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Abstract

In this work, we address a method that is able to track
simultaneously 3D head movements and facial actions
like lip and eyebrow movements in a video sequence. In
a baseline framework, an adaptive appearance model is
estimated online by the knowledge of a monocular video
sequence. This method uses a 3D model of the face and
a facial adaptive texture model. Then, we consider and
compare two improved models in order to increase ro-
bustness to occlusions. First, we use robust statistics
in order to downweight the hidden regions or outlier
pixels. In a second approach, mixture models provides
better integration of occlusions. Experiments demon-
strate the benefit of the two robust models. The latter
are compared under various occlusions.
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1. Introduction

Head and facial action tracking pose challenging
problems because of the variability of facial appearance
within a video sequence, most notably due to changes
in head pose, expressions, lighting or occlusions. Much
research has thus been devoted to the problem of face
tracking, as an especially difficult case of non-rigid ob-
ject tracking.

In [8], the authors propose a tracking-by-detection
method, using a key point matching procedure, to re-
cover the 3D pose of a rigid human face under illumina-
tion changes and partial occlusions. These methods are
fast but are not proposed to track non-rigid facial move-
ments. Local parametric models [2] or optical flow [9]
are more adapted to tracking non-rigid motion. Flexible

shape and appearance models, later developed as Active
Appearance Models (AAM) [3, 7], have been proposed
as powerful tools for face analysis. AAM can be used
to track simultaneously the shape, the head pose (often
in a 2D space) as well as non-rigid facial gestures. As
these models are learned on a face database, tracking
is not accurate for new faces, when capture conditions
have changed, or when a part of the head is occulted.
In [10], robust statistics are introduced into the appear-
ance model to improve robustness to occlusion. In [6],
an appearance model based on mixture models is pro-
posed to track natural objects with occlusion manage-
ment. It uses an on-line estimation of the model by a
recursive EM algorithm. These two methods have been
applied in 2D spaces.

In this paper, we develop a baseline framework to
3D head pose and facial action tracking based on an
adaptive appearance model [4] with an iterative regis-
tration. This registration is written in a new matricial
expression to take into account occlusion managements:
we extend robust statistics [5, 10] and mixture models
[6] to simultaneous head and facial action tracking. We
then present a comparison of each method on tracking
disturbed by occlusions.

2. Baseline Framework

In this section, we present the baseline framework
of a head and facial action tracking method [4], using a
new matricial expression of the registration technique,
in order to take into account occlusion management.

2.1. Face appearance model

The face appearance model consists of two com-
ponents: the shape model, made up of a parametric 3D
model, and a face texture model. From these two com-
ponents, a face appearance can be generated.



2.1.1. Shape model. In our study, we use the generic
3D model Candide [1]. The matrix g, aggregation of
the 3D coordinates of all the 200 Candide vertices, rep-
resents the structure of the model. This matrix is ob-
tained by modification of the matrix ḡ which stands for
a reference face without expression:

g = ḡ+SτS +AτA (1)

In this decomposition, S model the inter-person varia-
tions and A model the intra-person variation. The vec-
tor τS is manually initialized to adapt the shape model
to the subject physiognomy. These shape parameters τS
are constant for a given person.

The matrix A is made up of action units: an action
unit, according to the corresponding action parameter
in τA, represents local facial movements. We track 6 ac-
tion units: Jaw drop, Upper lip raiser, Lip stretcher, Lip
corner depressor, Brow lowerer, Outer brow raiser. The
6-dimension action parameter vector τA is initialized
to zero, and updated, frame by frame, by the tracker.
The state of the shape model is composed of the action
unit vector τA, three rotations [θx θy θz], two translations
[tx ty] and a global scale s which are summed up into a
12 dimension vector: b = [θx,θy,θz, tx, ty,s,τT

A ]T

2.1.2. Texture model. In our study, the texture is a 40
by 40 pixel image of the face appearance with the refer-
ence shape ḡ. The texture model is a statistical model of
the face texture. It consists in a multidimensional nor-
mal law with mean µµµ and covariance ΣΣΣ

2. For computan-
ional efficiency, the pixels are considered independent,
thus ΣΣΣ

2 is a diagonal matrix. The parameters µµµ and ΣΣΣ

evolve during the process according to the new observa-
tions: the model is adaptive. At each new image Y, we
extract the face appearance and warp it from the current
shape g to the reference shape ḡ. This is done by affine
transformations on each triangle of the shape model and
results in a warped or shape-free texture X.

We want to estimate model parameters (µµµ and ΣΣΣ).
The warped texture X is not stationary during the pro-
cess. For example, changes in the lightning may occur.
We assume that it is stationary inside a time window. In
order to save memory, we can not store all the observa-
tions of the time windows, that is why we will consider
observations under an exponential envelope, as in [10].
By this means, new observations can be recursively in-
corporated into the model. The exponential envelope is
defined by:

St(k) = αe
k−t

τ (2)

with k < t, τ = nd/ log2 where nd is the half-life of the
envelope (in frame count) and α = 1− e−1/τ . The sum
of St(k) from −∞ to 1 is equal to 1.

The first and the second order moments of the
model are computed recursively according to the enve-
lope:

M̂ j,t = αX j
t +(1−α)M̂ j,t−1 (3)

where j is the moment order and X j denotes the
component-wise exponentiation of X to the power j.
In this notation, we have: µµµ t = M1,t σσσ2

t = M2,t − µµµ2
t

where σσσ2 stands for the diagonal elements of ΣΣΣ
2. Thus,

We deduce the update equation of the texture parame-
ters:

µ̂µµ t = α X(bt)+(1−α) µ̂µµ t−1 (4)

σ̂σσ
2
t =

α

1−α
(X(bt)− µ̂µµ t)

2 +(1−α) σ̂σσ
2
t−1 (5)

The matrix µµµ is initialized at t = 0 by the warped
texture X(b0) of the first frame. The diagonal matrix Σ̂ΣΣ

2

is initialized to a fixed value (here 5% of the interval)
and updated at each new frame. In order to prevent any
overflow computation, we put a low threshold on σ . We
have chosen a fixed value of α into [0.01,0.10].

2.2. Tracking process

Tracking aims to estimate the state vector bt
of the shape model from the frame sequence,
Y[t] = {Y1, . . . ,Yt}. We first approximate the probabil-
ity of the frame sequence, Y[t] parameterized by b, by
the probability of the last frame, Yt paremeterized by
b: we assume that the current appearance does not rely
on the past appearance. The face appearance does not
have the same dimension in the whole process: as the
shape is moving, the number of pixels covering the face
appearance on the video is varying . Thus, in a sec-
ond approximation, we will use the probability of the
warped texture Xt and not the probability of Yt . The
likelihood function of the appearance is given by:

p(Y[t];bt)' p(Yt ;b)' p(Xt) =
d

∏
i=1

N(xi; µi,σi) (6)

with xi,µi,σi respectively the ith element of X, µµµ , σσσ ; d
is the dimension of the texture and N(xi; µi,σi) a Gaus-
sian distribution:

N(xi; µi,σi) = (2πσ
2
i )−1/2 exp

[
−1

2

(
xi −µi

σi

)2
]

(7)

The log-likelihood is the Mahalanobis distance be-
tween the warped texture and the expected texture:

ε(bt) =
d

∑
i=1

φ(ui,t) (8)



where ui,t = xi(bt )−µi
σi

and φ(u) = 1
2 u2 in order to match

the Gaussian density. We will modify this function in
section 3.1 to improve robustness.

The dynamic model is given by:

bt = bt−1 +∆bt (9)

where ∆bt encodes the displacement on the shape
model parameters.

The estimation of (9) is based on a matching tech-
nique between the texture model and the observed tex-
ture. This is done by minimizing the error ε(bt). We
look for ∆bt such that the gradient G of ε(bt) with re-
spect to b is null.

G(bt +∆bt) = G(bt)+
∂G
∂b

∆bt = 0 (10)

The approximation of the optimal ∆b is then:

∆b =−
(

∂G
∂b

)−1

G (11)

This update is computed using the robust statistic
estimation of Huber [5]:

G = ∑
i

φ
′(ui,t−1)

∂ui

∂b

G = ∑
i

φ ′(ui,t−1)
ui,t−1

ui,t−1
∂ui

∂b

G = ∑
i

vi ui,t−1
1
σi

∂xi(bt−1)
∂b

(12)

with vi = φ ′(ui,t−1)
ui,t−1

. The algorithm W of [5] considers vi

as a constant; this gives:

∂G
∂b

= ∑
i

vi

σ2
i

∂xi(bt−1)
∂b

∂xi(bt−1)
∂bᵀ

+ ∑
i

vi

σi
φ
′(ui,t−1)

∂ 2xi(bt−1)
∂b∂bᵀ (13)

Equations (12) and (13) can be expressed in matrix no-
tation:

G = JᵀVΣΣΣ
−2(X−µµµ) (14)

∂G
∂b

= Jᵀ
ΣΣΣ
−2VJ+∑

i
ri (15)

with J the Jacobian matrix Ji,k = ∂xi(b)
∂bk

where bk is

the k th element of b, ri = 1
σi

φ ′(ui,t−1)
∂ 2xi(bt−1)

∂b∂bᵀ , and V

diagonal matrix such as: Vi,i = φ ′(ui,t−1)
ui,t−1

.

We can not estimate ∂ 2xi(bt−1)
∂b∂bᵀ so we can not esti-

mate ri. We assume that the last term of equation (15)

can be neglected. ∑i ri can be considered small com-
pared to the other terms when bt−1 is near bt . This
hypothesis is used in the Gauss-Newton method. This
gives :

∂G
∂b

= Jᵀ
ΣΣΣ
−2VJ (16)

Thus, equation (11) can be written :

∆bt =−
(
Jᵀ

ΣΣΣ
−2
t VJ

)−1 JᵀVΣΣΣ
−2
t (Xt(bt−1)−µµµ t) (17)

with the Mahalanobis distance, φ(u) = 1
2 u2, we

have φ ′(u) = u. Thus, the V matrix is the identity ma-
trix. This fact leads to a simpler expression of ∆bt :

∆bt =−
(
Jᵀ

ΣΣΣ
−2
t J

)−1 Jᵀ
ΣΣΣ
−2
t (Xt(bt−1)−µµµ t) (18)

Due to the truncated approximation of ε(bt), the mini-
mum is not reached by solution to equation (18) but ∆bt
provides a descent direction:

bt = bt−1 +ρ∆bt (19)

The step ρ is estimated recursively by golden search.
The value of the Jacobian J, needed to compute ∆b,

can not be accessed directly because no analytic expres-
sion of X(b) exists. This Jacobian is estimated by nu-
merical differentiation smoothed by a uniform distribu-
tion. The j th column of J can be expressed by:

J j,t+1 =
1
K

K/2

∑
k=−K/2,k 6=0

Xt(bt)−Xt(bt + k δ j e j)
k δ j

(20)

where δ j is the smallest step of the b j parameter, e j is
an null vector except on the j th item and K the number
of samples used in the uniform distribution.

3. Improving Robustness

3.1. Robust statistics

The impact of occlusions on tracking can be re-
duced thanks to the use of robust statistics [10]. An
influence function is introduced in the likelihood for-
mula [5]. When the value of warped texture pixel is too
far from the expected texture (in our study, 3 times the
standard deviation), the pixel is declared as an outlier.
Its influence on the likelihood function is then linear in-
stead of quadratic. In the Mahanalobis distance (equa-
tion 8) the function φ is replaced by a new function ψ

where c = 3:

ψ(u) =
{ 1

2 u2 if |u| ≤ c
c |u|− 1

2 c2 if |u|> c
(21)



This influence function affects ∆b: the V matrix is
not identity matrix, we have to keep the whole definition
of ∆b (equation 17) with:

Vi,i =
{

1 if |ui,t−1| ≤ c
c

|ui,t−1|
if |ui,t−1|> c (22)

Occlusions must not influence the texture model: when
a pixel is an outlier, its value does not affect the texture
model, the update equations (4)-(5) are not applied. A
global occlusion is declared when the percentage of out-
lier pixels exceeds some threshold.

3.2. Mixture model

Jepson et al. [6] have proposed the use of mixture
models in the block matching framework. Our second
method follows the same idea.

The observation Xt varies smoothly under modi-
fication of facial expression or out-of-plane rotation,
while abrupt change may occur in case of occlusions.
This observation suggests building a two component
mixture distribution: one component models stable ob-
servations, one component models noise and unpredic-
tive phenomena like occlusions. The stable component
is modeled by a normal density: ps(Xt ;Qt). The model
parameters, Qt = (µµµ t ,ΣΣΣ

2
t ), vary slowly during the pro-

cess. This component corresponds to the texture model
of the baseline framework. The noise component is
modelled by a uniform density: pb(Xt). These two
components are combined in a mixture model. For the
observation Xt :

p(Xt ;mt ,Qt) = mt ps(Xt ;Qt)+(1−mt)pb(Xt) (23)

where mt is the mixing parameters vector.
For each new frame, we update the mt and Qt vec-

tors of equation (23). This is done by an Expectation-
Maximization algorithm:

The E-step computes the ownership of both com-
ponents. The ownership to the stable component os,t is
computed by:

os,t(Xt) =
mt ps(Xt ;Qt)
p(Xt ;mt ,Qt)

(24)

The noise ownership being ob,t(Xt) = 1−os,t(Xt). All
operations are componentwise.

The M-step needs to access the whole set of obser-
vations. Jepson et al. [6] proposed an on-line estima-
tion based on a recursive approximation of the EM Al-
gorithm which allows forgetting the observations. The
ownership at the current time of past observation are ap-
proximated by the ownership at the corresponding ob-
servation time: that is, for all k < t, os,k(.) is approxi-
mated by os,t(.). This leads to a recursive expression of

the moments:

M̂ j,t = αX j
t os,t(Xt)+(1−α)M̂ j,t−1 (25)

As ms,t equals M0,t , we also have:

m̂t = αos,t(Xt)+(1−α)m̂t−1 (26)

Thanks to ownerships, the EM algorithm reduces
the influence of occlusions on the texture model update.
Regarding the tracking: the influence of outlier pixels
is reduced due to ownership weights on the pixel error
to the stable component. The state update ∆b is then
obtained by :

∆bt =−
(
Jᵀ

ΣΣΣ
−2
t VJ

)−1 JᵀVΣΣΣ
−2
t (Xt(bt−1)−µµµ t) (27)

with Vi,i = [os,t(Xt)]i the ownership of the ith pixel.

4. Experimental Results

4.1. Tracking process

The tracker is robust to large head or facial action
movements. As it does not rely on a learned database, it
can be applied immediately to an unknown subject; but
the frame rate is slower than rates of trackers learned
on a database like Active Appearance Models. Figure
4 shows the tracking of the 3D head pose and facial ac-
tions of a subject in a 591-frame sequence, each frame
is 512 by 512 pixels; the frames 93, 204 and 441 are
displayed. The curves in figure 1 show the variations of
2 rotations of the head pose as well as the variations of
the all 6 action parameters involved in the tracking, the
mixture models method is used.

4.2. Comparison of the robust models

We have produced occlusions with two kinds of ob-
jects: a hand, whose skin can easily be mistaken for face
texture; a black rod, whose black plastic texture is dis-
similar to the face texture.

4.2.1. Occlusion by a hand. When the hand hides the
face, tracking is not disturbed. When the hand has
stayed at length and moves, the shape model drifts to
follow the hand until it leaves completely off the face.
The model returns then to the correct position. Fig-
ure 5 shows the face appearance overdubbed by the
shape model during a hand occlusion: the drift is no-
ticeable with the baseline framework (a) reduced with
robust statistics (b) and nearly inexistent with mixture
models (c). This drift can be highlighted on action pa-
rameters: figure 2 shows the artefact induced by the



Figure 1. Tracking of the 6 action parameters and 2 head pose parameters

Figure 2. Artefacts induced by an occlusion of a similar texture object

(a)

(b)
Figure 3. Artefacts induced by an occlusion of a dissimilar texture object

occlusion on the Jaw drop parameter for each method.
Central bars stand for the beginning and the end of the
occlusion.

The tracking process is not disturbed by the hand
because its texture is similar to the face texture. But
when the hand has stayed at length on the face, it is in-
corporated into the model texture. Then when the hand
moves, the tracker mistakes this movement as a face
movement. Both robust methods prevent this as they
reject the hand when updating the texture model.

4.2.2. Occlusion by a black rod. When the rod hides
the face, tracking is disturbed (figure 6): there is a drift

in the head pose and facial actions are abnormal within
the baseline framework (a), the drift on the head pose is
less important with robust statistics (b) and only a little
artefact on mouth facial actions can be seen with mix-
ture models (c). The rod is correctly detected as occlu-
sion by both robust methods (figure 7): the rod pixels
on the warped texture (a) are correctly declared as out-
lier with the first method (b) or rejected on the noise
component with the second method (c). The induced
artefacts can lead to a target loss: the parameters keep
being in a wrong position after the occlusion stops. Fig-
ure 3 shows state parameters during the rod occlusion:



Scale (a) and Lip corner depressor (b). For (a), the arte-
fact is reduced by both robust methods. For (b), a tar-
get loss occurs with the baseline framework and robust
statistics.

The tracking process is disturbed by the rod as
this occlusion lowers significantly the likelihood of
the warped texture. The robust statistics do not re-
ject sufficiently outliers, leading to artefacts on facial
parameters.

5. Conclusion and future works

In this work, we track simultaneously head and fa-
cial actions like lip and eyebrow movements in a video
sequence. Our baseline framework is based on an adap-
tive appearance model.

We have considered and compared two improved
appearance models aiming to increase robustness to oc-
clusions. The first method, robust statistics, is efficient
when the face is occluded by an object with similar tex-
ture. Confronted with an dissimilar object in its texture,
it does not prevent target loss. The second approach,
mixture models, performs better in both cases: Tempo-
rary occlusion of the face leads to smaller drifts and the
tracked object is recovered in more extreme situations.

Our ultimate goal is to perform classification in
high-level categories, such as expression recognition. In
the adopted appearance model, the shape parameters τS
and the action parameters τA are fitted independently.
As a result, tracking produces identity-independent ac-
tion units, which may be processed by the classifier
that will be designed for the high-level recognition task.
Tuning such a classifier usually requires an extensive
database. We expect that the modeling efforts at the
tracking stage will considerably reduce this burden,
opening the possibility to extrapolate the classification
rule to previously unseen subjects.

Figure 4. Sample images of tracking

(a) Basic framework (b) Robust statistics (c) Mixture model

Figure 5. Occlusion with a similar texture objet

(a) Basic framework (b) Robust statistics (c) Mixture model

Figure 6. Occlusion with a dissimilar texture objet

(a) Warped texture (b) Outliers (c) Stable ownership

Figure 7. Warped texture with the rod occlusion
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