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Abstract

The scores returned by support vector ma-
chines are often used as a confidence mea-
sures in the classification of new examples.
However, there is no theoretical argument
sustaining this practice. Thus, when classi-
fication uncertainty has to be assessed, it is
safer to resort to classifiers estimating condi-
tional probabilities of class labels. Here, we
focus on the ambiguity in the vicinity of the
boundary decision. We propose an adapta-
tion of maximum likelihood estimation, in-
stantiated on logistic regression. The model
outputs proper conditional probabilities into
a user-defined interval and is less precise else-
where. The model is also sparse, in the sense
that few examples contribute to the solu-
tion. The computational efficiency is thus im-
proved compared to logistic regression. Fur-
thermore, preliminary experiments show im-
provements over standard logistic regression
and performances similar to support vector
machines.

1. Motivation

There have been several attempts to turn the scores re-
turned by support vector machines (SVMs) into prob-
abilistic assignments (Platt, 2000; Grandvalet et al.,
2006). However, there is no guaranty that these
scores reflect a classification confidence; we even know
that the conditional probabilities of class labels can-
not be recovered unambiguously except at the decision
boundary (Bartlett & Tewari, 2004). Thus, when the
classification uncertainty has to be assessed, estimat-
ing conditional probabilities is better motivated.
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We propose to build probabilistic classifiers that are
accurate on the “gray zone”, where class labels switch.
Well-calibrated probabilities in this area allow to as-
sess classification uncertainty. The classifier also pro-
vides relevant decision rules for the set of corre-
sponding asymmetric misclassification losses, or equiv-
alently, for the corresponding cone of the ROC curve.
Focusing on a small range of conditional probabilities
instead of estimating them on their full span has two
advantages. First, the training objective is closer to
the ultimate goal of minimizing the misclassification
risk, and second, inaccuracy outside of the focus range
is a key element for kernelized models, since Bartlett
and Tewari (2004) proved that sparsity does not occur
when the conditional probabilities can be unambigu-
ously estimated everywhere. Sparsity refers here to the
limited number of non-zero elements in a kernel expan-
sion. It implies that many training examples have no
influence in the training process, thus improving its
computational efficiency.

The assessment of classification uncertainty and the
sparsity of the model are important issues for the class
imbalance problem, which is our original motivation
for this work. When a vast majority of examples be-
long to the negative “uninteresting” class, and only a
few interesting examples are available, learning tends
to be biased towards the recognition of the majority
class. This problem can be addressed by rebalanc-
ing the training distribution, either by over-sampling
the minority class, or generating artificial examples of
the minority class (Chawla et al., 2002), or by down-
sampling the majority class. However, undersampling
may discard relevant pieces of information and over-
sampling is not computationally efficient. Another
tactic consists in post-processing standard classifica-
tion techniques, such as tuning a bias term after learn-
ing to correct for the original decision bias, but this
scheme fails to discover the changes in the shape or
orientation of the decision boundary that may be re-
quired to isolate the minority class. Our approach
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is more closely related to the methods adjusting the
training objective by using different losses for posi-
tive and negative examples (Osuna et al., 1997; Ting,
2000). It however differs from the latter which es-
sentially consist in applying different weights to the
different categories.

2. Learning Criterion

In this paper, we chose to consider only binary classi-
fication problems to keep exposition simple, especially
regarding the description of optimization algorithms.
However, the discussed criteria and models are inher-
ently multi-class.

2.1. Bayes Decision Rule

Bayes’ decision theory is the paramount framework in
statistical decision theory. The Bayes decision rule is
defined by the true conditional probabilities p(y|x) of
class labels y, knowing features x, and by misclassifi-
cation losses. In binary problems, where the class is
tagged +1 or −1, the two types of errors are: false
positive, where examples labelled −1 are categorized
in the positive class, incurring a loss C−; false neg-
ative, where examples labelled +1 are categorized in
the negative class, incurring a loss C+.

Pattern x is then affected to the positive class
provided that the expected loss incurred by
this decision is smaller than the opposite choice
C−p(y = −1|x) ≤ C+p(y = +1|x). The rule is then

Classify x as +1 iff p(y = 1|x) ≥ C−

C+ + C−
. (1)

Many classifiers first estimate conditional probabili-
ties, and then plug this estimate in (1) to build the
decision rule. These classification methods then dif-
fer by the functional space used to model conditional
probabilities, and by the estimation method, the two
mainstream ones being the methods of moments (lead-
ing to the minimization of mean squared error in clas-
sification) and maximum likelihood.

2.2. Maximum Likelihood

We have a learning set L = {xi, yi}n
i=1, where each

example is described by features xi and the associ-
ated class label yi ∈ {−1, 1}. Assuming independent
examples, estimating p(y|x) can be performed by max-
imizing the conditional log-likelihood

∑

i:yi=1

log(p̂(y = 1|xi))+
∑

i:yi=−1

log(1−p̂(y = 1|xi)) , (2)

where p̂(y|x) denotes the estimate of p(y|x).

2.3. Lazy Maximum Likelihood

Although Bayes’ decision rule is defined in terms of
p(y|x), it does not require a precise estimate every-
where. It is sufficient to estimate precisely the condi-

tional probabilities at C−

C++C−
, which defines the de-

cision boundary (1). This is precisely what SVMs
achieve asymptotically (Bartlett & Tewari, 2004) for
p(y|x) = 0.5.

Maximizing the log-likelihood (2) amounts to estimate
the conditional probabilities on the full range [0, 1].
We consider here a weaker estimation problem, where
we focus on a small range [pmin, pmax]. Outside of this
range, we only want to know whether p(y|x) is smaller
than pmin or greater than pmax. This optimization
problem can be formalized as maximizing

∑

i:yi=1

log (min (p̂(y = 1|xi), pmax))

+
∑

i:yi=−1

log (min (1 − p̂(y = 1|xi), 1 − pmin)) , (3)

which is a concave criterion in p̂(y = 1|xi). Note that
pmin and pmax are tuning parameters of the fitting cri-
terion; they do not enter in the definition of conditional
probabilities p̂(y = ±1|xi).

This criterion is classification-calibrated provided
C−

C++C−
∈ [pmin, pmax]. Hence, provided the model

p̂(y = 1|·) is rich enough, minimizing (3) will asymp-
totically provide a classifier with risk close to the
Bayes’ risk (see Bartlett and Tewari (2004) for defi-
nitions and more formal statements).

3. Conditional Probability Model

We now consider here one of the simplest model of
conditional probabilities. We show how its properties
are modified by lazy maximum likelihood estimation.

3.1. Logistic Regression

Logistic regression is a standard probabilistic model
which considers that the log-ratio of conditional prob-
abilities is linear

log
p̂(y = 1|x)

1 − p̂(y = 1|x)
= wT x + b , (4)

and where the coefficients (w, b) are estimated by max-
imizing the likelihood (2) or the penalized likelihood.

Logistic regression is similar to linear discriminant
analysis (LDA) in that both models provide linear log-
odds (4). They differ however with respect to the es-
timation process and therefore in computational as-
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pects. From a statistical point of view, logistic regres-
sion makes less assumptions and is thus more general:
the density p(X) is arbitrary while it is assumed to be
a Gaussian mixture in LDA.

3.2. Kernel Logistic Regression

Logistic regression can be kernelized, by letting the
log-ratio of conditional probabilities to be non-linear

log
p̂(y = 1|x)

1 − p̂(y = 1|x)
= f(x) + b , (5)

where f is a function belonging to a given reproducing
kernel Hilbert space H.

In this setting, the training criterion should incorpo-
rate a regularization term to prevent overfitting (Roth,
2001; Zhu & Hastie, 2001). Maximizing the likelihood
(2) penalized by the norm of f results in minimizing

n∑

i=1

log
(
1 + e−yi(f(xi)+b)

)
+

λ

2
||f ||2H , (6)

where λ is a hyper-parameter that may be tuned by
cross-validation.

Unlike SVMs, logistic regression does not yield sparse
solutions, in the sense that all examples influence the
solution. Indeed, for the penalized likelihood (6), the
first order optimality conditions for f imply

f(x) =
n∑

i=1

αiK(x,xi) , (7)

with αi = 1
λ

(
yi+1

2 − p̂(y = 1|xi)
)

.

By definition (5), 0 < p̂(y = 1|x) < 1, hence for all
examples, αi 6= 0: the exact expansion requires n co-
efficients.

3.3. Sparse Logistic Regression

Kernel logistic regression is hardly applicable to large
data sets due to the number of non-zero parameters.
Zhu and Hastie (2001) propose to alleviate this prob-
lem by using a greedy forward selection algorithm
looking for an approximation of the full expansion (7)
involving a fixed number of non-zero αi. This ap-
proach can be interpreted as the adding to the criterion
(6) an extra term penalizing the number of non-zero
coefficients. Roth (2004) takes another line of attack
by replacing the penalization term in (6) by the ℓ1
norm of coefficients α. Our approach, which could be
combined with any of these two, consists in replacing
the log-likelihood term by criterion (3). Sparse kernel-

ized logistic regression minimizes

n∑

i=1

log
(
1 + emax(−yi(f(xi)+b),Fi)

)
+

λ

2
||f ||2H , (8)

where Fi = − log pmax

1−pmax
if yi = 1 and Fi = log pmin

1−pmin

if yi = −1 .

Sparsity follows from the truncation of the loss. Train-
ing examples with large values of yif(xi) will not con-
tribute to the final classifier. In this training criterion,
it is the fitting term, instead of the penalization term,
which causes sparsity. Note that compared to these
previous approaches, the optimization problem can be
stated without referring to the expansion (7), which
will only arise at a later stage, as a consequence of the
optimality conditions.

Sparsity could also be improved by using the generaic
methods developed for kernel machines (Wu et al.,
2006). In particular, the ramp loss (Collobert et al.,
2006) could be adapted to our framework by always
saturating the loss outside of the [pmin, pmax] inter-
val, that is, by letting positive examples with p(y|x)
smaller than pmin having a loss of− log(pmin) and neg-
ative examples with p(y|x) greater than pmax having
a loss of − log(1 − pmax).

3.4. Relation to Other Methods

The robust logistic model of Cox and Pearce (1997) es-
timates the range of log-likelihood ratio such that the
logistic function fits conditional probabilities. Com-
pared to our approach, this scheme differs by assum-
ing a roughly constant likelihood ratio outside of the
estimated range, while we only assume that p(y|x) is
smaller than pmin or greater than pmax.

Chakrabartty and Cauwenberghs (to appear) pro-
posed a sparse probabilistic classifier based to a
quadratic approximation of maximum entropy dis-
crimination. The mechanism driving sparsity is how-
ever quite different, since it relies on saturating con-
ditional probabilities. Hence, the maximum spar-
sity is obtained when the conditional probabilities are
approximated by hard assignments, whereas in our
scheme, the maximum sparsity is obtained when the
[pmin, pmax] interval of precise conditional probabili-
ties collapses to the single value defining the decision
boundary.

4. Training

Kernel logistic regression can be learned in the primal
using Newton’s method (Roth, 2001), or in the dual
(Keerthi et al., 2005). Newton’s method is simpler to
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derive, but even with the standard likelihood, which
does not provide sparse solution, Keerthi et al. (2005)
report impressive reduction in computational time.

4.1. Sparse Logistic Regression in the Primal

For simplicity sake, we consider here the linear logis-
tic regression model, without regularization, where the
bias term (or intercept) b is included here in w, assum-
ing that x includes a constant term feature.

We first recall the Newton-Raphson update for the
standard logistic regression maximizing likelihood

w(k+1) = w(k) + (XT D(w(k))X)−1XT (t − p̂(w(k))) ,

where w(k) is the vector of parameters at step k, X =
[x1 . . .xn]T is the n × d matrix of stacked patterns,
D(w) is a n×n diagonal matrix with i-th element equal
to p̂(yi = 1|xi;w)(1 − p̂(yi = 1|xi;w), t = [t1 . . . tn]T

is the vector of stacked binary targets ti = yi+1
2 and

p̂(w) = [p̂(y1 = 1|xi;w) . . . p̂(yn = 1|xi;w)]T .

For the truncated likelihood (3), the criterion is not
differentiable for all w, for which there exists an ex-
ample i, such as p̂(yi = 1|xi;w) equals pmin or pmax.
This problem can be remedied by approximating these
discontinuities by a polynomial as in (Chapelle, 2007).

4.2. Sparse Logistic Regression in the Dual

Chapelle (2007) argues about the prevalence of dual
algorithms for optimizing kernel machines. However,
dual optimization takes great advantage of the sparsity
arising from the flat part of the loss, while they cause
difficulties with second order methods in the primal
formulation. For the kind of application we have in
mind, with a high imbalance between classes, most
examples from the majority class are expected to be
discarded from the expansion (7), hence optimization
in the dual is expected to be computationally efficient.

4.2.1. Principle

We propose an active set algorithm, following a strat-
egy that proved to be efficient for SVMs. The Sim-
pleSVM algorithm (Vishwanathan et al., 2003; Loosli
& Canu, to appear) solves the SVM training prob-
lem by a greedy approach, in which one solves a se-
ries of small problems. First, the training examples
are assumed to be either support vectors or not, and
the training criterion is optimized considering that the
partition of examples is fixed. This optimization re-
sults in a new partition of examples in support and
non-support vectors. These two steps are iterated un-
til some level of accuracy is reached (Loosli & Canu,
to appear).

We will follow the same strategy. We first present the
dual formulation of sparse logistic regression. Next,
assuming that the current membership of the example
in the active set are correct, we derive the optimal
update of parameters. Then, we show how to update
the active set based on the parameters update, and
sum up the algorithm.

4.2.2. Dual Formulation

As in the SVM dual formulation, we handle the dis-
continuity introduced by the max function in (8) by
introducing slack variables ξ

min
f,ξ,b

λ

2
||f ||2H +

n∑

i=1

log(1 + eξi)

s. t. ξi ≥ −yi(f(xi) + b) i = 1, . . . , n
ξi ≥ Fi i = 1, . . . , n .

(9)

with Fi = −fmax = − log
(

pmax

1−pmax

)
if yi = 1 and

Fi = fmin = log
(

pmin

1−pmin

)
if yi = −1.

The Lagrangian of this convex problem is

L =
λ

2
||f ||2H +

n∑

i=1

log(1 + eξi) +
n∑

i=1

βi(Fi − ξi)

−
n∑

i=1

αi[yi(f(xi) + b) + ξi] .

(10)

The solution of (9) is reached at the saddle point of the
Lagrangian (10). The Kuhn-Tucker conditions imply

∇fL = λf(x) −
n∑

i=1

αiyiK(x,xi) = 0

∂L

∂b
= −

n∑

i=1

αiyi = 0

∂L

∂ξi

=
1

1 + e−ξi
− (αi + βi) = 0 ,

where K(·, ·) is the reproducing kernel of the Hilbert
space H.

Thanks to these conditions, we can eliminate f and ξ

from the Lagrangian

L =− 1

2λ

∑

i,j

αiαjyiyjK(xj ,xi) +
n∑

i=1

βiFi

−
n∑

i=1

(αi + βi) log(αi + βi)

+(1 − αi − βi) log(1 − αi − βi) .

(11)

This expression involves 2n variables, but it can be
simplified thanks to the partitioning of training exam-
ples.
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Table 1. ξi, αi and βi for the three sets of examples

Set ξi αi βi

I0 Fi 0 1
1+e−Fi

Ih Fi
1

1+e−Fi
− βi

1
1+e−Fi

− αi

Iℓ −yi(f(xi) + b) 1
1+eyi(f(xi)+b) 0

4.2.3. Partition of the Training Set

We partition the training set into three sets according
to the constraints in (9). The examples indexed by

I0 are in the saturated part of the loss where
−yi(f(xi) + b) < Fi;

Ih are at the hinge of the loss, where the two con-
straints may be active since −yi(f(xi) + b) = Fi;

Iℓ are in the logarithmic part of the loss where
−yi(f(xi) + b) > Fi.

Table 1 describes the properties of each set, regarding
the original variables ξi and the Lagrange multipliers
αi and βi.

For the time being, we assume the repartition in each
set to be known. The non-quadratic part of the La-
grangian is decomposed into three components

L = − 1

2λ

∑

i,j

αiαjyiyjK(xj ,xi) + L0 + Lh + Lℓ .

For each set, the expressions of αi and βi (extracted
from Table 1) are plugged in eq. (11), so that we get

L0 =
∑

i∈I0

log(1 + eFi)

Lh =
∑

i∈Ih

log(1 + eFi) −
∑

i∈Ih

αiFi

Lℓ = −
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi) .

We note that L0 and the first term of Lh are constants,
independent of α or β. Furthermore, as αi = 0 for
i ∈ I0, the quadratic term can be restricted to the
examples in the active set I0̄ = Ih ∪ Iℓ. Discarding the
constant terms provides

L = − 1

2λ

∑

(i,j)∈I0̄
2

αiαjyiyjK(xj ,xi) −
∑

i∈Ih

αiFi

−
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi) ,

which only involves |I0̄| < n active variables.

4.2.4. Optimizing the Lagrange Multipliers

The optimization problem is now reformulated as

min
α

1

2λ

∑

(i,j)∈I0̄
2

αiαjyiyjK(xj ,xi) +
∑

i∈Ih

αiFi

+
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi)

s. t.
∑

i∈I0̄

αiyi = 0 i ∈ I0̄ .

(12)

For all i ∈ Iℓ, αi is restricted to the domain of L, i.e.
0 < αi < 1. Furthermore, since the allocation of every
example to I0, Ih and Iℓ is assumed to be known, the
following box constraints on αi hold implicitly:

∀i ∈ I0 αi = 0
∀i ∈ Ih 0 ≤ αi ≤ 1

1+e−Fi

∀i ∈ Iℓ αi ≥ 1
1+e−Fi

.
(13)

Problem (12) being convex, with linear constraints, it
can be efficiently solved by Newton’s method (Boyd &
Vandenberghe, 2004). We first write the Lagrangian:

L̄ =
1

2λ

∑

(i,j)∈I0̄
2

αiαjyiyjK(xj ,xi) +
∑

i∈Ih

αiFi

+
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi)

+γ
∑

i∈I0̄

αiyi .

Let G be a (|I0̄| × |I0̄|) matrix with general term
Gij = 1

λ
yiyjK(xj ,xi), the Kuhn-Tucker conditions

∂L̄
∂αi

= 0 and ∂L̄
∂γ

= 0 read

∀i ∈ Ih,
∑

j∈I0̄

αjGij + Fi + γyi = 0

∀i ∈ Iℓ,
∑

j∈I0̄

αjGij + log

(
αi

1 − αi

)
+ γyi = 0

∑

i∈I0̄

αiyi = 0

(14)

These conditions form a non-linear system that can
be solved iteratively by Newton’s method. We first
write the gradient in vectorial form, where, slightly

abusing notations, we partition α =
[
αT

h αT
ℓ

]T
, y =

[
yT

h yT
ℓ

]T
, F =

[
FT

h FT
ℓ

]T
and G =

[
Gh,h Gℓ,h

GT
ℓ,h Gℓ,ℓ

]
:

∇L̄(α, γ)=




Gh,h Gℓ,h yh

GT
ℓ,h Gℓ,ℓ + D(αℓ) yℓ

yT
h yT

ℓ 0








αh

αℓ

γ



+




Fh

0
0
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where D(αℓ) is a (|Iℓ| × |Iℓ|) diagonal matrix with di-

agonal elements log
(

αℓ

1−αℓ

)
. We then get the Hessian

of L̄ with respect to
[
αT γ

]T
,

∇2L̄(α, γ) =




Gh,h Gℓ,h yh

GT
ℓ,h Gℓ,ℓ + D′(αℓ) yℓ

yT
h yT

ℓ 0



 , (15)

where D′(αℓ) is a (|Iℓ| × |Iℓ|) diagonal matrix with di-
agonal elements 1

αℓ(1−αℓ)
. Note that, since 0 < αi < 1

for i ∈ Iℓ, the Hessian is ensured to be positive definite
provided the kernel K is positive definite. A Newton
step then consists in solving :

∇2L̄(α(k), γ(k))[(α(k+1) − α(k))T (γ(k+1) − γ(k))]T

= −∇L̄(α(k), γ(k))

that is:



α

(k+1)
h

α
(k+1)
ℓ

γ(k+1)



 =
[
∇2L̄(α(k), γ(k))

]−1




−Fh

δ
(k)
ℓ

0



 , (16)

with δ
(k)
ℓ =

(
D′(α

(k)
ℓ ) − D(α

(k)
ℓ )

)
α

(k)
ℓ . The Newton

steps are iterated until convergence or until the parti-
tion of variables in I0, Ih and Iℓ has to be modified.

4.2.5. Updating the Partition

Given an assumed partition, each Newton step returns
an improved solution. The latter should obey the box
constraints (13) to ensure consistency with the initial
conjecture. If it is not the case, the solution has to
be amended. This is done by backtracking on the line
search, until all box constraints are satisfied. That is,
one computes the largest step size ρ such that α =
α(k) +ρ(α(k+1)−α(k)) fulfills (13). Once this is done,
noting i the “faulty” component(s) of α, the partition
is modified as follows:

• if i ∈ Ih and αi = 0, i is moved to I0;

• if i ∈ Ih and αi = 1
1+e−Fi

, i is moved to Iℓ;

• if i ∈ Iℓ and αi = 1
1+e−Fi

, i is moved to Ih.

Starting from α, a Newton update is then performed
with the new partition, and the process is iterated until
all box constraints are satisfied.

When the fixed point of (16) is reached, and no box
constraint in the active set is violated, we may then
proceed to the next candidate variable in the inac-
tive set I0. All i ∈ I0 such that −yi(f(xi) + b) > Fi

are candidate. We simply pick the one which maxi-
mizes −yi(f(xi) + b) − Fi. Incorporating one variable
at a time allows to perform efficient rank-one updates
of the Cholesky decomposition of the Hessian matrix
(15). Once there is no more candidate variable in I0,
the algorithm terminated at the optimal solution.

Testing for new active variables requires to know
b, which may be computed from the examples in
the set Ih, for which −yi(f(xi) + b) = Fi. Also, as
f(xi) =

∑
j∈I0̄

αjGij , by identification with eq. (14),
we see that b = γ.

5. Experiments

For experimenting with unbalanced two-class prob-
lems, we used the Forest database, the largest avail-
able UCI dataset. 1 There are 54 features, 10 of
which are quantitative and the remaining 44 are bi-
nary. Originally, there are 7 classes, but we con-
sider the subproblem of discriminating the positive
class Krummholz (20 510 examples) against the nega-
tive class Spruce/Fir (211 840 examples). The ratio of
positive to negative examples is 8.8%, and the classes
are relatively well separated. As no cost matrix is pro-
vided with the data set, we arbitrarily chose the costs
for false negative and false positive, C+ and C−, in
order to encourage equal error rates in the two cat-

egories, that is C−

C++C−
= π+, where π+ = .088 is

the proportion of positive examples. The losses are
then defined up to an irrelevant factor, and we picked
C− = π+ and C+ = 1 − π+ .
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Figure 1. Mean test loss versus decision threshold.

1Available at kdd.ics.uci.edu/databases/covertype.
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5.1. Experimental Setup

To ensure the representativity of results, the data is
partitioned in 10 subsets. Each subset is iteratively
used as a training set while the remaining ones are used
as test sets. The training sets comprise thus 23 235
examples. The proportion of examples in the posi-
tive (minority) class is identical in all subsets. The
features are normalized (centered and standardized)
before each training session.

The experiments reported here were performed with
linear classifiers. We optimized the penalization pa-
rameter λ for logistic regression (6) and sparse logistic
regression (8) by 5-fold cross-validation. We jointly op-
timized the decision threshold, a procedure that is of-
ten applied to classifiers in order to correct for the bias
in estimated probabilities. This bias correction was ex-
pected to favor logistic regression. The range of con-
ditional probabilities [pmin, pmax], which is supposed
to be user-defined, is not optimized. Better classifi-
cation results are expected for the smallest intervals,
but the range of faithful conditional probabilities then
becomes tiny. We report results for various lengths of
the interval centered on π+ on a log scale, that is with√

pminpmax = π+.

5.2. Results

We report the mean results (with standard deviations)
of sparse logistic regression in table 2. As expected,
the mean test loss (that is, the average test errors
weighted by C+ and C−), and the number of ex-
amples in the working set (denoted SVs for support
vectors), decrease smoothly as the [pmin, pmax] inter-
val decreases (pmax − pmin = 1 is the standard logis-
tic regression). We also display the average decision
threshold estimated by cross-validation. It is slightly
above π+ = 8.8% for the standard logistic regression,
but the difference may not be significant (usual hy-
pothesis tests can not be applied since the experiments
are dependent). The correct decision threshold is al-
ways chosen for sparse logistic regression with small
[pmin, pmax] intervals. The classifiers are thus well cal-
ibrated regarding decision.

Figure 1 compares, for one trial, the sensitivity of the
mean test loss of logistic regression and sparse logistic
regression (with pmax − pmin = 2.2%) according to the
decision threshold. The figures obtained for the other
trials are similar; namely, logistic regression has a wide
flat minimum, reflecting that the ratio of correct clas-
sification does not change much in the neighborhood
of the decision boundary. This reveals that the true
conditional probabilities fluctuate non-monotonically
in this region. Sparse logistic regression behaves much

better, with a lower, narrower minimum centered at
π+, reflecting well-calibrated conditional probabilities
in the targeted region.

Table 3 summarizes the results obtained with SVMs.
Standard SVMs perform very badly because they are
optimized with equal costs C+ and C− for false posi-
tive and false negative. This can be arranged by shift-
ing the decision boundary. The corresponding perfor-
mance is shown under the column “with bias correc-
tion”. However, a best choice is to modify the hinge
loss to accommodate for C+ 6= C− (Osuna et al.,
1997). The corresponding result, displayed under the
column C+/C−, reaches performance and percentage
of SVs similar to the one of sparse logistic regression
with small [pmin, pmax] intervals.

6. Discussion

We proposed a new fitting criterion, which consists in
truncating the binomial log-likelihood. This criterion
produces sparse probabilistic classifiers, which output
faithful conditional probabilities in the vicinity of the
decision boundary. We detailed how logistic regres-
sion is modified by this “lazy likelihood estimation”,
but the principle can be applied to any model of con-
ditional probabilities, such as feedforward neural net-
works. Also, though we only discussed binary classifi-
cation problems, the principle is in essence multi-class
and can be applied to the multinomial log-likelihood.
The resulting optimization problem remains convex
provided that the specified range of “interesting” con-
ditional probabilities defines a convex set.

Further experiments are in progress to evaluate the
practical interest of sparse probabilistic classifiers, but
they are a promising way to address the class imbal-
ance problem. Instead of applying different weights to
the different categories, like SVMs trained with asym-
metrical costs C+/C− do, the training criterion tends
to select less active examples in the majority class, and
only the ambiguous ones. It thus performs a virtual
targeted undersampling of the majority class. To our
knowledge, there is no other algorithm implementing
this principle. Our preliminary experiments with lin-
ear classifiers show that probabilistic classifiers benefit
from the focus on the “gray zone” close to the bound-
ary decision. Sparse logistic regression provided bet-
ter decision rules than logistic regression. Not only
it gains in test error rates but it is also much faster
to train, thanks to its ability to ignore uninforma-
tive data. The performance and training time match
SVMs trained with asymmetrical costs C+/C−, and
we furthermore enjoy well-calibrated probabilities in
the vicinity of the boundary decision.
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Table 2. Mean test loss for sparse logistic regression and logistic regression (pmax − pmin = 100%)
pmin (%) 0 0.4 1.0 2.9 4.8 7.8
pmax (%) 100 72.0 47.5 24.1 15.8 10.0
pmax − pmin (%) 100 71.6 46.4 21.2 11.0 2.2

Mean test loss (×10−2) 1.86 ± 0.01 1.86 ± 0.01 1.85 ± 0.01 1.85 ± 0.01 1.83 ± 0.02 1.78 ± 0.02

Mean decision threshold (%) 9.5 ± 1.3 9.0 ± 1.1 9.0 ± 0.9 9.0 ± 0.6 8.8 ± 0.2 8.8 ± 0.0

Mean prop. of SVs (%) 100 65.5 53.5 40.5 34.0 27.9

Table 3. Mean test loss obtained for SVMs
SVM Standard With bias correction C+/C−

Mean Test Loss (×10−2) 3.75 ± 0.23 2.31 ± 0.12 1.79 ± 0.02
Mean prop. of SVs (%) 12.84 ± 0.79 13.16 ± 1.13 26.19 ± 0.60
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