iRy,m+m € Rm—m € Z}
UA{®), nli € (—1,00),m,m € £(j +1+N)}. (2.32)

The completeness of both the andm-bases of functions off;” was proved in [5]. In the case of
AdSs3, the completeness of the-basis follows from the results of [7], where a Planchereffala
for AdS3 was proved. The completeness of thbasis then follows from the integral relation
(2.25). The case of L(2,R) can be deduced from the caseAdS; by noting that functions on
SL(2,R) correspond to-periodic functions omMdSs with period27.

Moreover, in each case the ba§,, b € Bx } provides a spectral decomposition of the Lapla-
cian onX, which is Hermitian with respect to the scalar prodittg). A function of spinj is an
eigenvector of the Laplacian for the eigenvalug(j+1). Inthe casexX € {SL(2,R), AdSs} this
follows from the transformation properties of such funotiwnder the symmetries, and the fact that
the Laplacian coincides with the Casimir differential agers associated with these symmetries.
In the case off; this can be deduced from the case4afS; by Wick rotation.

3. Representations and Clebsch-Gordan coefficients

3.1 Representations o&/(2, R)

The minisuperspace limit of the spectrum of théS; WZNW model is the space of delta-function
normalizable functions omdSs. It is subject to the action of the geometrical symmetry grou
AdS; X445 ' and therefore of its Lie algebra(2, R) x s¢(2,R). Three types of unitary represen-
tations ofs/(2,R) appear in the minisuperspace spectrum: continuous repeatiess, and two
series of discrete representations. Continuous repeesam C/ are parametrized by a spjn
and a numben: € [0, 1) such thatn € « + Z. Discrete representatioris’-* are parametrized by
aspinj € (—1,00), and their states obey € £(j + 1+ N). All these representations sf(2, R)
extend to representations of the gradgSs. However, only representations with € %Z, namely
C7 with o € 1Z and D7+ with j € 1N, extend to representations of the gratip(2, R).

More precisely, given the/(2,R) algebra with generator$®, J* and relationg.J3, J*| =
+J%, [JF,J7] = —2J3, the spinj is defined by(J3)? — 3(JTJ~ + J~JT) = j(j + 1), and the



stategm) are such that
Im)=mm) , JTm)=m+j+)m+1) , J | m)=(m—j—1)|m—1).(3.1)

These conventions are incompatible with the unit normtdinaof the states (which would mean
(m|m') = 8,,.m/), however they will turn out to agree with the behaviour of mnctionscbimm
eq. (2.20).

The tensor product laws fa(2, R) representations are well-known. They are equivalent to
knowing the three-point invariants, which we schematycd#pict here in the cases when they do
not vanish:

P P PN

CeCeC , D C®C , DDeDT®C , Dt@ Dt D™ (3.2)

For instance, the first diagram means that any continuougseptationC?* appears twice in
the tensor produaf/1®1 @ C72:°2 of two continuous representations. (Theconservation rule
a = aj+as mod 1 isimplicitly assumed.) The fourth diagram means that- ¢ D/ttt Dz,
(The rulej € j; + jo + 1 + Nis implicitly assumed.) The fourth diagram also means fhat
may appear once i/~ @ D72+, (This happens if € j» — j1 — 1 — N.) We omit the diagrams
obtained by reverting the arrows in the second and fourtgrdias, namelyD*™ ® C ® C and
D@D~ ® DT,

3.2 Clebsch-Gordan coefficientsm basis

We will rederive the tensor product rules by studying thebGtd-Gordan coefficients. These
coefficients are the three-point invariants, viewed astfans C'(j1, jo, js|m1, ma, m3) subject to
the equations

3 3 3
D (mit i+ 1)Cmi+1) =Y (mi —ji — 1)C(m; — 1) = > mC =0. (3.3)
=1 =1 =1

It is of course possible to prove a priori that these equatame obeyed by the three-point function

<Hf’:1 <I>{nm> = [4as, G TI5=; @2, 1, (G). Todo this, we would introduce a realization of the

Lie algebras/(2,R) as first-order differential operatof3* wrt p, 6, 7, such thatD+<I>{mm(G)

(m+j+ 1)<I)zn,m(G)a D_(I);n,m(G) =(m-j- 1)<I)zn,m(G) andng)?n,m(G) = m@f‘n,m(G .

Then eq. (3.3) would follow from the identit@—[?’:1 @%im(G)> = <H§’:1 (I)fgi,mi(GLG)

We however abstain from doing this, as we will later exglic@compute the three-point function

<Hf:1 @{nm> and write it in terms of solutions of the equation (3.3).

Given three irreducible representationssét2, R), there exist zero, one or two linearly in-
dependent solutions of the equation (3.3). In the case ektlpntinuous representations, the
momenta(m, m2) belong to a two-dimensional lattice of the tyﬁ[sle(ai + Z) (with of course
ms = —my — my), and the coefficientsr; + (j; + 1) never vanish. In this situation, a solution
of eq. (3.3) is determined once the value< bt two neighbouring points of the lattice are given.

~—

~_—



In the case when at least one representation is discretepsayj; + 1 + N, the lattice becomes
semi-infinite in one direction, and a solution is determinade the value of’ at one point is given.

Let us introduce the function

. <a€ bfc) _ I'(a)I'(b)(c) ) <a6 bfc

B > 1 T(a+n)(b+n)(c+n)
1) =2 TesntGrn o @Y

n=0

where the sum converges provided- b +c — e — f < 0, and the poles aoff are the same as those
of I'(a)I'(D)I'(c)T'(e + f — a — b — ¢). Knowing the identity

(@a—e+ 1)G<“€bfc> +(b— f)G<“€+f1+blc> +(c— 1)G<“€b_cl_fl> ~0, (35)

we can use this function for writing a solutions of eq. (3.3):

_ - + _ - _ _ .1
C =4d§(m1+me+m3)G ,32 ,m2 /3 77.13 . J23 = 0(mq +mg + m3)923(3-6)
I1+71—Jg+me 1+71—J2—m3

which is well-defined provided + j123 > 0, where we use the notationig,s = j1 + jo + j3 and
jas = ja + j3 — 1. Of course five other solutions of the typ& with a # b € {1,2,3} can be
obtained by permutations of indices. These solutions arérmearly independent, as can be shown
with the help of the identity

abc\ aa—e+1la—f+1
s<b>s<c—a>a<e f> —s<e—a>8<f—a>G< a—b+1 a_c“)

—s(c—e)s(c— f)G(CCC__aejllcc__bf:ll) . (B7)

wheres(x) = sin rz, and we will also use(x) = cos 7. Thus we obtain

g21 g32 1 S(f2+"(”2)5(j3;m3) S(j3+m%)8(jsfj)'1+m2)
_ _ s(y1+mq s(J1+mq
12 - M13 23 ’ Ml?’ - S( -3 ) <S(j3mB,)S(j3j1m2) s(jg—mg)s(jz+m3g) > ' (38)
9 9 Ji2 s(j1—m1) sG1—-m1)

Together with the other identities obtained by permutirgyitidices, this shows that at most two of
the solutiongy® are linearly independent.

Due to our convention € (—%, oo) for discrete representations, we hakg > —% for all
representations of interest. This ensures that the sum.irf3ed) converges, so thagt’ is well-
defined provided the summand is finite, which occurs urliéssj, + m)I'(—j, — my)I(—355,)
has a pole.

CaseC®C ®C. Inthis case, two given solutions sg3?, ¢>° are linearly independent, and they
provide a basis of the two-dimensional space of invariants.



CaseD” @ C ® C. We assume for exampte, = —jo — 1 — £ with £ € N. Some relations of
the type of eq. (3.8) simplify, and we find

21 _ (_1 0sUs +m3) o5 _S(ﬁ:’,) 31 _(_q ¢8(J3 +m3) 5(j73) 13 3.9
g =) =g = -2t = (1) = =g’ . (3.9)
s(j1 +ma1) 5(272) s(j1 +m1) s(2j2)
Since the space of invariants is one-dimensional, the tmaiging functionsg;'? andg®? must also
be proportional to the other four. However, this proporility relation is not very simple, as can
be seen in the case of the highest-weight state0 wheng!? andg3? fail to become expressible

as products of-functions, in contrast to the other four solutions.

CaseD"™ ® C ® C. The situation is completely analogous to the previous céf&eassume for
examplemsy = jo + 1 + £ with £ € N and find

g'2 = _l)es(ji% - m3)g32 _ _‘S(L%;’,) 13 _ _(_1)43(]:3 — mg) S(ﬁ?)) 31 (3.10)
5(j1 —ma) 5(272) s(j1 —ma1) s(2j2)

CaseD™ ® D~ ® C. We expect no invariants to exist in this case. Let us check #ssuming
for examplems € —jo — 1 — ¢ andms € —js — 1 — £3 with /5, {3 € N. Equation (3.9) implies
two incompatible relations betweel!' and ¢3!, which must therefore both vanish. An apparent
paradox comes from the non-vanishinggdf, ¢32, g%, ¢'3. However, these functions do not pro-
vide solutions to eq. (3.3), because they become infinitg at —1 or {3 = —1. For instance, if
C(m1, —j2,m3) = oo, then(my +j1 +1)C(m1+1, —j2 — 1,m3) + (—j2 +j2)C(m1, —j2,m3) +
(mg + js + 1)C(m1,—j2 — 1,m3 + 1) = 0 may have an unwanted nonvanishing second term.
Therefore, the analysis gf® agrees with the representation-theoretic expectati@isithinvariant
exists.

CaseD"™ ® D~ ® C. We assume for examples = —jo — 1 — /5 andms = j3 + 1 + £3 with
{5, 03 € N. We find the relations

31 12 S(23) 15 s(252) o 5(22)8(273) o3 311
s(j72) s(J13) s(J13)s(J72)
The functiongg'3, g1, ¢?3 stay finite for any valueg,, /3 € Z, and therefore provide three propor-
tional invariants. The functiong*! andg'? become infinite if’s < 0 and/y < 0 respectively, so
that it is not a priori clear that they provide invariants.al they actually do is guaranteed by the
above relations.

CaseD~ ® D~ ® D*. We assume for example; = j; + 1+ £, ma € —jo — 1 — 45 and
ms € —js — 1 — 3, with ¢1, 02,035 € N. Noticing s(272)s(2j3) = s(j%5)s(j3,), we find the
relations

12 23 5(2J3) 13 5(2J3) 39

S AU S ©12
These four proportional functions provide the invarianthis case. In particulag'? andg¢'3 no
longer become infinite @ = —1 or /3 = —1 respectively, as happened in the cdse® D~ ® C.
The remaining two functiong?!, ¢3! vanish, as they already did in the cd3e ® D~ ® C. Notice
that the selection rulg € jo+j3+1+N manifests itself ag?* becoming infinite ifj; € jo+j3—N,
due to a series of poles which correspond to thosg(efj.,).
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3.3 Clebsch-Gordan coefficientst-basis

Our m-basis invariantg/® are not symmetric under permutations of the indices, buethation
(3.3) which they solve is. In the-basis, we will now show that there exist natural permutatio
symmetric invariants, and we will relate them to combinagiof theg?® invariants. A similar
analysis was already performed for the Clebsch-Gordarficiegits of SO(2,1) = %22,11%)’ in the
articles [8, 9]. The representations $f)(2, 1) correspond to representationsséf2, R) such that
m € Z, or in other wordsy = 0. We will perform the generalization to arbitrary valueshof

In the t-basis,Ad S5 invariants should be solutions of

3
C{t;}) = C({Zttgig}) H |ct; + d|2ji€—2i7raiN(G|ti) ’ (3.13)
=1
for any AdS3 elementG whose projection ont6'L(2,R) is g = (g 3) Solutions exist provided
a1 + ag + az € Z, and we will assumer; + as + a3 = 0. The solutions are [10]

C({tz}) _ |t12|j?2|t23|j%3|t31|j?2’1 eiﬂ(amsigntm+a23signt23+a31Signt31) ’ (3.14)

whereaqs, ass, az1 should obey the equatian s — as3 = as mod Z and the two other equations
obtained by even permutations thereof. The solutions th sgaations are

b = 3(p — @a) + g (3.15)

whereqy is an arbitrary constant. (I8L(2,R) we havea, = 1, € %Z and it is more convenient
to adopt the convention,, = n, + 7, + ag. Equivalently, we can use the above formula provided
we assumey, € 37.) Let us now apply the change of basis (2.25§tdt; }). After the change of
integration variables; = tan 5 them-basis version o€ ({t;}) is

3 ™
c{m}) =1] {/ dpi ezm"%] | sin Lo10]782| sin Lpog |28 sin L g 75
=1 L

% eiw(algsign sin %@12+aggsign sin %gpgngaglsignsin %@31) 7 (316)

where the integrand has the same valueg;at m andy; = —x. This integral can be explicitly
evaluated by generalizing the computations of [8], and itigdar using the formula, valid for
p € (—m,m):
[e.e]
‘sin %|—2a gimasignsin %go _ s(a + a)efiwa22ar(1 _ 2&) Z ei(n+a)<p

n=—oo

IF'a+n+a) (3.17)
Fll—a+n+a)

Thus, we find
C({mi}) = =6(3m)277123 LT (1 + )T (1 + )T (1 4 j3;) e aztaztas) goo (3 18)
where we introduce the invariants
g% = s(347y — a12)s(3 23 — c23)s(3431 — o31)
y Z F(—%jf’g + a1z +n) F(_%j%g +mi + a2 +n) F(—%jég —mg + aj2 +n)
L1+ 3%+ a2 +n) T+ 12 +mi+a+n) T+ 1 —mo+ap+n)’
(3.19)

nez
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which can be expressed in terms of the invariaiits(3.6) as
9% = s(5413 — a31)s(jz — az)s(r + a1)g”" + s(315 + az)s(ii — a1)s(js + az)g'*(3.20)

In this formula, g*° depends on the paramteg only throughas; eq. (3.15). There are two
particularly interesting special values @f, namely0 and % In the casexg = 0 thenC({t;})
and¢° are invariant under permutations. In the cage= 3 thenC({t;}) andg% are odd under
permutations i.e. invariant up to a sign. When the threel@gbrepresentations are continuous,
¢" and g% can serve as a basis of the two-dimensional space of intgrillotice that in the case
of SL(2,R) only these two values af, are possible.

4. Products of functions

In the conformal bootstrap approach to théSs WZNW model, all correlation functions can in
principle be constructed from the knowledge of three okjetlie spectrum, the two-point corre-
lation functions on a sphere, and the operator product eskpas — or equivalently the three-point
correlation functions on a sphere. We will now determinesé¢hebjects in the minisuperspace limit.
We first recall their definitions. Given functions®!(G) on AdSs, the corresponding correlation
function is(TTi_, @) = [dG [];, ®'(G) wheredG is the invariant measure. {f0'};cs form
an orthogonal basis of the spectrum (tha(qs@'qﬂ'> = 0if ¢ # j), the product of functions is

1H2Ht . .
schematicallyp!®? = 3", %qﬂ. This product is obviously associative and commutative.

The functionsrb{;l,m(G) on AdSs are related to corresponding functiohﬁm(h) onH; bya
Wick rotation, and therefore their correlation functiomsmde deduced from; correlation func-
tions by that Wick rotation. This will involve some subtksj because the discrete representations
which appear in the minisuperspace spectrumids’; are absent irff; . But let us first review
the products of functions off; .

4.1 Products of functions onH;

The minisuperspace spectrum]ﬁﬁ is generated by the functions
{®),(M)]j € 3 +iR, nE€Z, peiR}. (4.1)

The correlation functioné]‘[?:1 cI)%Z'Z.7pZ.> = [dh [T}, ®J. ,.(h) are obtained by integrating prod-
ucts of such functions with respect to the invariant meagtire- sinh 2p dp df dr. The two-point
functions can be computed from the expression (2.2@;pf(h):

(01,00,) = 12850040 0p + 1) [0G +7 + D+ RL0G 7)) . (42)

n,p = n/,

where the reflection coefficieri%,p was defined in eq. (2.21). A similar direct computation of
the three-point function seems complicated. Instead, Wenaike use of the known-basis three-
point function [5]

3
y S . N ,
<H q)]m> = C(j1, Jzs Ja) 212|712 23|28 w3 [P0 (4.3)
i—1

D(—f3) D (= k) D(— )
M2 D% - D25 -1 49

C(j1, j2,43) = 7 °T(—jizz — 1)
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The transformation to thex-basis (2.18) can be performed thanks to an integral formilfaikkuda
and Hosomichi [11]. The result can be written in terms of theb&ch-Gordan coefficienig®
(3.6):

3
< (I){%Zmz> = C(j1, j2. j3) 6P (my) K?s(535)%s(j3s)°

i=1

5(279 _ 271
923931 + ( )923932 + ( )gl3g31 4 gl3g32 7 (45)
(]13) 3(]23)

whereg® denoteg;® with m; replaced bymn;, and we introduced the factor

1 . . .
K= pr(l + jta) D (1 + j3)T (1 + jag) - (4.6)

It can be checked that the two- and three-point functiong lta® behaviour under reflection which
is expected from the behaviour @, ;, (2.21). Now, using the three-point function, products of

functions onH; can be written as

3 /
. 1 ) ;s 1 )
q)zrlmmlq){fbmmz = 25672 / 1R djs <H(I){ﬂumz> Rjg qﬂj’ms,*fns ’ (4.7)
144

=1 m3,m3

My, MMy
The invariance of the three point function (4.5) under pgations of the indices is not man-
ifest, but can be checked using linear relations betweerythesuch as eq. (3.8). It seems
that a reasonably simple, manifestly permutation-symmeixpression exists only in the case
mi,m; € m; + Z with n; € {0, 3}, which corresponds to functions (2, R). In this case,
we can use the invariangﬁ,g% (3.20), and we find

. /
where we use the notatic<r1_[ P > = 6@ (my + ma + ma3) <H§’:1 o

(L + )1+ j3a)v(1 + 43))
(I)ml m; - C(]h]%]?)) o m1,06 m;,0 i
<H > o 0T [, sGi +m)
(%123 + €) e e
x> 2 . 95, (4.8)

cc{0.4} 2312 +m3 +€)s (%3213 +m+ 5)3(%J§1 + 12 +¢€)

where we use/(z) = F(Fl(f)x). From this, we can reconstruct thdvasis three-point function

3
o 221123
<Hq)ilelR> = 51 CU1,72,73) HC

=1
|t12t11‘%2‘]12 |t23t23|]23 ‘t31t31|131 Mr[773(51gnt12+51gnt12)+171 (51gnt23+51gnt23)+172(81gnt31+51gnt31)] %
2 oyl tRLL JR L 4R \2€
Z 5(5]123—6)0(5312+773+6)C(5323+771+€)C(%J31+772+6) (signtiytihtostostsits )
56{0,%}
4.9
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Comparing this formula to thé[; three-point function in the-basis eq. (4.3), we obtain a con-
firmation of the lack of a simple relation between théasis inH;~ and thet-basis inSL(2,R) or
AdSs.

In the more general case of functions 41dSs3, the three-point function can still be expressed
in terms of the invariantg® andg%, but the formula is more complicated than eq. (4.8) and in
particular the “mixed” term@og% andg%gO are present. Their absence in the cas€bf2, R) can
be attributed to the exterior automorphisnof SL(2,R), namelyw(g) = (§ °) g (§ % ), which
is such thafb}”, (w(g)) = (—1)*"®”7 _, (g). Inthe case ofidSs this action still exists and can

be expressed as(p, 0, 7) = (p,—0, —7). But it does not act simply on the functi@‘{ﬁtR(G).l

4.2 Products of functions onAdSs

Functions@{nﬁ on AdS5 are obtained from the corresponding functionsfdig‘i by performing
the Wick rotationr — ¢7 and continuingp = m + m from iR to R. If we do not modify the
value of the spiry € —% + iR, this yields functions transforming in the continuous esgntations
of AdSs x AdSs, namely®] . € C/* @ C7* wherem,m € a + Z. We may in addition

obtain functions transforming in the discrete represé@maiy continuing;j to real values such that
m,m € +j + Z. More precisely, function®?, ., € DI* @ DJ* correspond to

j € (—%,00) and m,m € £(j +1+N) & —j — 1 — n| £ Ip € }%.10)
1
2

or j € (—o0,—3) and m,meE£(—j+N)ej—LintipeN. (4.12)

These two possibilities are related by the reflectjor+ —j — 1 and they are equivalent. We
will only consider the first possibility, because our ineatis g*® (3.6) are well-defined foitj >
—%. We will see that the set of these discrete and continuoustifus is closed under products,
consistently with the fact that they generate the spaceraftions onAdSs as we saw in section
2.4,

We now derive the products of functions ghlS; by continuing the products of functions
on H3 (4.7) to the relevant values of spifisand momenta. We will examine various cases,
according to the nature — discrete or continuous — of thesﬁ@ff;il,m1 and @352@2. For example,
the case whepy, € —% +iR andms, ma € jo + 1+ Z will be denoted” x D*. We will check that
the terms which appear in a given product are those whichlmger by the well-known tensor

product laws fors/(2, R) representations (3.2).

CaseC x C. We should continue, ps, ps from imaginary to real values in eq. (4.7). This
is problematic only when the integrand, viewed as a functibrjs, has poles which cross the
integration line. Suc;-dependent poles of the integrand may come from either tfriee factors.
The poles coming from the second facte;;; are easily seen from eqg. (2.21), and the poles

ms3,ms3

from the other factors are obtained from these by the refiecli; — —j; — 1. All these poles fall

!L et us give the behaviour of certain objects of section 22w (G)|t) = —N(G| — t), [w(G)] = —[G] — 1 and
n(w(G)|tL,tR) = —n(G| —tr, —tR).
2Itis also possible to study the-dependent poles a(f]'[le <I>3nm> directly from the formula (4.5). For example,

%2 has poles aj» + m2 € N. But the coefficient of*? is a combination of'® andg?® of the types(2j2)g>* +
s(j23)g" = %s(p + m2)g*?, where we usegs + m2 € Z (which follows fromjs + 2 € N) and eq. (3.8).
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on the four dashed half-lines in the following diagram, whéepicts thejs complex plane. The
two half-lines on the left correspond to the pole&g)éfl—.

m3,m3

js € —3 +iR
__________________ O O_________________.
—1—3(Ins| — ps) 3 (3] + ps)
—1— 5(Ins| +ps) 3(Ins| — ps)
__________________ O O_________________.

(4.12)

This diagram assumes € ‘R. Whenps moves to real values, let us consider the poles from the
left which may cross the integration line and end up on thetngth js3 € (—%, o0). Such poles
belong to the (possibly empty) setse —1 — Z|ns| & 1p3 — NN (-3, o). Therefore, according

to eq. (4.10), they correspond to functioméz&w in the D73 representations. We deduce the
formula for the products of two “continuous” functions dm.Ss:

3 /
Q) P2 — / djs Pl _ B
mi,m1 = mz,m2 2567‘(’2 —%-‘riR Zl;Il m;, Mg Rﬁgvms ms,—ms3
2 3 ' 1 ’
25672 > <H<1>inm> 2miRes ———@%, 5., (4.13)
i=1 Rmsﬁls

. 1 1 1
]36*17§|n3‘:|:§p37Nﬂ(7§,00)

where the factoe in the discrete term is due to the contribution of the poleb g € (—co, —%).
. /

Notice that the general expression (4.5) for the threetgdainction <Hf:1 <I>{nm> simplifies in

the casgs € —1— 3|n3| £ 3ps — NN (-1, 00) due to formulas of the type of egs. (3.9) and (3.10).

Examples of simplified expressions are:

3 /
<H(I)¥7znmz> Dt —C(j1, j2, J3) K?s(j32) s (j3s) s (4551 s (jizs) ¢7'3"° (4.14)
i=1
gPlgld = gPlgld — 12523 _ 1223
3 /
<H <I>£nm> = 00 J2,a) K7 s(j1)s(jag ) (G )s(ras) 9267 (4.15)
i=1 o

912g31 _ g12g31 _ 921§32 — §21932

CaseD™ xC. After movingp; to real values as in the previous c&se C, we should move; to
—1—32|n1|+3p1 —NN(—3,0). Letus show that no further poles cross the integrationitires.

This vanishes, unlegs? itself has a pole. This shows théﬂ?zl <I>£;%m> has simple poles when both., m2 belong
to —j2 + N, but not when onlyn, does.
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. /
(4.13) during this operation. We are looking for possipledependent poles ié]‘[i’:1 <I>{nm> ,
viewed as a function of;. We use formulas of the type of eq. (3.10) to obtain

3 ! 1

<H @i;ai,mi> 1o da) K257k s ) s 2228 g5 (4 16)
P D1+ s(241)

Potential poles come from factol1 + ji;) in K (4.6) andl'(—1 — ji23)I'(—j3,)(—33;) in

C(j1,72,J3) (4.4), but they are all cancelled by appropriate factors. On the other hand, the

poles from the factorE(1 + j3,)I'(1 + j2,) in K, from the factod’(—ji;) in C(j1, j2, j3), and the

poles of'(—j3,) which come fromg®* andg??, cannot be reached becaug > —3.

This shows that the formula (4.13) still holds for produdtfumctions inD* x C. Of course,
. /
simplified expressions fo<r]_[f:1 i > can be used for both continuous and discrete values of

m;, My
js. We can moreover check that terms correspondingXot actually vanish. This is due to

3 /
Ji _
<H <I>mm> i 0 (4.17)
i=1 ’

which follows from eq. (4.14) if we notice thgt! = ¢>* = 0 in this case due to eq. (3.10). This
equation holds for generic values ff in particular the values$, € —% + ¢R which correspond to

Cr,

CaseD™ x D*. The formula (4.13) for the product of functions still holdit the continuous
term L%HR djz - - - vanishes due to eq. (4.17). Terms corresponding’tot representations also
vanish by the same argument, but the equa(il)_ﬁ?:1 <1>{n mi>, = 0may fail if a D73~

’ Di1-+ Diz+
representation is present, due to poles from the faktdin eq. (4.5). To analyze this matter it is
convenient to start with the identity

i, mi 5(272)5(253)

- L s s s S _
oJi = —C(]l,jg,jg)K2 (]12) (331) (]23) (3123)g13913 . (4.18)
i=1 D72+, DI3~

We then send; to values corresponding to discrete representatibfis™. Due to momentum
conservation we must haye € jo — js + Z. If j; € jo — j3 — 1 — N then a double pole froni™>
cancels the double zero froaf;?;)? and the result is finite. If; € jo — j3 + N then the simple
pole fromC'(j1, j2, j3) does not cancel the double zero, and the result vanishedoithela (4.13)
therefore reduces to

3 /
N L B2 = 252772 > <H <I>¥£i,m,.> QmResR]%@ﬂ_Bm&_m. (4.19)
j3€ji+j2+1+N \i=1 ms3,ms3

CaseD™ x D~. The formula (4.13) for the product of functions still holdsd the analysis of
eq. (4.18) in the previous case determines which terms maiglva NonvanishingD’s+ terms
occur forjs € jo—j1 — 1 —NnN (—%,oo) and nonvanishing)’3:~ terms occur forjs € j; —
j2—1—Nn(—1,00). Depending on the values ¢f, j> we can have eithebss:* terms, orDJs:~
terms, or no discrete terms at all in the cége— jo| < %
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5. Conclusion

At the level of symmetry algebras, the Wick rotation frdifj” to AdSs amounts to a map from
sf(2,C)tosl(2,R) x s¢(2,R), which can be viewed as two different real forms of the sametak
s0(2,C)% = s£(2,C) x s£(2,C). In particular, the Wick rotation maps the continuous reprea-
tion C7 of 5(2, C) to the representatiofj, da C7*@C7 of s£(2, R) x s¢(2, R). The fact that such
an irreducible representation is mapped to a reducibleropbds that the symmetry constraints are
weaker inAdS; than inH;™. Namely, theH;" three-point function should béHf’zl ol o) =
C(j1, j2, j3)H (ji, m;, m;) where H is determined by/(2, C) symmetry; while theddSs three-
point function can in principle bé]‘[g’:1 <I>fnm> = C'(j1, Jo, J3|a1, ao, as)H'(j;, m;, m;) with
m;,m; € a;+7Z, where thest(2, R)x s¢(2,R) symmetry determineH’ but not the;-dependence.

For the full H;” and AdS; WZNW models (and not just their minisuperspace limits), the
assumption that these models are related by Wick rotatieretbre determines part of th&dSs
structure constants (analogs @f) in terms of theH; conformal blocks (analogs dff). This
assumption is therefore rather nontrivial and it should defully justified. The best justification
may come a posteriori, if an ansatz for th€S5 three-point function derived by Wick rotation can
be shown to obey crossing symmetry. Such questions did is# &r the minisuperspace limit,
as the bases of functiormf;w71 on H; and AdSs are related by Wick rotation by definition, and
crossing symmetry amounts to the associativity of the prbdéifunctions on these spaces. But
proving crossing symmetry — or equivalently the assodigtnf the operator product expansion —
certainly is the most important and difficult task in solvitig AdS; WZNW model.
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