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Abstract—This paper deals with the problem of source sepa-
ration in the case where the output of a multivariate convolutive
mixture is observed: we propose novel and generalized conditions
for the blind identifiability of a separating system. The results
are based on higher-order statistics and are valid in the case
of stationary but not necessarily i.i.d. signals. In particular, we
extend recent results based on second-order statistics only. The
approach relies on the use of so called reference signals. Our
new results also show that only weak conditions are required on
the reference signals: this is illustrated by simulations and opens
up the possibility of developing new methods.

Index Terms—Higher order statistics, MIMO convolutive mix-
tures, Blind source separation, MIMO identification, Contrast
functions, Independent Component Analysis, Reference system,
Semi-blind methods

I. INTRODUCTION

The problem of blind source separation has a very large
scope of potential applications such as telecommunications,
array processing, audio processing and biology. This explains
a high interest in the field over the last decades. Numer-
ous achievements have already been accomplished through
the now well-recognized concept of Independent Component
Analysis (ICA), see e.g. [8]. The first extensively studied mix-
ture model was the instantaneous one. However, more recently,
the more general convolutive model has been considered [1],
[9], [14] and successful algorithms have been proposed [16],
[18]. In particular, this has been done through the derivation
of so called contrast functions. Such functions are very useful
since they provide both identifiability conditions and criteria
to be optimized. Classically they are based on statistics of
order higher than or equal to three, which may lead to com-
plicated optimization schemes. To simplify the optimization
step, further improvements, which are based on the idea of
reference signals, have been recently introduced [4], [6], [7],
[12], [13]. In a semi-blind context, the reference signals can
be interpreted as a partial knowledge on the sources: this has
not been fully exploited up to now and it is done in our paper.

Two practical ways to consider the problem of blind identifi-
ability can be found. The first one uses second order statistics
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through matrix algebra decompositions, see e.g. [10], [11],
[17]. The second one uses high order statistics (higher than
three) through contrast functions, see e.g. [9], [14]–[16]. In all
cases, questions about identifiability conditions remain unclear
and particularly the link between the above two points of view.
To a certain extent, the use of reference signals in conjunction
with higher order statistics makes a bridge between different
statistics. This is what we extensively use in the following.

In this paper, the following main novel points are intro-
duced:
• We provide generalized conditions for the identifiability

of a separating system, which include previous conditions
as well as new ones (e.g. spatially dependent sources,. . . ).

• We propose new results which make a clear link between
the ones in [7], [13], which consider contrast functions,
and the one in [11], which consider second order statis-
tics.

• We show that the so-called reference signals can be
used in a semi-blind context under weak condition. The
corresponding simulation results legitimate the interest of
our new approach.

The paper is organized as follows. Section II states the prob-
lem; it also introduces the notations and proves preliminary
results. The main results are then given in Section III. Section
IV details situations where the former results hold and the
simulations illustrate the case of a semi-blind context. Further
interpretations and links with former works are detailed in
Section V. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Mixing model and notations

In the whole paper, we consider discrete-time signals which
by convention depend on a time index n ∈ Z (n hence
stands for a generic integer). For any positive integer N , we
denote by IN the set {1, . . . , N}. We consider the following
multichannel convolutive mixing model:

x(n) =
∑

k∈Z
M(k)s(n− k), (1)

where s(n) , (s1(n), . . . , sN (n))
T

is the N -dimensional
random source vector, x(n) , (x1(n), . . . , xQ(n))

T
is the
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Q-dimensional output vector of observations, and M(n) =(
Mij(n)

)
(i,j)∈IQ×IN

is the Q × N matrix of impulse re-
sponses of the mixing MIMO channel. We also consider the
so-called multichannel separating system whose action on the
observations reads:

y(n) =
∑

k∈Z
W(k)x(n− k) . (2)

In the latter relation y(n) , (y1(n), . . . , yN (n))
T

is the N -
dimensional output of the separating system and W(n) =(
Wij(n)

)
(i,j)∈IN×IQ

is the N × Q matrix of impulse re-
sponses of the separating channel. For the sake of clarity, the
signals, the mixing and the separating systems are assumed
to be real-valued. The results can nevertheless be extended to
the complex case. Additionally, we introduce the combined
mixing-separating system defined by the impulse response
G(n) ,

∑
k∈ZW(n − k)M(k). We thus have the following

relation:
y(n) =

∑

k∈Z
G(k)s(n− k) . (3)

The objective of source separation consists in recovering
s(n) from the observations x(n). In other words the separating
system is searched for, such that y(n) corresponds to an
estimation of s(n). When only the observations are used, but
no information on the mixing system, the problem is referred
to as the blind source separation problem. Any situation where
little and incomplete information is exploited in addition to
x(n) can be referred to as a semi-blind approach . The problem
is tightly connected with the one of blind identification of
the mixing system or of a separating system. In all cases,
assumptions are required on the source signals and the mixing
system. For the derivations in this paper more specifically, we
need to introduce an (R − 2)-dimensional vector r(n) with
components rj(n), j ∈ IR−2, where R ≥ 2 is a given integer.
These signals are called “reference signals” [4], [7], [13] and
they can be used for the separation. As explained in [4], [7],
these references may come from an additional information or
may be constructed from the observations. We now sum up
the necessary assumptions which hold throughout the paper:
A0. (i) The source signals si(n), i ∈ IN are zero mean and

unit variance.
(ii) The mixing system is stable and left-invertible.

(iii) The signals rj(n), j ∈ IR−2 and sj(n), j ∈ IN

are jointly stationary up to the R-th order under
consideration.

The first assumption can be made with no loss of generality,
whereas the second one is obviously a necessary one to invert
the mixing system. The third assumptions restrict ourselves to
stationary signals and systems.

Surprisingly, we do not require the common assumption of
spatial independence of the source signals. A corresponding,
but weaker assumption will indeed appear later when neces-
sary: thus, our general approach will include results which
showed that independence is sometimes not required [2].
Finally, one should notice that the derivations in the present
paper do not require that the signals be temporally independent
and identically distributed (i.i.d.). They remain valid in the
general non i.i.d. case.

B. Higher order statistics and cumulant decompositions

The identifiability conditions derived in this paper specify
the conditions to be met by the vector-valued reference signal
r(n) when it is used in higher order statistics. In addition, note
that derivations similar to those in this section can be carried
out in the case R = 2 (see Section III-A). We consider higher
order cumulants and define the following R-th order cross-
cumulant:

Cr
si1si2

(n) =

Cum
{
si1(n), si2(n− n1), r1(n− n2), . . . , r(R−2)(n− n2)

}
(4)

Note that it exists and depends on n = (n1, n2) only
according to part (iii) of assumption A0. We will write in detail
Cr

si1si2
(n1, n2) instead of Cr

si1si2
(n) only when necessary.

We consider a multidimensional z-transform of order two
w.r.t. the variables n = (n1, n2). It is defined by:

Cr
si1si2

[z] =
∑

n∈Z2

Cr
si1si2

(n)z−n1
1 z−n2

2 (5)

where z = (z1, z2) ∈ (C∗)2. For the signals x(n) and y(n),
the cumulants Cr

xi1xi2
(n), Cr

yi1yi2
(n) and their respective z-

transforms Cr
xi1xi2

[z], Cr
yi1yi2

[z] are defined similarly to the
definitions given by (4) and (5). The matrix transfer function
M[z1] of the mixing MIMO channel is given by the following
z-transform

M[z1] =
∑

n∈Z
M(n)z−n

1 . (6)

A similar definition holds for the matrix transfer function
W[z1] of the separator and it is known that the matrix
transfer function of the global system corresponding to (3)
reads G[z1] = W[z1]M[z1]. Let us introduce the matrices
Cr

x[z] and Cr
s[z] whose (i, j) components are Cr

xixj
[z] and

Cr
sisj

[z] respectively. The following proposition will be useful
in section III.

Proposition 1: We have the following decomposition of
matrix Cr

x[z]

Cr
x[z] = M[z1z2]Cr

s[z]M[z−1
1 ]

T
. (7)

Proof: Using (1), we have component-wise xi(n) =∑
j∈IN

∑
k∈ZMij(k)sj(n − k) and thus, using the multi-

linearity property of cumulants,

Cr
xi1xi2

(n) =
∑

j∈I2
N

∑

k∈Z2

Mi1j1(k1)Mi2j2(k2)Cr
sj1sj2

(n1+k2−k1, n2−k1) .

(8)



IEEE TRANSACTION ON SIGNAL PROCESSING (ACCEPTED MANUSCRIPT) 3

Now using definition (5) for the signal x(n), we have

Cr
xi1xi2

[z] =
∑

n∈Z2

∑

j∈I2
N

∑

k∈Z2

Mi1j1(k1)Mi2j2(k2) (9)

Cr
sj1sj2

(n1 + k2 − k1, n2 − k1)z−n1
1 z−n2

2

=
∑

n∈Z2

∑

j∈I2
N

∑

k∈Z2

Mi1j1(k1)Mi2j2(k2) (10)

Cr
sj1sj2

(n1, n2)z−n1+k2−k1
1 z−n2−k1

2

=
∑

j∈I2
N

∑

k∈Z2

Mi1j1(k1)Mi2j2(k2) (11)

Cr
sj1sj2

[z]zk2−k1
1 z−k1

2

=
∑

j∈I2
N

Mi1j1 [z1z2]Mi2j2 [z
−1
1 ]Cr

sj1sj2
[z] (12)

Component-wise, this is the result given by (7) in the propo-
sition.

III. HIGHER-ORDER IDENTIFIABILITY CONDITIONS

Based on the properties given in the previous section, we
generalize in this section identifiability conditions of a FIR
MIMO system. We first illustrate how second-order statistics
appear as a specific case of the results stated above.

A. Second-order statistics

Second order statistics appear formally as a particular case
of the preceding results when R = 2. Equation (4) where there
is no reference signal simply corresponds to the correlation for
which we adopt the specific notation:

Γsi1si2
(n1) , Cum {si1(n), si2(n− n1)}

Γs(n1) =
(
Γsi1si2

(n1)
)
(i1,i2)∈I2

N

(13)

Corresponding to (5), we have the power spectral matrix of
the sources defined by:

Γs[z1] ,
∑

n2∈Z
Γs(n1)z−n1

1 =
(
Γsi1si2

[z1]
)

(i1,i2)∈I2
N

(14)

Note that contrary to (7), z2 does not appear here. Similar
notations hold for the observations x(n) (Γx(n1) and Γx[z1]
respectively). Similarly to (7), we now have the well-known
relation:

Γx[z1] = M[z1]Γs[z1]M[z−1
1 ]

T
(15)

B. Identifiability of one source

For a given vector-valued reference signal r(n), we first
explicit a condition on Cr

s[z], i ∈ {1, . . . , N} to be able to
identify one source of the mixture. The following proposition
sums up our main result:

Proposition 2: Assume that
A1. the matrices Γs[z1] and Cr

s[z] are diagonal,
A2. there exist a diagonal element of Cr

s[z], say the i1th,
which is a function distinct from all other diagonal
elements.

Then, the i1th source of the mixture is identifiable in the
following sense:

For any N × Q matrix W[z1] such that the N × N
combined channel-equalizer z-transform matrix G[z1] =
W[z1]M[z1] is irreducible, if W[z1]Γx[z1]W[z−1

1 ]
T

and
W[z1z2]Cr

x[z]W[z−1
1 ]

T
are both diagonal, then:

G[z1] = P




Q̃11

0
...
0

Q̃12

0 . . . 0 λ1 0 . . . 0

Q̃21

0
...
0

Q̃22




(16)

where λ1 6= 0 is situated at the i1th row and i1th column and
P is a permutation matrix.

Proof: One can write the assumptions of the above
proposition as follows:

G[z1]Γs[z1]G[z−1
1 ]

T
= Γ̂s[z1] (17)

G[z1z2]Cr
s[z]G[z−1

1 ]
T

= Ĉr
s[z] (18)

where Γ̂s[z1] and Ĉr
s[z] are diagonal matrices and Γ̂s[z1]

satisfies the conditions associated to a power spectral z-
transform matrix (that is1 Γ̂s[z1]

T
= Γ̂s[z−1

1 ] and Γ̂s[eıω] ≥
0,∀ω ∈ [0, 2π]). Hence, following the proof in [11], one
deduces from (17) that G[z1] is a constant orthogonal matrix,
say G[z1] = Q and (18) reads:

QCr
s[z] = Ĉr

s[z]Q (19)

Denote by Qmn the (m, n)th element of Q and by Cn[z] (resp.
Ĉn[z]) the nth element of the diagonal matrix Cr

s[z] (resp.
Ĉr

s[z]). In the above equation, the term at the (m,n)th position
reads QmnCn[z] = Ĉm[z]Qmn. Because of the orthogonality,
there is a non-zero element Qσ(i1)i1 in the i1th column. Based
on the assumption that Ci1 [z] is distinct from all other diagonal
elements Cn[z], n 6= i1, one can obtain that on the same row
Qσ(i1)n = 0 if n 6= i1. The orthogonality of Q then implies
that in the i1th column, Qni1 = 0 for n 6= σ(i1). This shows
that the matrix G[z1] has the desired structure.

One can notice that in Proposition 2, we have also that the
matrix

(
Q̃11 Q̃12

Q̃21 Q̃22

)
is orthogonal. Additionally, two important

comments should be made to link the above proposition with
usual assumptions.

First, note that the assumption that Γs[z1] be diagonal is
equivalent to the assumptions that the sources be uncorrelated.
Similarly, the assumption that Cr

s[z] is diagonal corresponds
to the classical assumption that the sources be independent,
although both are not equivalent. It has indeed been illustrated
in [2] through several examples that mutual independence is a
sufficient condition for separation, but is not always necessary.
In the present formulation, we assume a weaker condition than
independence. This allows us to deal with cases such where
the sources are possibly spatially mutually dependent, such as
in [2].

Consider also the situation where one or more diagonal
elements of Cr

s[z] vanish, say for example Cr
si1si1

[z] = 0:
in this case, and according to Assumption (ii) in Proposition
2, the i1-th source is identifiable only if there is no other
zero element on the diagonal of Cr

s[z]. In Section V-B,

1Similarly to [11], only rational spectra are considered in the paper, that is
Γs[z1] and Γ̂s[z1] have rational elements.
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it will be illustrated how in the case of i.i.d. signals, this
condition implies the well-known necessary condition that at
most one source may have vanishing R-th order cumulants.
The condition given in Proposition 2 is hence more widely
satisfied and weaker than the usual one: indeed an example has
been given in [5] of non i.i.d. sources, which auto-cumulants
with no delay vanish whereas the cross-cumulants at different
times are non zero: our result confirm that a mixture of these
sources can be separated.

C. Identifiability of all sources

We have shown in the previous section that it is possible to
identify one source under a condition on the reference signal
r(n). We now extend the result and explicit a condition to
be satisfied so as to ensure that all sources can be identified.
For that, we consider N reference signals ri(n), i = 1, . . . , N
which may possibly be the same ones.

Proposition 3: Assume that there exist N vector-valued
reference signals ri(n), i = 1, . . . , N and a permutation σ
of the set IN such that the following condition hold:
A3. the matrices Γs[z1] and Cri

s [z] for all i ∈ IN are all
diagonal,

A4. for all i ∈ IN the σ(i)th diagonal element of Cri
s [z] is a

function distinct from all other diagonal elements.
Then, the N sources are identifiable up to a permutation and
scaling factor in the following sense:
For any N × Q matrix W[z1] such that the N × N
combined channel-equalizer z-transform matrix G[z1] =
W[z1]M[z1] is irreducible , if W[z1]Γx[z1]W[z−1

1 ]
T

and
W[z1z2]C

rj
x [z]W[z−1

1 ]
T
, j ∈ {1, . . . , N} are all diagonal,

then:

G[z1] = PΛ (20)

where P is a permutation matrix and Λ is a diagonal matrix
with non zero elements on the diagonal.
Proof: Using the same arguments as in the proof of Proposition
2 one obtains that G[z1] = Q is a constant orthogonal matrix.
Under the assumptions of the proposition, we have in addition:

∀j ∈ {1, . . . , N} QCrj
x [z] = Ĉrj

x [z]Q (21)

Using arguments similar to the previous ones in the proof of
Proposition 2, one obtains by induction that G[z1] has the
expected form: G[z1] = PΛ.

Let us make two remarks.
Remark 1: The reference signals r1(n), . . . , rN (n) may

possibly be the same. In particular, if r1(n) is such
that the elements of Cr1

x [z] are mutually different, then
one can consider r1(n) = r2(n) = . . . = rN (n)
and the reference signals {r1(n), . . . , rN (n)} satisfy the
condition of the proposition. In this case, Cr1

x [z] and
Γx[z1] are enough to separate the sources. Similarly,
each vector-valued reference signal rj(n) (for j fixed)
is constituted of R−2 components, some or all of which
may possibly be identical.

Remark 2: One could state a weaker condition instead of
A4 and replace it with:
A4o. for all i ∈ IN the σ(i)th element of the diagonal

matrix Cri
x [z] is a function distinct from the diagonal

elements which indices are not in {σ(1), . . . , σ(i− 1)}.
The condition A4o can be easily interpreted: it says
merely that the σ(i)th source can be identified by using
the reference ri(n), and that the σ(i)th source has not
been identified previously by either one of the references
r1(n), . . . , ri−1(n).

Finally, let us stress that Propositions 2 and 3 hold under
the condition that Cr

s[z] is diagonal: this corresponds in a
weaker form to the independence of the sources. An interesting
situation where this happens is detailed in the next Section.

IV. SEMI-BLIND REFERENCES

The semi-blind context seems one of the most interesting
and promising where a reference based approach can be used.
Indeed, if a reference signal is available, one can obtain an
effective separation method by using existing algorithms [7],
[13]. A challenging issue consists in dealing with the validity
of a given reference signal and in finding sufficient condition
which can be used in a practical situation. We give here some
elements only. Note also that in a blind context, reference
signals can be constructed from the observations only [7], [13].

A. Diagonal matrices of reference cumulants

The conditions presented in section III require the sources
be uncorrelated and Cr

s[z] be diagonal. We now give sufficient
conditions on the vector-valued reference signal under which
it may be used for separation. This gives a more accurate
view of the results presented in [7]. We have the following
proposition:

Proposition 4: For i ∈ IN , consider N signals s̃i(n) and
denote ši(n) , (si(n), s̃i(n)). Assume that:
A5. there exist a (R − 2) × N filter with impulse response

T(n) such that:

r(n) =
∑

k∈Z
T(k)s̃(n− k) (22)

A6. the processes ši(n) are mutually independent for i ∈ IN .
Then, the matrix Cr

s[z] is diagonal.
Proof: For all j ∈ IR−2, we have rj(n) =∑

p∈IN

∑
k∈Z Tjp(k)s̃p(n− k). Replacing rj(n− n2) for all

j in (4) and then using multilinearity, one can write:

Cr
si1si2

(n) =
∑

p∈IR−2
N

∑

k∈ZR−2




R−2∏

j=1

Tjpj (kj)


 ×

Cum{si1(n), si2(n− n1), s̃p1(n− n2 − k1), . . . ,
s̃pR−2(n− n2 − kR−2)}

By the independence assumptions on the sources A6 and on
the signals s̃i(n), i ∈ IN , the above cumulant expressions
systematically vanish when i1 6= i2. It follows by (5) that
Cr

s[z] is diagonal.
A specific but interesting situation where the condition of

the above Proposition is satisfied is when for all i, s̃i(n) =
si(n). In other words, the references are obtained from the
sources by a MIMO filtering operation. This is the case
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considered in [7], and also in [13]. In particular, the obser-
vations being themselves obtained by a MIMO filtering of the
sources, they can serve as reference signal upon the additional
assumptions which are specified before in Propositions 2 and
3.

Another specific situation where the condition of the above
Proposition are satisfied is when r(n) depends on one source
(say the i1-th) and is independent of the other ones. In this
case, one can observe additionally that Cr

s[z] contains a single
non zero element: this seemingly very favorable assumption
could more likely correspond to the situation where additional
extra information is available which can be used to extract
the i1-th source. This semi-blind context is considered in
simulations to illustrate the potentialities of our results.

B. Simulations

We now illustrate by simulations the validity of the results
in the previous section. We assume that some information is
partially available on the sources through the reference signal:
we assume the reference is a binary signal which depends on
the sign of one source signal in a non deterministic way: such
a situation could be of interest (e.g. in a telecommunication
context) and, to the best of our knowledge, it has not been con-
sidered anywhere before. Another example has been treated in
[3] where a partial information is available on the phase or the
modulus of a complex-valued source signal.

More precisely, we deal with the case where s̃i(n) =
sign(si(n))εi(n) where for all i, εi(n) is a binary i.i.d.
Bernouilli process with P (εi(n) = 1) = p and P (εi(n) =
−1) = 1 − p. The processes εi(n) are mutually independent
and independent of the sources. The signals s̃i(n) then satisfy
the conditions of Proposition 4 and each s̃i(n) contains
information on the sign of si(n): si(n) and s̃i(n) indeed have
the same sign with probability given by the parameter p.

In our simulations, we tried to extract one particular source
(say the i1th) and we considered the reference signal defined
by r(n) =

∑
k ti1(k)s̃i1(n − k) where (ti1(k)), k ∈ Z is

the impulse response of a scalar filter. We considered for
(ti1(k)), k ∈ Z both the identity filter and a randomly driven
FIR filter of length 3. r(n) thus contains directly or indirectly
information on the sign of si(n) and it can be seen that only
the i1th diagonal element of the corresponding matrix Cr

s[z]
is non zero.

A set of N mutually independent and temporally i.i.d.
uniformly distributed sources have been generated. They have
been mixed by a Q×N randomly chosen FIR filter of length
3. We then used the real valued fourth order cumulant-based
contrast proposed in [7] and the associated algorithm to test the
effectiveness of our result. Different values of the parameter
p and different sample sizes have been considered. Results
obtained with 1000 Monte-Carlo realizations are reported in
Table I for the values N = 3, Q = 4 and in Table II for
N = 4, Q = 5.: the averaged value and the 90% quantile
value of the the mean square error on the estimated source
are reported.

One can observe the effectiveness of the separation when
p 6= 0.5: it should indeed be no surprise that no separation is
obtained for p = 0.5 since in this case, s̃i(n) is independent

of si(n), implying that the matrix Cr
s[z] is identically zero.

On the contrary, p 6= 0.5 implies that (si1(n), s̃i1(n)) are
dependent, but independent of all other sources. In such
considered cases, this yields a sufficient condition on the
reference signals so that the methods [7], [13] can be used.

V. LINK WITH FORMER RESULTS

A. Second-order identifiability condition

The results presented in the previous sections are connected
with the results in [11] on second-order identifiability of FIR-
MIMO systems. In the case where R = 2 and no reference
signal is considered, the Propositions 2 and 3 lead to the result
in [11]. The role played by Γ[z1] and Cr

s[z] in Proposition 3
is played simultaneously by the power spectral matrix Γ[z1]
in [11]. More precisely, it is seen from the proof that using
the second-order statistics only (that is the spectral matrix),
the FIR-MIMO system may be identified up to an orthogonal
transform. The remaining orthogonal transform is identified
thanks to a diversity which can be satisfied either at second
order (as in [11]) or at R-th order for a given set of reference
signals (as in our Propositions 2 and 3). In other words, the use
of reference signals allows one to consider another interesting
signal diversity. It follows that our identifiability condition is
actually much weaker than the usual known one, since the
diversity condition may be satisfied at any given statistic order.

B. i.i.d. sources

We now show that the identifiability condition in Proposi-
tion 2 is necessarily satisfied in the results given by [7] and
in [13]. The case of non i.i.d. sources, which is treated in
[7] but not in [13], is addressed in Section V-C. Both works
focus mainly on the problem of extracting one source in the
context where the reference signals are implicitly obtained by a
filtering operation on the sources. In particular, the conditions
of Proposition 4 hold true, which implies Cr

si1si2
(n) = 0 when

i1 6= i2. More precisely, we have s̃(n) = s(n) and hence we
can write:

∀j ∈ IR−2 rj(n) =
∑

p∈IN

∑

l∈Z
Tjp(l)sp(n− l) (23)

Assuming in addition that the sources are temporally i.i.d. we
obtain:

Cr
sisi

(n) =

{
0 if n1 6= 0,(∏R−2

j=1 Tji(−n2)
)

K
(R)
si otherwise.

(24)

where K
(R)
si denotes the R-th order auto-cumulant

Cum {si(n), . . . , si(n)}, which does not depend on n
because of stationarity (assumption A0). It follows that

Cr
sisi

[z] =
∑

n2∈Z
Cr

sisi
(0, n2)z−n2

2

= K(R)
si

∑

n2∈Z







R−2∏

j=1

Tji(−n2)


 z−n2

2


 . (25)
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Number of
samples

(ti1 (n)) ↔ identity (ti1 (n)) ↔ FIR random
p = 1 p = 0.9 p = 0.7 p = 0.5 p = 1 p = 0.9 p = 0.7 p = 0.5

Average
value

1000 0.0078 0.0249 0.1548 1.0780 0.0379 0.0945 0.7079 1.1340
5000 0.0015 0.0050 0.0331 1.0799 0.0130 0.0248 0.2470 1.1303
10000 7.57e-4 0.0025 0.0168 1.0762 0.0073 0.0142 0.1383 1.1335

90%
quantile

1000 0.0109 0.0345 0.2197 1.2415 0.0770 0.2186 1.1956 1.2653
5000 0.0022 0.0069 0.0466 1.2393 0.0151 0.0424 0.5853 1.2585
10000 0.0010 0.0035 0.0238 1.2400 0.0062 0.0190 0.3369 1.2647

TABLE I
AVERAGE AND 90% QUANTILE VALUE (1000 REALIZATIONS) OF THE MSE ON THE RECONSTRUCTED SOURCE (N=3,Q=4).

Number of
samples

(ti1 (n)) ↔ identity (ti1 (n)) ↔ FIR random
p = 1 p = 0.9 p = 0.7 p = 0.5 p = 1 p = 0.9 p = 0.7 p = 0.5

Average
value

1000 0.0130 0.0416 0.2403 1.2262 0.0498 0.1338 0.9502 1.2206
5000 0.0026 0.0084 0.0545 1.2290 0.0148 0.0330 0.3938 1.1077
10000 0.0013 0.0042 0.0280 1.2298 0.0104 0.0234 0.2285 1.0544

90%
quantile

1000 0.0169 0.0547 0.3181 1.3586 0.0859 0.2562 1.3550 1.3637
5000 0.0034 0.0110 0.0717 1.3548 0.0156 0.0512 0.9503 1.3513
10000 0.0017 0.0055 0.0365 1.3595 0.0093 0.0333 0.5211 1.3622

TABLE II
AVERAGE AND 90% QUANTILE VALUE (1000 REALIZATIONS) OF THE MSE ON THE RECONSTRUCTED SOURCE (N=4,Q=5).

a) Link with [7]: Define

Cmax
R , N

max
i=1

sup
k∈Z

|Cr
sisi

(0, k)| (26)

Assume as in [7] that the above supremum is finite and
uniquely reached, that is

|Cr
si1si1

(0, k1)| = Cmax
R < ∞ and:

∀(i, k) 6= (i1, k1) |Cr
sisi

(0, k)| < Cmax
R . (27)

Considering (25) one can then see that for i 6= i1, Cr
sisi

[z] and
Cr

si1si1
[z] are distinct functions. The source si1(n) is hence

identifiable according to Proposition 2. This is confirmed by
the results in [7] which show the validity of a particular
contrast function. The validity condition for the contrast
function in [7] is hence a much stronger condition than the
identifiability condition which is given here.

Having a closer look at Equation (25), one can distinguish
the importance of the identifiability conditions at two distinct
levels. On the one hand, the cumulant values play a funda-
mental role: indeed, the source i1 can be extracted if and
only if the diagonal element Cr

si1si1
[z] of Cr

s[z] is distinct
from the others. From (25), this necessarily implies that either
K

(R)
si1

be non zero, or that source i1 be the only source with
vanishing R-th order cumulant. This corresponds to the well-
known condition that at most one source may be Gaussian.
On the other hand, as soon as K

(R)
si1

6= 0, there always exist
an appropriate choice of the reference system in (25) which
makes possible the separation of the corresponding source.

b) Link with [13]: In [13], fourth-order cumulants (R =
4) are considered and it is assumed that the reference r(n)
consists of two identical components r1(n) = r2(n) , r(n),
where r(n) is written as

r(n) =
∑

p∈IN

∑

l∈Z
tp(l)sp(n− l) (28)

Then, one can easily obtain:

Cr
sisi

[z] = K(4)
si

∑

n2∈Z
ti(−n2)2z−n2

2 (29)

It is shown in [13] that if all the values λi(k) , |ti(k)|2K(4)
si

are distinct for i ∈ IN and k ∈ Z, then the corresponding
source can be recovered. Clearly, distinct values of λi(k)
correspond to distinct rational functions Cr

sisi
[z]. Proposition 2

and 3 hence show that the separating system can be identified
under conditions weaker than those in [13]. It is sufficient that
there exist N choices of r(n) such that the functions in (25)
(or (29)) are different for different i. This seems quite a weak
condition on the reference system (T(k))k∈Z. From (29), it
is seen in addition that the condition on the reference system
does not depend on the particular values of the auto-cumulants
of the sources, if different from zero.

C. non i.i.d. sources

We now move to the case of non i.i.d. sources. This case has
been considered in [7]. Let us show that the validity conditions
in [7] imply that the identifiability condition given in this paper
is satisfied. Define yi(n) as the result of a scalar filter applied
on si(n). If gi[z1] is the corresponding z-transform of the
scalar filter, we have according to (7):

Cr
yiyi

[z] = gi[z−1
1 ]gi[z1z2]Cr

sisi
[z] (30)

In [7], the quantity |Cr
yiyi

(0, 0)| is considered when yi(n) is
the particular output corresponding to the maximum value of
this quantity over a set of unit-norm filters (the supremum are
assumed to be reached and finite). The validity condition in
[7] expresses that there should be an index (say the index i1)
such that |Cr

yi1yi1
(0, 0)| > |Cr

yiyi
(0, 0)| for all i 6= i1. In this

case precisely, we must have Cr
yi1yi1

[z] 6= Cr
yiyi

[z] and thus
Cr

si1si1
[z] 6= Cr

sisi
[z] according to (30). Again, Proposition

2 hence provides weaker identifiability conditions than the
results in [7].

VI. CONCLUSION

General identifiability conditions of a separating system
have been given by considering reference signals in higher
order statistics. In particular, our new results include former
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existing ones. Known results based on second-order statistics
have been generalized to higher-order statistics and we have
shown that the given identifiability conditions are weaker than
the assumptions required in former papers in which reference-
based approaches have been considered. The interest of our
approach has been clearly illustrated in a semi-blind context.
These new results, although theoretical ones, open up the
possibility of developing novel algorithms.
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(France) at “Télécom & Management SudParis”
(formerly “Institut National des Télécommunications
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