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Abstract. We deal with blind signal extraction in the framework of a
convolutive mixture of independent sources. Considering so-called ref-
erence signals, we generalize former identifiability conditions. Based on
this result, we propose to incorporate some a priori information in the
references. We show the validity of reference based contrast functions in
two semi-blind situations. The results are confirmed by computer simu-
lations.

1 Introduction

This paper deals with the problem of source extraction in the general case of
a convolutive mixture. This issue finds applications in many contexts such as
blind equalization for digital communication signals,. . . Moreover, this problem
is a key component in blind source separation methods based on a multi-stage
(or iterative) approach (often called deflation [4, 5]).

One interesting way to tackle this problem consists in optimizing an adapted
criterion called contrast function. However, finding identifiability conditions which
state the precise context where source signals can be extracted remain important.
This paper considers the above two points.

In this context, reference based methods have recently been introduced [1,
2]. They consider a reference signal which provides a supplementary degree of
freedom and which can be used in different ways. Here we propose to incorporate
some a priori information in the reference signal and we show its effectiveness.
New identifiability results which generalize former conditions on the reference are
first proposed. Then, we show the validity of reference based contrast functions
in two semi-blind interesting situations. Finally, computer simulations illustrate
our results.



2

2 Problem statement

2.1 Mixing model

We consider a Q-dimensional (Q ∈ N, Q ≥ 2) discrete-time signal which is called
vector of observations and denoted by x(n) (in the whole paper, n stands for
any integer: n ∈ Z). It results from a linear time invariant (LTI) multichannel
system {M} described by the input-output relation:

x(n) =
∑

k∈Z

M(k)s(n − k) , {M}s(n), (1)

where M(n) is the sequence of (Q,N) impulse response matrices and s(n) is a N -
dimensional (N ∈ N

∗) unknown and unobserved column vector, which is referred
to as the vector of sources. The multichannel deconvolution problem consists in
estimating a multivariate LTI system {W} operating on the observations, such
that the vector y(n) =

∑
k∈Z

W(k)x(n − k) , {W}x(n) restores the N input
sources. Different situation can occur depending on context: when no information
is available on the mixing system and when the sources cannot be observed, the
problem is referred to as the blind source separation (BSS) problem. On the
contrary, when some information is assumed to be known on the sources or on
the mixing system, the problem is sometimes referred to as semi-blind source
separation (S-BSS).

The matrix transfer function M[z1] of the mixing channel is given by the
following z-transform (where z1 is used instead of z for reasons that appear
later)

M[z1] =
∑

n∈Z

M(n)z−n
1 . (2)

A similar definition holds for the matrix transfer function W[z1] of the separator
{W}. We define the combined mixing-separating (N,N) LTI filter {G} by its
impulse response G(n) =

∑
k∈Z

W(k)M(n − k).
In an iterative approach, the sources are extracted one by one. We consider

one row of the separator {W}, which is a (1, Q) LTI row filter {w} with output
y(n) given by:

y(n) =
∑

k∈Z

w(k)x(n − k) , {w}x(n). (3)

Similarly, {g} denotes the (1, N) row filter given by the row of {G} which cor-
responds to {w}. We have then:

y(n) =
∑

k∈Z

g(k)s(n − k) , {g}s(n). (4)

We say that the separation is achieved when only one component of {g} is non
zero, say the i0th:

{g} =
(
0, . . . , 0, {gi0}, 0, . . . , 0

)
. (5)
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When the source signals are assumed to be temporally i.i.d. (independent and
identically distributed) signals, a more restrictive separation condition is consid-
ered. In this case, {g} should satisfy the following condition in addition to (5):

∃l ∈ N : gi0(k) = 0 if k 6= l and gi0(l) = α ∈ C
∗ (6)

The parameters i0, l, and α correspond respectively to the well-known indeter-
minacies of BSS (or S-BSS): permutation of the sources, delay and amplitude
factor. In the case of non i.i.d. sources, a filtering ambiguity is included by spec-
ifying no constraint on {gi0}.

2.2 Reference based separation

In order to be able to solve the BSS or S-BSS problem, we introduce the following
assumption on the sources:

A1. The source vector components si(n), i ∈ {1, . . . , N} are mutually indepen-
dent, stationary and zero-mean processes with unit variance.

In addition, we assume that there exist an additional signal r(n), which is referred
to as a “reference” signal. This reference signal is used in order to facilitate the
source separation and the following assumption is made:

A2. The signals si(n), i ∈ {1, . . . , N} and r(n) are jointly stationary up to the
fourth order.

It has been shown that r(n) can generally be constructed from the observations.
The corresponding constraints on r(n) being quite weak, an efficient BSS proce-
dure has been proposed based on the maximization of a reference based contrast
function [1, 2]. In the following Section, we give general conditions on r(n) so
that the extraction of a particular source is allowed. Furthermore, it is rather
natural to use the reference signal in a S-BSS context: we indeed propose in
Section 4 to include in r(n) some a priori information on the source which is
being extracted. The validity of the corresponding separation criteria is proved.

3 Generalized identifiability conditions

Higher order statistics We consider higher order cumulants and define the
following fourth order cross-cumulant:

Cr
sisj

(n) = Cum {si(n), sj(n − n1)
∗, r(n − n2), r(n − n2)

∗} . (7)

Note that it exists and depends on n = (n1, n2) only according to assumption
A2. We consider a multidimensional z-transform of order two w.r.t. the variables
n = (n1, n2). It is defined by:

Cr
sisj

[z] =
∑

n∈Z2

Cr
sisj

(n)z−n1

1 z−n2

2 (8)

where z = (z1, z2) ∈ (C∗)2. For the signal x(n), the cumulants Cr
xixj

(n) and
their respective z-transforms Cr

xixj
[z] are defined similarly to the definitions

given by (7) and (8). Let us introduce the matrices Cr
x
[z] and Cr

s
[z] whose (i, j)

components are Cr
xixj

[z] and Cr
sisj

[z] respectively.
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Cumulant decomposition Using the multilinearity property of cumulants, it
can be verified that the following decomposition holds:

Cr
x
[z] = M[z1z2]C

r
s
[z]M[z−1

1 ]
H

. (9)

Second order statistics appear formally as a particular case of the preceding
results. When there is no reference signal, (7) corresponds to the correlation for
which we adopt the specific notation:

Γsisj
(n1) , Cum {si(n), sj(n − n1)

∗} Γs(n1) =
(
Γsisj

(n1)
)
(i,j)∈{1,...,N}2

.

Corresponding to (8), the power spectral matrix of the sources is defined by:

Γs[z1] ,
∑

n1∈Z

Γs(n1)z
−n1

1 . (10)

Note that contrary to (9), z2 does not appear here. Similar notations hold for
the observations x(n) (Γx(n1) and Γx[z1] respectively). Similarly to (9), we have
the well-known relation:

Γx[z1] = M[z1]Γs[z1]M[z−1
1 ]

H

. (11)

Identifiability condition Based on (9) and (11), the following general identi-
fiability result can be proved. The proof proceeds along similar lines as the one
in [3] and it is not provided because of lack of space.

Proposition 1. Assume that

A3. the matrix Cr
s
[z] is diagonal, and the first diagonal element of Cr

s
[z] is a

function distinct from all other diagonal elements.

Then, the first source of the mixture is identifiable in the following sense: for
any N × Q matrix W[z1] such that the N × N combined channel-equalizer z-

transform matrix G[z1] = W[z1]M[z1] is irreducible, if W[z1]Γx[z1]W[z−1
1 ]

H

and W[z1z2]C
r
x
[z]W[z−1

1 ]
H

are both diagonal, then:

G[z1] = P




α 0 ... 0
0...
0

Q̃


 (12)

where α ∈ C, α 6= 0 and P is a permutation matrix. In addition, Q̃ is a unitary
matrix.

The above result corresponds to the possibility of extracting the first source.
Indeed, if P is the identity matrix, the first row of the above G[z1] is such that
the corresponding row LTI filter satisfies both (5) and (6).
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4 Contrast functions

4.1 BSS contrast functions

A commonly used approach in BSS consist in finding criteria, which yield separa-
tion when they reach their maximum value: such criteria are by definition called
contrast functions. The modulus of the fourth-order auto-cumulant is one of the
most popular contrast [4, 5]. In [1], a more general expression of the following
contrast has been introduced:

Cr{y(n)} , |κr{y(n)}| where: κr{y(n)} , Cum {y(n), y(n)∗, r(n), r(n)∗} (13)

with r(n) the reference signal. It has been proved that (13) is a valid contrast
under the constraint E

{
|y(n)|2

}
= 1 and additional constraint on the reference

signal r(n).
Consider the specific situation where the reference r(n) depends only on

the source signal which is extracted (say s1(n)) and is independent on the other
source signals. One can then see that only the first element of the matrix Cr

s
[z] is

non zero and condition A3 of Proposition 1 is satisfied. This situation should thus
be very favorable in order to extract s1(n) and we illustrate two such situations
of interest. Of course, in such a situation, the original permutation ambiguity is
reduced and necessarily, the first source is extracted, that is i0 = 1 in (5)-(6).

4.2 S-BSS contrast function: information on the signal phase

We consider in this paragraph the situation where the reference signal reads:
{

r(n) = ε(n) s1(n)
|s1(n)| where:

|ε(n)| = 1 and ε(n) is independent of the source signals.
(14)

This situation corresponds to the case where the reference contains some infor-
mation on the phase of s1(n). This information is corrupted by the perturbation
process ε(n) which randomly changes the phase.

Lemma 1. In the case of i.i.d. source signals, if r(n) is given by (14), we have
(where ε and s1 denote ε(n) and s1(n) for readability):

Cr{sj(n − k)} =





0 if (j, k) 6= (1, 0),

|E {ε} |2
[∣∣∣E

{
s2

1

|s1|

}∣∣∣
2

+ |E {|s1|} |2
]

if (j, k) = (1, 0).
(15)

Proof. For (j, k) 6= (1, 0), the equality κr{sj(n − k)} = 0 follows from indepen-
dence and the vanishing property of the cumulants. Now, if (j, k) = (1, 0), by
developing the cumulant in term of moments, we obtain:

κr{s1(n)} = E
{
|s1|2|ε|2

}
− E

{
|s1|2

}
E

{
|ε|2

}
−

∣∣∣∣E
{

ε
s2
1

|s1|

}∣∣∣∣
2

− E {ε|s1|} |2

The result then follows from the independence of ε(n) and s1(n) and after sim-
plification. ut
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We can now state the following result:

Proposition 2. Considering the reference signal given by (14), the criterion Cr

in (13) is a contrast function for i.i.d. sources under the condition E {ε(n)} 6= 0.
In addition, the source identified by Cr is s1(n).

Proof. Note that, except in the degenerate case where s1(n) = 0 almost surely,
Cr{s1(n)} > 0 when E {ε(n)} 6= 0. The proposition then follows from Lemma 1
and a straightforward application of [1, Prop. 1]. ut

4.3 S-BSS: information on the signal modulus

This paragraph is concerned with the case where the reference signal has the
same modulus as s1(n) but a random phase. All the results and comments in
the previous section are adapted hereunder. More precisely, the reference signal
reads:{

r(n) = ε(n)|s1(n)|
|ε(n)| = 1, E {ε(n)} = 0 and ε(n) is independent of the sources.

(16)

Lemma 2. In the case of i.i.d. source signals, if r(n) is given by (16), we have
(where ε and s1 denote ε(n) and s1(n) again for readability):

Cr{sj(n − k)} =

{
0 if (j, k) 6= (1, 0),

E
{
|s1(n)|4

}
− E

{
|s1(n)|2

}2
if (j, k) = (1, 0).

(17)

Proof. For (j, k) 6= (1, 0), the equality κr{sj(n − k)} = 0 follows from indepen-
dence and the vanishing property of the cumulants. Now, if (j, k) = (1, 0), by
developing the cumulant in term of moments, we obtain:

κr{s1(n)} = E
{
|s1|4|ε|2

}
− E

{
|s1|2

}
E

{
|εs1|2

}
− |E {εs1|s1|} |2 − E {εs∗1|s1|} |2

The result then follows after simplification, using the independence of ε(n) and
s1(n) and the assumption E {ε(n)} = 0. ut
Proposition 3. Considering the reference signal given by (16), the criterion Cr

in (13) is a contrast function for i.i.d. sources if s1(n) has non constant modulus.
In addition, the source identified by Cr is s1(n).

Proof. Note that, if s1(n) does not have constant modulus, Cr{s1(n)} > 0 since
it is the variance of |s1(n)|. The proposition then follows from Lemma 1 and a
straightforward application of [1, Prop. 1]. ut

4.4 Generalization

As mentioned, the reference signal r(n) defined by (14) or (16) satisfy the con-
ditions of Proposition 1 because it depends on s1(n) only. Obviously, if r̃(n) is
a scalar filtering of r(n), it also depends on s1(n) only. More precisely, one can
see that any scalar filtering of a reference given by (14) or (16) remains a valid
reference signal under the same conditions as the above given ones. Finally, we
would like to stress that the results in Section 4 remain valid in the case of non
i.i.d. sources, although not presented here due to the lack of space.
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5 Simulations

We considered three different kind of sources:

– real valued, uniformly distributed with mean zero and unit variance.
– complex valued, QAM4 and QAM16, that is the real and imaginary parts

are independent taking their values with equal probability in {±1/
√

2} for
QAM4 sources and in {±1/

√
5,±3/

√
5} for QAM16 sources.

For each of the above choices, a set of N = 3 mutually independent and tem-
porally i.i.d. sources have been generated. They have been mixed by a Q × N
randomly chosen finite impulse response (FIR) filter of length 3 and with Q = 4
sensors. We then used the contrast Cr in (13) and the associated algorithm
proposed in [1] to test the effectiveness of our result. The different choices for
r(n) are detailed next. All presented results correspond to averaged values over
1000 Monte-Carlo realizations of the mean square error (MSE) on the estimated
source.

5.1 Information on the signal phase

The original reference r(n) is given by (14), where:

– ε(n) is a binary i.i.d. Bernoulli process with P (ε(n) = 1) = p and P (ε(n) =
−1) = 1 − p in the case of real-valued sources.

– ε(n) = eıθ(n) and θ(n) is uniformly distributed on an interval [−ϑ, ϑ] in the
case of complex-valued sources.

According to Section 4.4, we consider also r̃(n) as a reference, where r̃(n) has
been obtained by a FIR scalar filtering of r(n). The filter have three taps with
randomly driven coefficients. Different values of the parameters p, ϑ and different
sample sizes are considered. The results are reported in Table 1 for real-valued
sources and in Table 2 for complex-valued sources.

One can observe the effectiveness of the separation when p 6= 0.5 and ϑ 6= π:
it should indeed be no surprise that no separation is obtained for p = 0.5 or
ϑ = π since in this case, r(n) is independent of s1(n).

Number
of samples

Reference: r(n) Reference: er(n)↔ “r(n)+filt.”
p = 1 p = 0.9 p = 0.7 p = 0.5 p = 1 p = 0.9 p = 0.7 p = 0.5

1000 0.0078 0.0249 0.1548 1.0780 0.0379 0.0945 0.7079 1.1340
5000 0.0015 0.0050 0.0331 1.0799 0.0130 0.0748 0.2470 1.1303
10000 7.57e-4 0.0025 0.0168 1.0762 0.0073 0.0142 0.1383 1.1335

Table 1. Average (1000 realizations) MSE on the reconstructed source (real-valued
sources with uniform distribution). r(n) is given by (14).
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Sources
Number
of samples

Reference: r(n)
ϑ = 0 ϑ = π

4
ϑ = π

2
ϑ = π

QAM4
1000 5.84e-5 0.0055 0.0334 1.2114
5000 2.11e-6 0.0011 0.0067 1.2160
10000 4.98e-7 5.40e-4 0.0034 1.2119

QAM16
1000 0.0027 0.0087 0.0395 1.2116
5000 5.23e-4 0.0017 0.0080 1.2133
10000 2.63e-4 8.65e-4 0.0040 1.2126

Table 2. Average (1000 realizations) MSE on the reconstructed source (complex valued
sources with QAM4 or QAM16 distribution). r(n) is given by (14).

5.2 Information on the signal modulus

Now the original reference r(n) is given by (16), where:

– ε(n) is a binary i.i.d. process with P (ε(n) = 1) = P (ε(n) = −1) = 1/2 in the
case of real-valued sources.

– ε(n) = eıθ(n) and θ(n) is uniformly distributed on the interval [−π, π] in the
case of complex-valued sources.

Similarly to the previous paragraph, we considered r(n) and r̃(n) as reference
signals, where r̃(n) is a scalar filtering of r(n). The results are showed in Table 3.
The reader can see the effectiveness of our method for uniformly distributed and
QAM16 sources. On the contrary, QAM4 sources have constant modulus and
thus do not satisfy the conditions of Proposition 3.

Sources Uniform QAM16 QAM4

Number of samples 1000 5000 10000 1000 5000 10000 10000

Reference
r(n) 0.0238 0.0045 0.0022 0.0548 0.0100 0.0050 1.2080

er(n)↔“r(n)+filt.” 0.2433 0.0651 0.0408 0.6247 0.1930 0.1190 1.2690

Table 3. Average (1000 realizations) MSE on the reconstructed source. r(n) is given
by (16).
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