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ABSTRACT. We derive the three-point function of th&lS; WZNW model in the minisuperspace
limit by Wick rotation from theH; model. The result is expressed in terms of Clebsch-Gordan
coefficients of the Lie algebr&/(2, R). We also introduce a covariant basis of functions4eibs,
which can be interpreted as bulk-boundary propagators.
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1. Introduction

The AdS3 Wess—Zumino—Novikov—Witten model is interesting in partar due to its string theory
applications. A conjecture for the spectrum of this moded waposed by Maldacena and Ooguri
[1], but the full solution of the model is still missing. Indlsense of the conformal bootstrap, a
full solution means the computation of the three-point fiores of primary fields on the sphere,
and the proof of crossing symmetry of the four-point funaio(Equivalently, the computation of
operator product expansions of primary fields, and the pobtieir associativity.)

The conjectured spectrum of thi&dSs WZNW model is fairly complicated, as it contains
both discrete and continuous series of representatiorfseaftmmetry algebra, and their images
under the so-called spectral flow automorphism. On the dihed, as a geometrical spackiSs is
related by Wick rotation to the Euclidean spa‘@‘, and theAdS3; WZNW model is often assumed
to be related to theHgr WZNW model. The spectrum of the latter model is much simgderijt
contains only a continuous series of representations,rmfd; model has been fully solved [2, 3].
An additional difficulty of theAdS3s WZNW model is that the grougd.Ss, which is the universal
cover of SL(2,R), has no realization as a group of finite-dimensional madrick follows that
writing a simple basis of functions aadSs is more difficult than in the cases 6f.(2, R) or H; .
Similarly, it is in general more complicated to write furmis on the Anti-de Sitter spac&dS,



than on its Euclidean versicﬂj. Some works like [4] which are purportedly abotdS,; actually
deal withH ], thereby avoiding this difficulty (and other ones).

The presence of discrete representations and the lack divéous basis of functions aAdSs
are two difficulties of theddSs WZNW model which also affect its minisuperspace limit (also
known as the zero-mode approximation), where the modetetito the study of functions on the
AdS3 space. It is therefore interesting to solve the model inlihig. We will do this by starting
from the well-understood minisuperspaﬂgL model [5] and using Wick rotation. The main object
we wish to compute is the minisuperspace analog of the apepadduct expansion, namely the
product of functions omdSs. (Equivalently, the minisuperspace three-point funcion

We will start with a study of certain bases of functions 4dS;, SL(2,R) and H (Sec-
tion 2). In particular we will construct functions afid.S; which transform covariantly under the
symmetries, and which can be interpreted as bulk-boundayagators. Then we will study the
Clebsch-Gordan coefficients of the Lie algebfé2, R) (Section 3). Due to the symmetries of the
AdS3 WZNW model in the minisuperspace limit, the products of fiots on AdS; can be ex-
pressed in terms of these coefficients. We will check ther afbtaining these products of functions
by Wick rotation fromH‘;r (Section 4). In conclusion we will comment on the Wick ratatiand
on the problem of solving thddS; WZNW model (Section 5).

2. H, SL(2,R), AdSs and functions thereon

In this section we will review the geometries of the spaligs SL(2, R) and AdSs, and consider
bases of functions on these spaces. WHilg and SL(2,R) can be viewed as spaces of two-
dimensional matricesddSs cannot, and this will make the descriptions of functions 4S5
more complicated.

2.1 Geometry and symmetry groups

Let us start with the grouyL(2, R) of real, size two matrices of determinant one. This group is
not simply connected, since the subgroup of the matrices

9r = (% W7) (2.1)
is a non-contractible loop. Therefore, there exists a usalecovering group, sometimes called

SNL(2,R), which we will call AdSs. If SL(2,R) elements are parametrized using three real coor-
dinates(p, 0, 1) as

(2.2)

[ coshpcosT +sinhpcos@ sinh psin @ + cosh psin 7
| sinhpsin@ — cosh psinT cosh pcosT — sinh pcos |

wheref andr are2r-periodic, thenAdSs is obtained by decompactifying. Elements ofAdS;
can alternatively be parametrized as doubfgts: (g, I) whereg € SL(2,R) and! is the integer
part of . Writing 5~ = I + F, the group multiplication ofAd.S3 can be written as

(9. D)(g', 1) = (9¢', I+ 1"+ F(g)+ F(¢') — Flgg)) - (2.3)



TheU (1) subgroup of the matrices € SL(2,R) decompactifies into aR subgroup of elements
G, € AdSs, which we parametrize as

G- :eXpT(_Ol(l)) . (2.4)

The group structures oldS; and SL(2,R) lead to left and right actions by group multiplication,
inthe AdSs case(G,GRr) - G = GLGGR, which will be symmetries of the models under consid-
eration. More precisely, the geometrical symmetry group bf2, R) is %j“zm, where
we must divide by the centéf, = {id, —id} of SL(2,R) as its left and right actions are identi-
cal. The geometrical symmetry group 4fiSs is 22%:x49% 'where the center alldSs is freely
generated by—id,0) = (p = 0,0 = 0,7 = 7) and therefore isomorphic ®. These geometrical
symmetry groups are not simply connected; their first funefaial groups ar&? in the case of
SL(2,R) andZ in the case ofAdSs. This is the origin of the spectral flow symmetries of the
corresponding WZNW models. (See for instance [1].)

Then ng is the space of hermitian, size two matrices of determinana, evhich can be
parametrized using three real coordinated, 7) as

T 0 o3
b e_'eco.shp e_ sinh p ' (2.5)
e "sinh p e~ 7 cosh p

We have chosen identical nam@gs ¢, 7) for the coordinates o/, and AdSs, thereby defining
a bijection between these two spaces. This bijection gigesto a mapb(p,0,7) — ®(p,0,ir)

from the analytic functions oi; to the analytic functions omdSs, which is called the Wick
rotation. Our bijection however does not relate the mawixs of ;™ and SL(2,R) which we
have given. Notice thakl;" is not a group, rather a group coset, namgfy(2, C)/SU(2). The

geometrical symmetry group &f; is %22,@), whose elements act onh € Hi by k- h = khk',

2.2 Functions:t-bases

In both casesSL(2,R) and H;", the existence of a matrix realization allows us to writeeisasf
functions which transform very simply under the symmetriesthe case ofd;", we can indeed
introduce the following ‘-basis” of functionsb;,(h), parametrized by their spipand isospine:
. 2i +1 , . .
i (h) = (@ DR (D = Ik = e + 9, (), (26)
T

cx+d

where we denoté’ = (25). The set{®}[j € —1 + iRy,z € C} is known to be a basis of
functions onH; [5], in the same sense 48™4|p € R} is a basis of functions oR. Similarly, we
can introduce the followingt*basis” of functionsd}", (g) on SL(2,R):

: 2j +1 b o
o1 (9) = — (1, —tL)g (7)) sign®' (1, —tr)g (') = @7, (9. 99r)
= |(catr + dr)(crts + dp)|¥ sign™ (crtr + dr)(crtr +dr) B4 0 wpping (9) 5 (2.7)

cptp+dr’cptptdp

where we denote;, = (‘;i fli) andgr = (Zg Zi) The parityn € {0, %} is the same for both

actions of SL(2,R) on itself by multiplications from the left and from the rigtgee the factor



sign?(crtr+dg)(crtr +dr)), because the parity characterizes the action of the detogroup
Zs. The se{ @), |j € —1+iRy, (tr,tr) € R%,n € {0, L} JU{{®}7, |j € —1—3IN, (t1,tr) €
R?,7 = j mod 1} is known to be a basis of functions &1L (2, R).

In the case ofAdS3, writing a similar "t-basis* of functions is more complicated. We define
t-basis functionsD{’L‘ftR on AdSs by the assumption that they transform covariantly undefefie
and right actions ofAdSs on itself, in a way which generalizes the transformatiorpprty of the
t-basis functionsb{ﬁm on SL(2,R) eq. (2.7). (ThedAdSs parameterx € [0, 1) generalizes the
SL(2,R) parameter, € {0, %}.) The appropriate generalization of the transformatiapprty has
been written in [6] (Section 4.1); it involves a functidf(G|t) on AdS; x R such thatV (G'G|t) =
N(G'|Gt) + N(GJt) andVn € Z, N((id,n)|t) = n, where ifG = (g,I) = ((¢}),I) then
Gt = gt = b For instance]N (G|t) can be taken as the number of tin@s crosses infinity as
G’ moves from(id, 0) to G, in which caseV (G|t) € Z, and[G] = N(G|t) — $sign(t + 4) — L is
at-independent integer. Then, the axiom dgfr”,  is

o), (GL'GGR) = |(crtr + dr)(cpty + dp)[¥ moW(CLl)=NCrltr)glhe . (G)2.8)

This axiom is obeyed by

@, (G) = 2R el (1, gy )g ()7 2.9
provided the functiom(G|tr, tr) satisfies
n(G;'GGRltr,tr) — n(G|Grtr, Grtr) = N(Grltr) — N(Grltr) - (2.10)
This implies that the function(id|tz, tr) should satisfy
n(id|ty, Gtr) — n(id|G'tr,tg) = N(G7Ytr) + N(G|tr) , (2.11)
which, usingGt = gt = gfj:g and the properties a¥V (G|t), amounts to
n(id|tr, 28) — n(id| 2= tp) = §sign(tn — ) + Isign(tr + 2) - (2.12)

A solution is found to be
n(ld‘tln tR) = %Sign(tlz - tR) ) (213)

thenn(G|tr, tr) — sign(ty, — tg) is the number of timegt, crossegz wheng runs fromid to
G. Let us now study the behaviour ofG|t;,tr) as a function ot ., ¢tz for a generic choice ofr.
Notice thatii(ty, tr) = n(Gltr, tr)+[G]+3 = 3 [sign ((tz — 2)(tr + 2) + %) — 1] sign(tr+
%l) takes valued), +1, and jumps between these values occur on the hyperbola withtien
(1,—tr)g (*#) = 0. These values and these jumps are shown on the following plot

tr +00

______ (2.14)

Al F———————————

tr



We now propose that certain linear combinations of the ionst@{fth can be interpreted as
bulk-boundary propagators. These combinations are

1
j —2ira j 2j
®‘ZtL,tR,N)(G) = /0 dO[ € 2 N(PiL7tR(G) = 5N7H(G‘tL,tR) ‘(17 _tL)g (tf)| J . (215)

We interpret(tz,tr, N) € R x R x Z as coordinates on the boundary44Ss. The action of the
symmetry groupddSs x AdS3 on the boundary is then given by

(Gr,GR) - (tr,tr, N) = (91tr,9rtr, N — N(Grl|tr) + N(GRltr)) , (2.16)

and the behaviour @{’Loth under the action afld.S; x AdS;3 (2.8) implies the following behaviour

j )
of <I>(tL7tR’N).

®l, o (GL'GGR) = |(crtr + dr)(crtr +do)[¥ @ 6o, (@) - (2:17)

2.3 Functions: m-bases

The t-bases of functions behave simply under symmetry transftboms, butt-bases ianr and
AdS3 are not related by the Wick rotation. This is because theirmaalizations (2.2) and (2.5)
on which thet-bases are built are themselves not related by the WickaoatatVe will therefore in-
troduce the more complicated:“bases” of functions, which are better suited to the Wicktionh.
In the case off; , them-basis function@{'ﬂ,m(h) are defined as

), i (h) = / dPx 7T ITMETIT MG () with m—m € Z. (2.18)

The numbersn, m can be written in terms of an integer € Z and a momentunp, which is
imaginary in theH; model:

1 1
m=gn+p) . m=g(-n+p). (2.19)

The explicit expression fob?, .. () is found to be

D(—j + B52)0(—j + 52)
T(jn] + D0(—2j — 1)
X F(—j4 e g e g Gink?p) . (2.20)

<I>¥n,m(h) =—4 e P70 sinhI™ p cosh? p

Notice that this obeys the so-called reflection property

| gt g T@it1)  T(jmU(—j—m)
=R P It J = 2.21
m,m Rm,m m,m ’ Rm,m P(—Q] o 1) P(] 4 1 4 m)r(] 4 1— m) ( )
[2j+1)  T(-j+ 5T () + "57)

D=2 =) 41+ BEypg 41 4 ey

.(2.22)

whereR), . = R}, , dueton =m —m € Z.



We will use the functions orldSs obtained from the above functiortlsfn,m(h) by the Wick
rotationt — 47. In order for the resulting functions to be delta-functiamrmalizable, we now need
to assume the momentuprto be real, instead of imaginary in t#& case. We do not introduce a
new notation for the resulting functions ehiS;, but still call them®?, (G or &7, ..

In contrast ta-basis functionsin-basis functions omd.S; do not transform simply under the
action of theAdSs; x AdSs3 symmetry group. However, they do transform simply underaitteon
of theR x R subgroup made of pai(&+,, , G, ), whereG was defined by eq. (2.4):

B (G, GGry) = e 2GR (@) (2.23)
Notice that the identity>,GG_, = G impliesm — m € Z. (In the particular case FL(2,R),
we have the additional identity,,, = id, which impliesm,m € %Z.) Introducing

a€[0,1) such that m,m e a+7Z, (2.24)

this parametew is identical to the parameter of the t-basis function@{fm (2.9). We will look
for a relation of the type

Bl = [ den (1) ()" [ 7 (1) 0l (229

wherec’® is a normalization factor. We can check that the right-hadd ef this relation obeys
the transformation property (2.23), thanks to the behaveauy (2.8) of<I>{"L°ftR. To see this it is
useful to notice that the integrand in eq. (2.25) is contusuthrought;, = oo andtr = oo, as can

be deduced from the behaviour of the phase fagttie™(liz-tr) of ©)%,  which is depicted in
the diagram (2.14). This makes it possible to perform tetitis of the variableg,, o r such that
tr,r = tan 2o g. The normalization factor’ is easily computed in the limjg — oo, where

the dependences of the integrandtgrandit i factorize. We find
4% sin w25

oo =

~ sin7(j —a) sin7(j +a) (2.26)

3. Representations and Clebsch-Gordan coefficients

3.1 Representations o&/(2, R)

The minisuperspace limit of the spectrum of théS; WZNW model is the space of delta-function
normalizable functions omdSs. It is subject to the action of the geometrical symmetry grou
AdS; X445 and therefore of its Lie algebre/(2, R) x s£(2, R). Three types of unitary represen-
tations ofs/(2,R) appear in the minisuperspace spectrum: continuous repiedess, and two
series of discrete representations. Continuous repeasam C/“ are parametrized by a spjn
and a numben: € [0, 1) such thatn € « + Z. Discrete representatioris’-* are parametrized by
aspinj € (—3,0), and their states obey € +(j + 1+ N). All these representations ef(2, R)
extend to representations of the gradgSs. However, only representations with € %Z, namely
CH with o € 37 and D7+ with j € N, extend to representations of the gratip(2, R).



More precisely, given the/(2, R) algebra with generator$?, J* and relationg.J?, J*] =
+J%, [JF,J7] = —2J3, the spinj is defined by(.J?)? — 3(JTJ~ +J~JF) = j(j + 1), and the
stategm) are such that

IBm)=mim) , JTm)=m+j+Dm+1) , J|jm)=(m—j—1)m—1).(3.1)

These conventions are incompatible with the unit normadineof the states (which would mean
(m|m') = dy,,ms), however they will turn out to agree with the behaviour of ﬁmctions@f'nvm
eqg. (2.20).

The tensor product laws fe(2, R) representations are well-known. They are equivalent to
knowing the three-point invariants, which we schematjcd#pict here in the cases when they do
not vanish:

Ao .

CeCxC D-eCeC D ®Dt®C DTeDt® D™

For instance, the first diagram means that any continuousseptationC?* appears twice in
the tensor producf’»*t @ C722 of two continuous representations. (Theconservation rule
a = aj+as mod 1isimplicitly assumed.) The fourth diagram means that™ ¢ D/v+gDJ2+,
(The rulej € j; + jo + 1 + Nis implicitly assumed.) The fourth diagram also means fhat
may appear once i/~ ® D’2%, (This happens if € jo — j; — 1 — N.) We omit the diagrams
obtained by reverting the arrows in the second and fourtgrdias, namelyD+ @ C @ C and
D~ ® D~ @ D*.

3.2 Clebsch-Gordan coefficientsm basis

We will rederive the tensor product rules by studying thebSth-Gordan coefficients. These
coefficients are the three-point invariants, viewed astfans C'(j1, jo, js|m1, ma, m3) subject to
the equations

3 3 3

> (mi+ i+ D)Cmi+1) =Y (mi —ji — 1)C(m; — 1) = > mC =0. (3.3)

i=1 i=1 i=1
It is of course possible to prove a priori that these equatare obeyed by the three-point function
<]‘[f:1 <I>2nm> = [4as, G TT5=; @2, (G). Todo this, we would introduce a realization of the
Lie algebras/(2,R) as first-order differential operatof3* wrt p, 6, 7, such thatD+<I>fmm(G) =
(m 4 j + 1), 1 (G), D™}, 7(G) = (m — j — )®}, 7(G) and D3®;, . (G) = m®, (G).
Then eq. (3.3) would follow from the identit@"{i’:1 @{,ﬁbi,mi(G)> = <Hf:1 @ﬁ;’bhmi(GLG)>.
We however abstain from doing this, as we will later expiycdompute the three-point function
< ;3:1 <I>£nm> and write it in terms of solutions of the equation (3.3).

Given three irreducible representationssét2, R), there exist zero, one or two linearly in-

dependent solutions of the equation (3.3). In the case ektkpntinuous representations, the
momenta(m;, m2) belong to a two-dimensional lattice of the tyﬂf:l(ai + Z) (with of course



ms = —my — my), and the coefficientsr; £+ (j; + 1) never vanish. In this situation, a solution

of eg. (3.3) is determined once the value<bt two neighbouring points of the lattice are given.

In the case when at least one representation is discretepsayj; + 1 + N, the lattice becomes

semi-infinite in one direction, and a solution is determinade the value of’ at one point is given.
Let us introduce the function

G<ae bfc> _T@rore . <a b e

= 1Ta+n(b+n)T(c+n)
1) S22 Termgen 0 ©9

n=0

where the sum converges provided- b+ ¢ —e — f < 0, and the poles of7 are the same as those
of I'(a)T'(0)I'(c)I'(e + f — a — b — ¢). Knowing the identity

abc a+1bec abec—1
(a—e—l—l)G(ef>—|—(b—f)G<ef+1>—|—(c—1)G<e_1f>:0, (3.5)

we can use this function for writing a solutions of eq. (3.3):

_.+m _._m _.1
C=6(mi+mg+mg) G| 2T TS T8 ) sy 4 my 4 mg)g%(3.6)
1+71—Jg+ma 1+ 41 —Jo—m3

which is well-defined provided@ + j123 > 0, where we use the notatiorig,;s = j1 + jo + j3 and
jas = ja + j3 — j1. Of course five other solutions of the typ& with a # b € {1,2,3} can be
obtained by permutations of indices. These solutions arénearly independent, as can be shown
with the help of the identity

abc) aa—e+1la—f+1
s(b)s(c—a)G<e f) —s(e—a)s(f—a)G< a—bitl a—c+1>

~s(e—e)s(c — f)G(ccc__ae:llCC__bf :11) ., (3.7)

wheres(z) = sin wx, and we will also use(z) = cos mz. Thus we obtain

921 932 1 S(j2+7('§2)5(j:3;7’L3) s(j3+m:z)_3(j3ﬂ)'1+m2)
) [13 A [13 < v B J1+‘m1. s J1+7rl.1 > . (3 8)
12 23 ) -3 s(jg—mg)s(jz—j1—m9) s(jo—mo9)s(jz+mg) "
g g S(j12) J3 3)8(J3—J1 2 J2 2)sU3 3

s(j1—m1) s(j1—m1)

Together with the other identities obtained by permutirgyitidices, this shows that at most two of
the solutiongy® are linearly independent.

Due to our conventiory € (—3,0) for discrete representations, we havg > —3 for all
representations of interest. This ensures that the sum.irf3ed) converges, so that’ is well-
defined provided the summand is finite, which occurs unli&ssj, + m)I'(—j, — m)I(—355,)
has a pole.

CaseC®C ®C. Inthis case, two given solutions sg3?, ¢° are linearly independent, and they
provide a basis of the two-dimensional space of invariants.



CaseD™ @ C ® C. We assume for example, = —jo — 1 — ¢ with / € N. Some relations of
the type of eq. (3.8) simplify, and we find

21 _ (_1)53(.7:3 + ms)gzs _ _S(Lf?,) 8- (1) 3(j3 + mg) 3@%_3) 13 (3.9)
s(j1 +ma) 5(272) s(j1 +ma1) s(2j2)

Since the space of invariants is one-dimensional, the twairing functionsg;'? andg?? must also

be proportional to the other four. However, this propordidy relation is not very simple, as can

be seen in the case of the highest-weight state0 wheng'? andg3? fail to become expressible

as products of -functions, in contrast to the other four solutions.

g

CaseD"™ ® C ® C. The situation is completely analogous to the previous céfeassume for
examplemsy = jo + 1 + ¢ with ¢ € N and find

12 _ ¢8(Js —m3) 39 3@%3) 13 _ ¢8(jz — ms) S(J'%s) 31
g =(-1)—"——=g =g = —(—1)"—= g - (3.10)
s(j1 —ma1) 5(272) s(j1 —m1) s(2j2)
CaseD™ ® D~ ® C. We expect no invariants to exist in this case. Let us check #isuming
for examplemsy € —js — 1 — ¢ andmg € —j3 — 1 — £3 with /5, ¢35 € N. Equation (3.9) implies
two incompatible relations betweed' and ¢3!, which must therefore both vanish. An apparent
paradox comes from the non-vanishinggdt, ¢32, g%, ¢'3. However, these functions do not pro-
vide solutions to eq. (3.3), because they become infinitg at —1 or /3 = —1. For instance, if
C(ml, —jg, mg) = 0o, then(m1 +j1 + 1)C(m1 + 1, —jg — 1, mg) + (—jz +j2)C(m1, —jg, mg) +
(m3 + j3 + 1)C(mq,—j2 — 1,mg + 1) = 0 may have an unwanted nonvanishing second term.
Therefore, the analysis gf® agrees with the representation-theoretic expectatiaisthinvariant
exists.

CaseD"™ ® D~ ® C. We assume for exampley = —jo — 1 — ¢5 andmg = j3 + 1 + £3 with
{5, /3 € N. We find the relations

g3 =gl = _3(2j3) 13 _ _3(?j2) 21 _ 3(2"72)3(2.3'3) 23
S(]%) 3(]%3) 3(]%3)3(]%2)
The functiongy'2, %!, ¢%? stay finite for any valueé,, /3 € Z, and therefore provide three propor-
tional invariants. The functiong®! andg'? become infinite if’s < 0 and/y < 0 respectively, so
that it is not a priori clear that they provide invariants.atthey actually do is guaranteed by the
above relations.

(3.11)

CaseD~ ® D~ ® D*. We assume for example; = j; + 1+ ¢, my € —jo — 1 — /5 and
ms € —js — 1 — 3, with ¢4, 02,05 € N. Noticing s(2j2)s(2j3) = s(j%3)s(j3,), we find the
relations

12 _ 23 5(2J3) 13 s(273) 39
SR T s (542
These four proportional functions provide the invarianthis case. In particulag'? andg'3 no
longer become infinite @ = —1 or /5 = —1 respectively, as happened in the case D~ ® C.
The remaining two functiong?!, ¢3! vanish, as they already did in the ca3e ® D~ ® C. Notice
that the selection rulgy € j»+j3+1+N manifests itself ag>* becoming infinite ifj; € jo+j3—N,
due to a series of poles which correspond to those(efjs,).



3.3 Clebsch-Gordan coefficientst-basis

Our m-basis invariantg/® are not symmetric under permutations of the indices, bueth&tion
(3.3) which they solve is. In thebasis, we will now show that there exist natural permutatio
symmetric invariants, and we will relate them to combinagiof theg®® invariants. A similar
analysis was already performed for the Clebsch-Gordarficiesits of SO(2,1) = %Z’R), in the
articles [7, 8]. The representations $0(2, 1) correspond to representationsséf2, R) such that
m € Z, or in other wordsy = 0. We will perform the generalization to arbitrary valueshof

In the t-basis,Ad S5 invariants should be solutions of

3
C{t;}) = C({foidb}) H |ct; + d‘2]ie—2l7raiN(G|ti) 7 (3.13)
i=1

for any AdS3; elementG whose projection ont6'L(2,R) is g = (‘Cl g) Solutions exist provided
a1 + ag + ag € Z, and we will assumer; + as + a3 = 0. The solutions are [9]

C({tl}) — ’tlg‘j:f?’tzg‘j%f"tglngl eiﬂ(a12Signt12+azssignt23+031Signfel) 7 (3_14)

wherea; s, ass, g1 should obey the equatian s — ass = as mod Z and the two other equations
obtained by even permutations thereof. The solutions tb sgoations are

b = (o — aq) + g (3.15)

whereq is an arbitrary constant. (I8L(2,R) we havea, = 1, € %Z and it is more convenient
to adopt the convention,, = 1, + 7, + ag. Equivalently, we can use the above formula provided
we assumey, € %Z.) Let us now apply the change of basis (2.25td¢; }). After the change of
integration variables; = tan % them-basis version o€’ ({t;}) is

3 ™
s (D . -3 . 1 . 2
C({m;}) = H [/ dp; ezm“ol] | sin %@12|J12|Sm %9023|323| sin %9031|313
i=1 7T
% eiw(algsignsin%gplg-i-o@gsignsin%gpgg-{—amsignsin %cpm) ’ (316)

where the integrand has the same valueg;at = andy; = —x. This integral can be explicitly
evaluated by generalizing the computations of [7], and ii@dar using the formula, valid for
p € (—m,7):
o
‘sin %|—2a gimasign sin %gp _ s(a + a)e—imx22ar(1 _ 2a) Z ei(n—i—a)cp

n=—oo

Flat+n+a) ,

3.17
I(l1-a+n+a) )
Thus, we find

C({mi}) = =0(Xm)272 L1 + 5,0 (1 + jag)T(1 + j3;) e w2 Fozstas) gao (3 18)
where we introduce the invariants
g% = m?s(357y — a12)s(3as — aaz)s(33 — as1)
Z F(—%j%z + a2 + n) F(—%j%:; +my + a2 + n) F(—%j%3 —mo + a2 + n)
D1+ 358 +arp+n) D1+ 353 +mi +ara +n) T(1+ L5k —ma+ arp +n)
(3.19)

nel
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which can be expressed in terms of the invariasits(3.6) as
9% = s(3413 — a31)s(fz — az)s(j1 + 1)g”" + s(3473 + az1)s(j1 — a1)s(js + a3)g'*(3.20)

In this formula, g*° depends on the paramteg only throughas; eq. (3.15). There are two
particularly interesting special values @f, namely0 and % In the casexy = 0 thenC({¢;})
and g’ are invariant under permutations. In the cage= 3 thenC({t;}) andg% are odd under
permutations i.e. invariant up to a sign. When the threelagbrepresentations are continuous,
¢" and g% can serve as a basis of the two-dimensional space of intgrillotice that in the case
of SL(2,R) only these two values af, are possible.

4. Products of functions

In the conformal bootstrap approach to théSs WZNW model, all correlation functions can in
principle be constructed from the knowledge of three objetite spectrum, the two-point corre-
lation functions on a sphere, and the operator product esipas — or equivalently the three-point
correlation functions on a sphere. We will now determine¢hebjects in the minisuperspace limit.
We first recall their definitions. Given functions®?(G) on AdSs, the corresponding correlation
function is(J]_, ®') = [ dG []}_, ®'(G) wheredG is the invariant measure. {fb'};cg form
an orthogonal basis of the spectrum (thafd®7) = 0 if ¢ # j), the product of functions is

schematicallyp'®? = Yies %qﬂ. This product is obviously associative and commutative.
The functionsﬁ%,m(G) on AdSs are related to corresponding functiahﬁlvm(h) onH; bya
Wick rotation, and therefore their correlation functiorm de deduced frorﬂgr correlation func-
tions by that Wick rotation. This will involve some subtksj because the discrete representations
which appear in the minisuperspace spectrumdd’s’s are absent iIH;'. But let us first review

the products of functions oH; .

4.1 Products of functions onH,;

The minisuperspace spectrum]ﬁfﬁ is generated by the functions
{®] (h)]j € -1 +iR, n€Z, peiR}. (4.1)

The correlation functioné]‘[?:1 cI)ifiva.> = [dh [T}, @%ivpi(h) are obtained by integrating prod-
ucts of such functions with respect to the invariant meagtre: sinh 2p dp df dr. The two-point
functions can be computed from the expression (2.2@;0f(h):

(@1, ) = 12872001000 6(p + 1) [6G + 7' + 1) + R0 7)), (42)

n,p = n’p

where the reflection coefﬁcierR,{,p was defined in eq. (2.21). A similar direct computation of
the three-point function seems complicated. Instead, Wenake use of the knowm-basis three-
point function [5]

3
s, . . . ;3 -1 -2
<H‘I’?&> = C(j1, jo, ja) w1212 a3 |28 5 |31 | (4.3)
=1

L(—732) 0 (—jga)T (=331
T(—2j1 — DT(—2j2 — D0(=2j3 — 1) (4.4)

C(j1.j2, j3) = 7 °T(—ji2s — 1)

—11 -



The transformation to thex-basis (2.18) can be performed thanks to an integral foriufaukkuda
and Hosomichi [10]. The result can be written in terms of theb8ch-Gordan coefficienig?
(3.6):

i=1

3
<H‘I’3nm> = C(j1. j2, j3) 0P (Xmy) K2s(j15)?s(j35)?

5(2j2) o3 s(271
« g8 + ((j ))gzggszJr (251) g3 4+ gB35%2| | (a.5)
13

whereg® denotes;®® with m; replaced bymn;, and we introduced the factor

1 . . .
K= Pf(l +J%2)F(1 +J%3)F(1 +J213) . (4.6)

It can be checked that the two- and three-point functiong s behaviour under reflection which
is expected from the behaviour %,m (2.21). Now, using the three-point function, products of
functions onH; can be written as

3 /
- 1 ot 1
P Py = 2567r2/ i < CI)gnmi> R @
2

i=1 m3,m3

MMy My, my
The invariance of the three -point function (4.5) under pgations of the indices is not man-
ifest, but can be checked using linear relations betweerythesuch as eq. (3.8). It seems
that a reasonably simple, manifestly permutation-symmeixpression exists only in the case
m;,m; € n; + Z with n; € {0, 3}, which corresponds to functions (2, R). In this case,
we can use the invariang@,g% (3.20), and we find

where we use the notatic<rf[ o > = 6@ (my + ma + m3) <Hf’:1 o

Y1+ 3371+ jag)y(1 + j3)
(I)m“mz ﬂoC(]17,727]3) o mL,O(S m;,0 X
<H > 2 om0t 12, sGi +m)
(%123 + €
x 2 : : 9g° . (48)

ce(0.1} s(35% +m3 + €)s(333 +m + €)s(355 +m2 +€)
)

where we use/(z) = F(Fl(fl). From this, we can reconstruct thdasis three-point function

3 i 927123 3

11 rn ) = 5 Ol g2, 33) H c(ji —

1=1 ]

|t t ‘j§2 |tL tR J2s ‘t t |131 z7r[n3(51gnt12+51gnt12)+n1 (signthy +signtdh ) +no (signtdy +signt§‘1)] >
12712 23 31%31

. . . . 2
Z s(3j123— €352 +m3+€)c(3da+m+e)c(3i5 +ma+e) (signtiptibththhth t5)™
ec{0,3}
(4.9)
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Comparing this formula to thél;™ three-point function in the-basis eq. (4.3), we obtain a con-
firmation of the lack of a simple relation between théasis inH;™ and thet-basis inSL(2,R) or
AdSs.

In the more general case of functions 453, the three-point function can still be expressed
in terms of the invariantg® andg%, but the formula is more complicated than eq. (4.8) and in
particular the “mixed” termg®g2 andgz g° are present. Their absence in the casgbf2, R) can
be attributed to the exterior automorphisnof SL(2,R), namelyw(g) = (§ 2 ) g (§ % ), which
is such thafb}”, (w(g)) = (—1)*1®”7 _, (g). Inthe case ofidSs this action still exists and can

be expressed as(p, 0, 7) = (p, —0, —7). But it does not act simply on the functi@’{’chtR(G).l

4.2 Products of functions onAdSs

Functionscbﬁ'n,m on AdS5 are obtained from the corresponding functionsfd&g‘i by performing
the Wick rotationr — ¢7 and continuingp = m + m from iR to R. If we do not modify the
value of the spiry € —% + iR, this yields functions transforming in the continuous esgntations
of AdSs x AdSs, namely®), . € C7* ® C* wherem,m € a + Z. We may in addition

obtain functions transforming in the discrete repres@riaiy continuingj to real values such that
m,m € +j & Z. More precisely, function®?, ., € D3* @ DJ* correspond to

jE€(—%,00) and m,m € £(j +1+N) & —j — 1 — i|n| £ Jp € }%,10)
or  j€(—o0,—1) and m,m € £(—j+N) & j—In|tipeN. (4.11)

These two possibilities are related by the reflectior» —j — 1 and they are equivalent. We will
only consider the first possibility, because our invariayis(3.6) are well-defined foR;j > —%.
The set of these discrete and continuous functions is knovgenerate the space of functions on
AdSs3; in particular this set is closed under products, as we \iilak below.

We will now derive the products of functions ohilSs by continuing the products of functions
on ng (4.7) to the relevant values of spirisand momenta. We will examine various cases,
according to the nature — discrete or continuous — of thesfigffi , and®J2, . . For example,
the case whepy, € —% +iR andms, ms € j2+ 1+ Z will be denoted” x D*. We will check that
the terms which appear in a given product are those whichlianeet by the well-known tensor

product laws fors/(2, R) representations (3.2).

CaseC x C. We should continue, p2, ps from imaginary to real values in eq. (4.7). This
is problematic only when the integrand, viewed as a functibriz, has poles which cross the
integration line. Suc;-dependent poles of the integrand may come from either tfriee factors.
The poles coming from the second facteng are easily seen from eq. (2.21), and the poles

msg,m,

from the other factors are obtained from theée by the reflecti; — —j; — 1. All these poles fall

!Let us give the behaviour of certain objects of section 22w (G)|t) = —N(G| — t), [w(G)] = —[G] — 1 and
n(w(G)ltr,tr) = —n(G| — tr, —tr).

2Itis also possible to study the-dependent poles a(f]_[f:l <I>£,Lm> directly from the formula (4.5). For example,
g** has poles ajz +m» € N. But the coefficient ofj** is a combination of'® and¢** of the types(2j2)g** +
s(ji3)g" = %s(g’g +m2)g*?, where we usegh + m2 € Z (which follows fromjs + m2 € N) and eq. (3.8).

This vanishes, unlegg? itself has a pole. This shows théﬂle @Zjli,mi> has simple poles when boths, 2 belong
to —j2 + N, but not when onlyns does.

— 13—



on the four dashed half-lines in the following diagram, whaepicts thejs complex plane. The
two half-lines on the left correspond to the poleségf—.
mg,m3

j3 € —% +iR
__________________ O O_________________.
—1 = 5(In3| — ps) 5(Ins| + p3)
(4.12)
—1— 2(|ns| + ps) 2(Ins| — ps)
__________________ O O_________________.

This diagram assumes € ‘R. Whenps moves to real values, let us consider the poles from the
left which may cross the integration line and end up on thetngth js; € (—%, o0). Such poles
belong to the (possibly empty) seise —1 — |ns| + p; — NN (-3, 00). Therefore, according

to eq. (4.10), they correspond to functio@%’mﬁ3 in the D73+ representations. We deduce the
formula for the products of two “continuous” functions dm.Ss:

3 !/
QI P2 :_/ djs Pli ‘ ol
mi,mi - ma,m2 2567‘(’2 —%-‘riR 21;11 mg,m; R%S’mg ms,—ms
2 3 ! 1 ’
+ 25672 Z <H<I>%Z—,mi> 2miRes J3 qﬂ—gm&—mg , (4.13)
=1 R ms

. 1 1 1
336—1—§|n3\:|:§p3—Nﬂ(—§,oo)

where the facto? in the discrete term is due to the contribution of the polehyg € (—oo, —%).

. /
Notice that the general expression (4.5) for the threetgfaimction <H§:1 @%ivm) simplifies in
the casgz € —1— 3|n3|+3p3 — NN (—3, co) due to formulas of the type of egs. (3.9) and (3.10).
Examples of simplified expressions are:

3 /
< q)£n1%> Diat —C(j1, J2: J3) K5 () s (jaz) s (431 ) s (ji2s) g*' g (4.14)
1=1
921913 — §21913 — 912g23 — §12923 ,
3 /
<H @inm> o= O g2 ) KPs(j12)s(jas)s(75)s(nes) 9257, (4.15)
i=1 '

912531 = §12g31 — g2 %2 — g2 42

CaseD™ xC. After movingp; to real values as in the previous c&se C, we should move; to
—-1-— %]nl\ + %pl —-NnN (—%, 00). Let us show that no further poles cross the integrationihrm/].
(4.13) during this operation. We are looking for possipledependent poles ié]‘[g’:1 <I>inm> ,
viewed as a function of;. We use formulas of the type of eq. (3.10) to obtain

1

3 !/
i L . ) . N _
H <I>¥nm = C(]l»]27]3)K23(]%2)8(]%3)3(]§1)3(]123) (‘72.3) 975> . (4.16)
paiey D1+ s(241)
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Potential poles come from factofy1 + ji;) in K (4.6) andl'(—1 — j193)0(—j35)T(—35%,) in
C(j1,j2,73) (4.4), but they are all cancelled by appropriate factors. On the other hand, the
poles from the factorE(1 + j3,)I'(1 + 52, ) in K, from the factod’(—ji;) in C(j1, j2, js), and the
poles ofl'(—j34) which come fromg®* andg®?, cannot be reached becaugg > —3.

This shows that the formula (4.13) still holds for produdtéunctions inD* x C. Of course,

!
> can be used for both continuous and discrete values of

mg,m;

simplified expressions fo<r]_[f’:1 P
j5. We can moreover check that terms corresponding’to actually vanish. This is due to

3 /
Ji _
<| | <I>mm> e O (4.17)

i=1

which follows from eq. (4.14) if we notice thagt! = ¢>* = 0 in this case due to eq. (3.10). This
equation holds for generic values ff in particular the valueg, —% + ¢R which correspond to
iz,

CaseD™ x D*. The formula (4.13) for the product of functions still holdigit the continuous
term f_%HR djs - - - vanishes due to eq. (4.17). Terms corresponding’tot representations also
vanish by the same argument, but the equa(ib_[f:1 <I>ﬁn m>/ = 0may fail if a D/~

’ Di1+ Diz+
representation is present, due to poles from the faktdin eq. (4.5). To analyze this matter it is
convenient to start with the identity

3 / .3 \2 .2 \2 1 .
i L s(Ji2)”s(J31)"s(Jag)s(J123) 1313

ol = -C K? . (418
<i:1 mm> Dizt D (j1,72,73) 5(22)5(2js) g9°g (4.18)
We then sendj; to values corresponding to discrete representatiofist. Due to momentum
conservation we must hayg € jo — js + Z. If j; € jo — j3 — 1 — N then a double pole fronk?
cancels the double zero froaf;?;)? and the result is finite. If; € jo — j3 + N then the simple
pole fromC'(j1, j2, j3) does not cancel the double zero, and the result vanishedoithela (4.13)

therefore reduces to

3 /
N B = R Z < <1>£,Lm> 2mRest3 OB - (429)
1

Jj3€j1+jo+1+N \i= ms3,ms3

CaseD™ x D~. The formula (4.13) for the product of functions still holdsd the analysis of
eq. (4.18) in the previous case determines which terms maiglva NonvanishingD’s+ terms
occur forjs € jo—j1 — 1 —NnN (—%,oo) and nonvanishing)’3:~ terms occur forjs € j; —
j2 —1—Nn(—1,00). Depending on the values gf, j> we can have eithebss:* terms, orDJs:~
terms, or no discrete terms at all in the cége— jo| < %

5. Conclusion

At the level of symmetry algebras, the Wick rotation frdfiy” to AdS; amounts to a map from
sf(2,C)tosl(2,R) x s¢(2,R), which can be viewed as two different real forms of the sametah
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s0(2,C)% = s£(2,C) x s£(2,C). In particular, the Wick rotation maps the continuous reprea-
tion CV of s¢(2, C) to the representatiofy, da C*@C7 of s¢(2,R) x s£(2, R). The fact that such
an irreducible representation is mapped to a reducibleropbas that the symmetry constraints are
weaker inAdS; than inH;™. Namely, theH;" three-point function should b<e]_[f:1 <I>ﬁnm> =
C(j1,J2,73)H (ji, mi, m;) where H is determined by/(2,C) symmetry; while theddS; three-
point function can in principle bé]‘[f’zl @ﬁnm> = C'(j1, 2, j3la1, az, az) H'(j;, m;, m;) with
m;, m; € a;+7Z, where thesf(2,R) x s¢(2, R) symmetry determineH’ but not then;-dependence.

For the full ng and AdSs WZNW models (and not just their minisuperspace limits), the
assumption that these models are related by Wick rotatieretbre determines part of th&lSs;
structure constants (analogs @f) in terms of theH;™ conformal blocks (analogs dff). This
assumption is therefore rather nontrivial and it should defully justified. The best justification
may come a posteriori, if an ansatz for th€S5 three-point function derived by Wick rotation can
be shown to obey crossing symmetry. Such questions did is® Br the minisuperspace limit,
as the bases of functior@l,m on H; and AdSs are related by Wick rotation by definition, and
crossing symmetry amounts to the associativity of the prbd@ifunctions on these spaces. But
proving crossing symmetry — or equivalently the assodigtnf the operator product expansion —
certainly is the most important and difficult task in solvitng AdSs WZNW model.
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