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Strong almost reducibility for analytic and Gevrey

quasi-periodic cocycles

Claire Chavaudret

Institut de Mathématiques de Jussieu

175 rue du Chevaleret, 75013 Paris, France

Abstract: This paper is about almost reducibility of quasi-periodic cocycles with a
diophantine frequency which are sufficiently close to a constant. Generalizing previous
works by L.H.Eliasson, we show a strong version of almost reducibility for analytic and
Gevrey cocycles, that is to say, almost reducibility where the change of variables is in an
analytic or Gevrey class which is independent of how close to a constant the initial cocycle
is conjugated. This implies a result of density, or quasi-density, of reducible cocycles near
a constant. Some algebraic structure can also be preserved, by doubling the period if
needed.

1 Introduction

We are concerned with quasi-periodic cocycles, that is, solutions of equations of the form

∀(θ, t) ∈ 2Td × R,
d

dt
X t(θ) = A(θ + tω)X t(θ); X0(θ) = Id (1)

where A ∈ C0(2Td,G) and G is a linear Lie algebra. Here Td = Rd/Zd stands for the
d-torus, d ≥ 1, and 2Td = Rd/(2Zd) stands for the double torus. We will assume in this
article that ω ∈ Rd satisfies some diophantine conditions. The solution of (1) is called
the quasi-periodic cocycle associated to A and is defined on 2Td × R with values in the
connected component of the identity of a Lie group G whose associated Lie algebra is G.
Terminology is explained by the fact that A is the envelope of a quasi-periodic function,
since t 7→ A(θ + tω) is a quasi-periodic function for all θ ∈ 2Td. We say X is a constant
cocycle if A is constant. A constant cocycle is always of the form t 7→ etA.

A cocycle is said to be reducible if it is conjugated to a constant cocycle, in a sense that
will be defined later on. The problem of reducibility of cocycles has been thoroughly
studied and is of interest because the dynamics of reducible cocycles is well understood
and because this problem has links with the spectral theory of Schrödinger cocycles and
with the problem of lower dimensional invariant tori in hamiltonian systems. In the
periodic case (d = 1), Floquet theory tells that every cocycle is reducible modulo a loss of
periodicity. However, the problem is far more difficult if d is greater than 1 and it is not
true that every cocycle is then reducible. The question becomes whether every cocycle
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is close, up to a conjugacy, to a reducible one; from this question comes the notion of
almost-reducibility. A cocycle is said to be almost-reducible, roughly speaking, if it can be
conjugated to a cocycle which is arbitrarily close to a reducible one. Reductibility implies
almost reducibility, however the reverse is not true: there are non reducible cocycles even
close to a constant cocycle (see [4]). Almost reducibility is an interesting notion since the
dynamics of an almost reducible cocycle are quite well known on a very long time.

We first focus on cocycles generated by functions which are analytic on a neighbourhood
of the torus, i.e real analytic functions which are periodic in the direction of the real axis
(recall that they are matrix-valued). For such a function F , we will let

| F |r= sup
|Im θ|≤r

|| F (θ) ||

where || . || stands for the operator norm.

The aim of this paper is to show that for

G = GL(n,C), GL(n,R), SL(2,C), SL(n,R), Sp(n,R), O(n), U(n)

in the neighbourhood of a constant cocycle, every cocycle which is analytic on an r-
neighbourhood of the torus and G-valued is almost reducible in Cω

r′(2T
d, G) for all 0 < r′ < r ≤ 1

2
.

The width of the neighbourhood only depends on the dimensions n, d, on the diophantine
class of ω, on the constant cocycle and on the loss of analyticity r − r′.

More precisely, we shall prove the following theorem, for G among the groups cited above
and G the Lie algebra associated to G:

Theorem 1.1 Let 0 < r′ < r ≤ 1
2
, A ∈ G, F ∈ Cω

r (T
d,G). There is ǫ0 < 1 depending

only on n, d, ω, A, r− r′ such that if

|F |r ≤ ǫ0

then for all ǫ > 0, there exists Āǫ, F̄ǫ ∈ Cω
r′(2T

d,G), Ψǫ, Zǫ ∈ Cω
r′(2T

d, G) and Aǫ ∈ G such
that for all θ ∈ 2Td,

∂ωZǫ(θ) = (A+ F (θ))Zǫ(θ)− Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ))

with

1. ∂ωΨǫ = ĀǫΨǫ −ΨǫAǫ,

2. |F̄ǫ|r′ ≤ ǫ,

3. | Ψǫ |r′≤ ǫ−
1
8 ,

4. and |Zǫ − Id|r′ ≤ 2ǫ
1
2
0 .

Moreover, in dimension 2 or if G = GL(n,C) or U(n), Zǫ, Āǫ, F̄ǫ are continuous on Td.

2



Property 1 states the reducibility of Āǫ. Theorem 1.1 immediately entails the following:

Theorem 1.2 Let 0 < r′ < r ≤ 1
2
, A ∈ G, F ∈ Cω

r (T
d,G). There is ǫ0 < 1 depending

only on n, d, ω, A, r− r′ such that if

|F |r ≤ ǫ0

then for all ǫ > 0, there exists Fǫ ∈ Cω
r′(2T

d,G), Zǫ ∈ Cω
r′(2T

d, G) and Aǫ ∈ G such that
for all θ ∈ 2Td,

∂ωZǫ(θ) = (A+ F (θ))Zǫ(θ)− Zǫ(θ)(Aǫ + Fǫ(θ))

with |Fǫ|r′ ≤ ǫ.

Note that in Theorem 1.2, we do not have any good estimate of Zǫ. Theorem 1.1 also
holds if one chooses F in a class which is bigger than Cω

r (T
d,G), i.e the class of functions

in Cω
r (2T

d,G) satisfying some "nice periodicity properties" with respect to the matrix A.

There is a loss of analyticity in this result, but it is arbitrarily small. A result close
to Theorem 1.1 in the case when G = GL(n,R) had already been proven in [3] by
L.H.Eliasson:

Let A ∈ gl(n,R) and F ∈ Cω
r (T

d, gl(n,R)). There is ǫ0 < 1 depending only on
n, d, κ, τ, ||A||, r such that if |F |r ≤ ǫ0, then for all ǫ > 0, there exists 0 < rǫ < r,
Zǫ ∈ Cω

rǫ
(2Td, GL(n,R)) such that for all θ ∈ 2Td,

∂ωZǫ(θ) = (A+ F (θ))Zǫ(θ)− Zǫ(θ)(Aǫ + Fǫ(θ))

with Aǫ ∈ gl(n,R), Fǫ ∈ Cω
rǫ
(2Td, gl(n,R)) and |Fǫ|rǫ ≤ ǫ.

Eliasson’s theorem merely states almost reducibility in Cω
0 (2T

d, GL(n,R)), since the se-
quence (rǫ) might well tend to 0. The achievement of Theorem 1.1 is to state almost
reducibility in a more general algebraic framework, but also, and mostly, to show that
almost reducibility holds in a fixed neighbourhood of a torus even when this torus has
dimension greater than 1. This is almost reducibility in a strong sense.

Note that, as was the case in [3], one cannot avoid to lose periodicity in theorem 1.1 if G
is a real group with dimension greater than 2. The notion of "nice periodicity properties"
that will be given aims at limiting this loss to a period doubling. In comparison with the
real framework, the symplectic framework does not introduce any new constraints in the
elimination of resonances; therefore there is no more loss of periodicity here than in the
case when G = GL(n,R). As before in [2], a single period doubling is sufficient in the
case when G is a real symplectic group.

The second part of this paper is dedicated to showing that the same method gives an
analogous result for cocycles which are in a Gevrey class (Theorem 3.1).

In dimension 2 or if G is gl(n,C) or u(n), these results can be rephrased as density of
reducible cocycles in the neighbourhood of constant cocycles:
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Theorem 1.3 Let G = gl(n,C), u(n), gl(2,R), sl(2,R) or o(2). Let 0 < r′ < r ≤ 1
2

and
A ∈ G, F ∈ Cω

r (T
d,G). There is ǫ0 depending only on r − r′, n, d, ω, A such that if

|F |r ≤ ǫ0

then for all ǫ > 0 there exists H ∈ Cω
r′(T

d,G) which is reducible in Cω
r′(T

d,G) and such
that

|A+ F −H|r′ ≤ ǫ

A similar result, for smooth cocycles with values in compact Lie groups, was obtained by
R. Krikorian in [7] (th.5.1.1). For cocycles over a rotation on the circle, analyticity is far
better controlled (see for instance [1]) since it is then possible to use global methods. In
this article, we are considering the case of a torus of arbitrary dimension. The KAM-type
method that is being used here had already given way to full-measure reducibility results
for cocycles with values in SL(2,R) ([4], [6]).

Sketch of the proof and organization of the paper

The proof of Theorems 1.1 and 1.3 is a refinement of the method in [3]; it is based on
a KAM scheme. The central idea is to prove an inductive lemma where one conjugates
a system which is close to a reducible one to another system which is even closer to
something reducible. Iterating this lemma arbitrarily many times, one would then be
able to conjugate the initial system to something which is arbitrarily close to a reducible
one. An estimate on the reducing transformation would then imply almost reducibility.
Now consider a system close to a reducible one; if it is close to a system which can be
reduced to a constant part satisfying some non-resonant conditions, then there exists a
conjugation which is close to the identity in a good topology taking the first system to
something closer to a reducible system. But the constant part might well be too resonant
for such a conjugation to exist. In this case, it is possible to remove the resonances in the
constant part, but then the conjugation will not stay very close to the identity except if
one accepts to give up a lot of regularity. Now we want to avoid this loss of regularity
in order to obtain a strong version of almost reducibility. So we will have to improve
the step of removing the resonances and use the following two facts: when resonances
have been removed up to some order N , firstly, the eigenvalues will be so close together
that resonances are in fact removed up to an order RN which is much greater than N ;
secondly, the eigenvalues are removed in a durable way, that is, one will not have to
remove resonances again until a great number of conjugations is made that will take the
cocycle to something much closer to a reducible one. The article is organized as follows:

Section 2 is dedicated to the proof of the theorem in the analytic case. Here are the
main steps of the proof:

• Removing of the resonances by a map Φ called a reduction of the eigenvalues at
order R, N̄ (Proposition 2.6) for R,N ∈ N \ {0}.
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In dimension 2, Φ will be such that for all H continuous on Td, ΦHΦ−1 is continuous
on Td.

This step is crucial in the obtention of strong almost reducibility. The reduction
of the eigenvalues is defined in a way similar to [3], however here it will remove
resonances up to an order RN̄ which is much greater than the value of the parameter
N̄ appearing in the estimates. The parameter R will be used to define a map of
reduction of the eigenvalues at order R, N̄ where N̄ does not depend on the loss
of analyticity. This way, the map of reduction of the eigenvalues will stay under
control on a neighbourhood of the torus which will not have to fade totally.

• Resolution of the homological equation (Proposition 2.8): if Ã has a spectrum ful-
filling some non-resonance conditions and F̃ is a function with nice periodicity prop-
erties with respect to Ã, then there exists a solution X̃ of equation

∂ωX̃ = [Ã, X̃ ] + F̃RN̄ ; ˆ̃X(0) = 0

having the same periodicity properties as F̃ ; it takes its values in the same Lie
algebra as does F̃ . Moreover, it can be well controlled by losing some analyticity.

• Inductive lemma (Proposition 2.14): If F̃ ∈ Cω
r (2T

d,G) has some periodicity prop-
erties (with respect to Ã), if

∂ωΨ = ĀΨ−ΨÃ

and F̄ = ΨF̃Ψ−1, then there exists Z ∈ Cω
r′(2T

d, G) such that

∂ωZ = (Ā+ F̄ )Z − Z(Ā′ + F̄ ′) (2)

with Ā′ reducible, F̄ ′ is much smaller than F̄ , Z is close to the identity and Ψ′−1F̄ ′Ψ′

has periodicity properties with respect to A′ which are similar to the properties of
F̃ .

The estimate of F̄ ′ depends on F̃ − F̃RN̄ , on the reduction of the eigenvalues Φ, and
on the solution X̃ of the homological equation.

• Iteration of the inductive lemma (Theorem 2.16): We shall iterate Lemma 2.14 so
as to obtain estimates of analytic functions on a sequence of neighbourhoods of the
torus not tending to 0, by means of a numerical lemma (Lemma 2.15), to reduce
the perturbation arbitrarily.

In section 3, some lemmas are given (3.1) which show that it is possible to adapt
the proof to the Gevrey case; namely, the estimates will be analogous to those that are
obtained in the analytic case and so, by slightly modifying the parameters, the argu-
ment works in the same way: one obtains analogous reduction of the eigenvalues (3.2),
homological equation (3.3) and inductive lemmas (3.4).
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Notations, further definitions and a general assumption

For a function f ∈ C1(2Td, gl(n,C)), for all θ ∈ 2Td we will denote by

∂ωf(θ) =
d

dt
f(θ + tω)|t=0 (3)

the derivative of f in the direction ω. Denote by 〈., .〉 the complex euclidian scalar
product, taking it antilinear in the second variable. For a linear operator M , we shall
call M∗ its adjoint, which is identical to the transpose of M if M is real. Also denote
by MN the nilpotent part of M , as follows: let M = PAP−1 with A in Jordan normal
form, let AD be the diagonal part of A, then MN = P (A − AD)P

−1. To simplify the
writing, if A : 2Td → GL(n,C), we will denote by A−1 the map θ 7→ A(θ)−1. For all
m = (m1, . . . , md) ∈ 1

2
Zd, we shall denote | m |=| m1 | + · · ·+ | md |. The letter J will

stand for matrix J =

(
0 −Id
Id 0

)
.

Definition: A function f is analytic on an r-neighbourhood of the torus (resp. double
torus) if f is holomorphic on {x = (x1, . . . , xd) ∈ Cd, supj | Imxj | < r} and 1-periodic
(resp. 2-periodic) in Re xj for all 1 ≤ j ≤ d.
For all subset E of gl(n,C), denote by Cω

r (T
d, E) the set of functions which are analytic

on an r-neighbourhood of the torus and whose restriction to Rd takes its values in E;
let Cω

r (2T
d, E) be the set of functions which are analytic on an r-neighbourhood of the

double torus and whose restriction to 2Td takes its values in E. For all f ∈ Cω
r (2T

d, E),
denote

|f |r = sup
|Imx|<r

||f(x)|| (4)

where ||.|| stands for the operator norm.

Let CG,β
r be the class of Gevrey β functions with parameter r, i.e functions f satisfying

∑

α∈Nd

rβ|α|

α!β
sup
θ

|| ∂αF (θ) ||< +∞

Denote by || . ||β,r the norm

|| F ||β,r=
∑

α∈Nd

rβ|α|

α!β
sup
θ

|| ∂αF (θ) ||

To formalize the notion of reducibility, we shall introduce an equivalence relation on
cocycles.

Definition: Let G be a Lie group and G the Lie algebra associated to G. Let r, r′ > 0
and A,B ∈ Cω

r (2T
d,G). We say that A and B are conjugate in Cω

r′(2T
d, G) if there exists

Z ∈ Cω
r′(2T

d, G) such that for all θ ∈ 2Td,

∂ωZ(θ) = A(θ)Z(θ)− Z(θ)B(θ)
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where ∂ω means the derivative in the direction ω. If B is constant in θ, we say that A is
reducible in Cω

r′(2T
d, G), or reducible by Z to B. We will use an analogous definition with

CG,β instead of Cω.

Note that if X is the quasi-periodic cocycle associated to A, then the map A is reducible
by Z to B if and only if

∀(t, θ), X t(θ) = Z(θ + tω)−1etBZ(θ) (5)

Reducibility is also equivalent to the fact that the map from 2Td × Rn to itself:

(
θ
v

)
7→
(

θ + ω
X1(θ)v

)
(6)

is conjugate to a map χ such that

dχ

dθ

(
θ
v

)
≡
(

1̄
0

)
(7)

Assumption: The frequency ω is in the diophantine class DC(κ, τ), i.e

∀ m ∈ Z
d \ {0}, |〈m,ω〉| ≥ κ

|m|τ (8)

where κ, τ are fixed throughout the paper and 0 < κ < 1, τ ≥ max(1, d− 1).

2 Strong almost reducibility for analytic quasi-periodic

cocycles

2.1 Nice periodicity properties

A few definitions will first be given. The notion of "triviality with respect to a decompo-
sition" will make the construction of the map of reduction of the eigenvalues easier; the
"nice periodicity properties" have been introduced in [3] and are used in the real case to
make sure that only one period doubling will be needed in iterating the inductive lemma.

2.1.1 Invariant decompositions

The set L = {L1, . . . , LR} is called a decomposition of Cn if Cn =
⊕

j Lj . If L,L′ are
decompositions of Cn, then L is said to be finer than L′ if for all L ∈ L, there is L′ ∈ L′

such that L ⊂ L′; L is said strictly finer than L′ if L is finer than L′ and L 6= L′.

Definition: Let A ∈ gl(n,C); then L = {L1, . . . , Ls} is an A-decomposition, or else
A-invariant decomposition, if it is a decomposition of Cn and for all i, ALi ⊂ Li. Subsets
Li are called subspaces of L.

Let a Jordan decomposition for A be an A-decomposition which is minimal (i.e no finer
decomposition is an A-decomposition). Then
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• A matrix might have many Jordan decompositions. For instance, the identity has
infinitely many Jordan decompositions.

• A decomposition is an A-decomposition if and only if it is less fine than some
Jordan decomposition for A. Therefore, if operators A and A′ have a common
Jordan decomposition, then an A-decomposition which is less fine than this common
Jordan decomposition is an A′-decomposition.

Notation: Let L be an A-decomposition. For all L ∈ L, denote by σ(A|L) the spectrum
of the restriction of A to subspace L.

Definition: Let κ′ ≥ 0. Let LA,κ′ be the unique A-decomposition L such that for all
L 6= L′ ∈ L, α ∈ σ(A|L) and β ∈ σ(A|L′)⇒ |α−β| > κ′ and such that no A-decomposition
strictly finer than L has this property.

Remark: For κ′ ≥ 0, any Jordan decomposition is finer than LA,κ′.

Definition: Let L be a decomposition of Cn. For all u ∈ Cn, there is a unique decom-
position u =

∑
L∈L uL such that uL ∈ L for all L ∈ L. For all L ∈ L, the projection on L

with respect to L, denoted by PL
L , is the map defined by PL

L u = uL.

Remark: Let A ∈ gl(n,C) and κ′ > 0. If L is an A-decomposition which is less fine than
LA,κ′, then one has the following lemma, which can be found in [3], appendix, Lemma A1:

Lemma 2.1 There is a constant C0 ≥ 1 depending only on n such that for all subspace
L ∈ L,

|| PL
L ||≤ C0

(
1+ || AN ||

κ′

)n(n+1)

(9)

In what follows, C0 will always stand for this constant fixed in Lemma 2.1.

Definition: An (A, κ′, γ)-decomposition is an A-decomposition L such that for all L ∈ L,
the projection on L with respect to L satisfies

|| PL
L ||≤ C0

(
1+ || AN ||

κ′

)γ

(10)

Remark: For A ∈ gl(n,C), one always has A =
∑

L,L′∈L P
L
LAP

L
L′ . In particular, if L is

an A-decomposition, then A =
∑

L∈L P
L
LAP

L
L .

Definitions: Let L be a decomposition. We say that

• L is a real decomposition if for all L ∈ L, L̄ ∈ L;

1Lemma A from [3] gives in fact an estimate which depends on || A ||, but the proof shows clearly
that the estimate in fact only depends on AN .

8



• L is a symplectic decomposition if it is a decomposition of Cn with even n and for
all L ∈ L, there is a unique L′ ∈ L such that 〈L, JL′〉 6= 0;

• L is a unitary decomposition if for all L 6= L′ ∈ L, 〈L, L′〉 = 0.

Remark:

• If A is a real matrix, then for all κ′ ≥ 0, LA,κ′ is a real decomposition.

• For all L, there is at least one L′ such that 〈L, JL′〉 6= 0. This comes from the fact
that the symplectic form 〈., J.〉 is non-degenerate.

• If A ∈ sp(n,R), then any A-decomposition L which is less fine than LA,0 is a real
and symplectic decomposition. To see this, let L, L′ ∈ L such that 〈L, JL′〉 6= 0; let
v ∈ L, v′ ∈ L′ be eigenvectors of A such that 〈v, Jv′〉 6= 0 and λ, λ′ their associated
eigenvalues. Then

λ〈v, Jv′〉 = 〈Av, Jv′〉 = 〈v, A∗Jv′〉 = −〈v, JAv′〉 = −λ̄′〈v, Jv′〉

and since 〈v, Jv′〉 6= 0, then λ = −λ̄′.

• If A ∈ U(n), then any decomposition which is less fine than LA,0 is unitary.

• If L is unitary, then for every L ∈ L, PL
L is an orthogonal projection so

|| PL
L ||≤ 1

2.1.2 Triviality and nice periodicity properties with respect to a decomposi-

tion

Definition: Let L be a decomposition of Cn. We say a map Ψ is trivial with respect to
L if there exist {mL, L ∈ L} ⊂ 1

2
Zd such that for all θ ∈ 2Td,

Ψ(θ) =
∑

L∈L
e2iπ〈mL,θ〉PL

L (11)

We say that the function Ψ is trivial if there exists a decomposition L such that Ψ is
trivial with respect to L.

Remark:

• If Ψ is trivial with respect to L and L′ is finer than L, then Ψ is trivial with respect
to L′.

• If Φ,Ψ : 2Td → GL(n,C) are trivial with respect to L, then the product ΦΨ is
trivial with respect to L.

• If Φ is trivial with respect to an A-decomposition L, then for all θ ∈ 2Td, [A,Φ(θ)] =
0.
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Lemma 2.2 Let L be a real decomposition of Cn, {mL, L ∈ L} ⊂ 1
2
Zd and Ψ defined by

Ψ(θ) =
∑

L∈L
e2iπ〈mL,θ〉PL

L (12)

Then Ψ is real if and only if for all L, mL = −mL̄. Moreover, if Ψ is real, then Ψ takes
its values in SL(n,R).

Proof: Assume that for all L ∈ L, mL = −mL̄. Let u ∈ Rn. Then

Ψ(θ)u =
∑

L∈L
e2iπ〈−mL,θ〉PL

L u =
∑

L∈L
e2iπ〈mL̄,θ〉PL

L̄ u = Ψ(θ)u

so Ψ(θ) is real.

Now suppose that Ψ is real. Then for all θ,

∑

L∈L
e2iπ〈mL,θ〉PL

L =
∑

L∈L
e2iπ〈−mL,θ〉PL

L =
∑

L∈L
e2iπ〈−mL,θ〉PL

L̄

so mL = −mL̄.

Suppose Ψ is real; then for all L, mL = −mL̄ so Ψ(θ) is the exponential of a trace-zero
matrix, so it has determinant 1. �

Remark: Any map which is trivial with respect to a unitary decomposition is unitary:
let L be a unitary decomposition, let Φ be trivial with respect to L and let L, L′ ∈ L.
Then for all u ∈ L, v ∈ L′,

〈Φ(θ)u,Φ(θ)v〉 = 〈e2iπ〈mL,θ〉u, e2iπ〈mL′ ,θ〉v〉 = 〈u, v〉

Lemma 2.3 Let L be a real and symplectic decomposition and {mL, L ∈ L} be a family
of elements of 1

2
Zd. Let Ψ =

∑
L∈L e

2iπ〈mL,.〉PL
L . Then Ψ takes its values in Sp(n,R) if

and only if

• for all L, mL = −mL̄

• and if 〈L, JL′〉 6= 0, then mL = mL′.

Proof: By Lemma 2.2, Ψ is real if and only if for all L, mL = −mL̄. Assume now Ψ is
real.

We show first that if for all L, L′ ∈ L, 〈L, JL′〉 6= 0 ⇒ mL = mL′ , then Ψ takes its values
in Sp(n,R). Let u, v ∈ Rn. Then

〈u,Ψ(θ)∗JΨ(θ)v〉 = 〈Ψ(θ)u, JΨ(θ)v〉 =
∑

L

e2iπ〈mL−mM(L),θ〉〈PL
L u, JP

L
M(L)v〉

where M(L) stands for the unique subspace such that 〈L, JM(L)〉 6= 0. Assume that if
〈L, JL′〉 6= 0, then mL = mL′. This implies that
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〈u,Ψ(θ)∗JΨ(θ)v〉 =
∑

L

〈PL
L u, JP

L
M(L)v〉 = 〈u, Jv〉

so Ψ(θ) ∈ Sp(n,R).

Now we will show that if Ψ(θ) ∈ Sp(n,R) and if 〈L, JL′〉 6= 0, then mL = mL′. Suppose
Ψ(θ) ∈ Sp(n,R). For any two vectors u, v,

〈u, Jv〉 = 〈u,Ψ(θ)∗JΨ(θ)v〉 = 〈Ψ(θ)u, JΨ(θ)v〉
If u ∈ L and v ∈ m(L) satisfy 〈u, Jv〉 6= 0, then

〈u, Jv〉 = 〈Ψ(θ)u, JΨ(θ)v〉 = e2iπ〈mL−mM(L),θ〉〈u, Jv〉
so mL = mM(L). �

We will now define the periodicity properties.

Definition: Let L be a decomposition of Cn. We say that F ∈ C0(2Td, gl(n,R)) has
nice periodicity properties with respect to L if there exists a map Φ which is trivial with
respect to L and such that Φ−1FΦ is continuous on Td.
To make the family (mL) explicit, we say that F has nice periodicity properties with
respect to L and (mL).

Remark:

• If F ∈ C0(2Td, gl(n,R)) has nice periodicity properties with respect to a decomposi-
tion L and Φ is trivial with respect to L, then ΦFΦ−1 has nice periodicity properties
with respect to L.

• If L′ is a decomposition of Cn which is finer than L and F has nice periodicity
properties with respect to L,then F has nice periodicity properties with respect to
L′.

• Let L be a decomposition of Cn and (mL)L∈L be a family of elements of 1
2
Zd. If

F1, F2 ∈ C0(2Td, gl(n,R)) have nice periodicity properties with respect to L and
(mL), then the product F1F2 has nice periodicity properties with respect to L and
(mL).

2.2 Removing the resonances

In the following we will have to solve a homological equation and estimate the solution
on a neighbourhood of the torus; in order to have a sufficient estimate, one will assume
that the coefficients of the equation satisfy some diophantine conditions:

Let A ∈ gl(n,R) and 0 < κ′ < 1. Let N ∈ N.

Definition: Let z ∈ C, ν ∈ {1, 2}. We say that z is diophantine modulo ν with
respect to ω, with constant κ′, exponent τ and order N if for every m ∈ 1

ν
Zd such that

0 < |m| ≤ N ,

11



|z − 2iπ〈m,ω〉| ≥ κ′

|m|τ (13)

This property will be denoted by

z ∈ DCN
ω,ν(κ

′, τ) (14)

Note that

DCN
ω,2(κ

′, τ) ⊂ DCN
ω,1(κ

′, τ) (15)

and that every real number z is in DCN
ω,2(

κ
2τ
, τ) since for all m ∈ 1

2
Zd,

|z − 2iπ〈m,ω〉| =
(
|z|2 + (2π|〈m,ω〉|)2

) 1
2 ≥ πκ

|2m|τ ≥ κ

|2m|τ (16)

Remark: In the definition above, the condition is required only for non vanishing m,
so (13) has a meaning.

Definition: A is said to have DCN
ω (κ′, τ) spectrum if

{
∀α, β ∈ σ(A), α− β ∈ DCN

ω,1(κ
′, τ)

∀α, β ∈ σ(A), α 6= β̄ ⇒ α− β ∈ DCN
ω,2(κ

′, τ)
(17)

Let N ∈ N. Let A in a Lie algebra G. The aim is to show that there exists κ′ > 0, Ã ∈ G
such that Ã has DCN

ω (κ′, τ) spectrum and A and Ã are conjugate (in the acception of
cocycles, following the definition given in the introduction). To achieve this, one has to
find a family (m1, . . . , mn) satisfying

{
∀ αj, αk ∈ σ(A), αj − αk + 2iπ〈mj −mk, ω〉 ∈ DCN

ω,1(κ
′, τ)

∀ αj, αk ∈ σ(A), αj 6= ᾱk ⇒ αj − αk + 2iπ〈mj −mk, ω〉 ∈ DCN
ω,2(κ

′, τ)
(18)

We shall construct the so-called map of reduction of the eigenvalues Φ conjugating (in
the sense of cocycles) A to the matrix obtained from A by substituting an eigenvalue αj

by αj + 2iπ〈mj , ω〉, then we will prove that Φ is G-valued.

2.2.1 Diophantine conditions

Lemma 2.4 Let {α1, . . . , αn} ⊂ C. Let Ñ ∈ N and κ′ ≤ κ

n(8Ñ)τ
. There exists m1, . . . , mn ∈

1
2
Zd such that supj |mj| ≤ Ñ , and such that letting for all j, α̃j = αj − 2iπ〈mj, ω〉, then

{α1, . . . , αn} = {α1, . . . , αn} ⇒ ∀j, k, αj = ᾱk ⇒ mj = −mk (19)

n = 2, α2 = −α1 ⇒ m1 = −m2 (20)

∀j, k, αj = −ᾱk ⇒ mj = mk (21)

12



∀j, k, |αj − αk| ≤ κ′ ⇒ mj = mk (22)

∀j, |Imα̃j | ≤ |Imαj | (23)

∀j, k, αj = ᾱk ⇒ α̃j − α̃k ∈ DCÑ
ω,1(κ

′, τ) (24)

and

∀j, k, αj 6= ᾱk ⇒ α̃j − α̃k ∈ DCÑ
ω,2(κ

′, τ) (25)

and such that if not all mj vanish, then there exist j, k such that

|αj − αk| ≥ κ′, |α̃j − α̃k| < κ′ (26)

Moreover, there exist m1, . . .mn ∈ Zd, with |mj| ≤ Ñ for all j, fulfilling conditions (21),
(22), (23), such that

∀j, k, α̃j − α̃k ∈ DCÑ
ω,1(κ

′, τ) (27)

and such that if not all mj vanish, then there exist j, k such that (26) holds.

Proof: We shall proceed in two steps. The first step consists in removing resonances
which might occur between two eigenvalues whose imaginary parts are nearly opposite
to each other. Once this first lot of resonances is removed, the second step consists in
removing the resonances which might occur between two eigenvalues whose imaginary
parts are far from opposite.

• Let 1 ≤ j ≤ n. Suppose that there is an m ∈ Zd, 0 <| m |≤ Ñ such that

| 2Imαj − 2π〈m,ω〉 |< κ′

| m |τ

then let α′
j = αj − 2iπ〈m

2
, ω〉. Otherwise, let α′

j = αj. Note that if |αj − αk| ≤ κ′ and
if there exist mj 6= mk such that

| 2Imαj − 2π〈mj, ω〉 |<
κ′

| mj |τ
; | 2Imαk − 2π〈mk, ω〉 |<

κ′

| mk |τ

then

| 2iπ〈mj −mk, ω〉 | ≤
κ

| mj −mk |τ

which is impossible since ω is diophantine. Therefore conditions (19) to (24) hold with
α′
j = α̃j and mj such that αj − α′

j = 2iπ〈mj , ω〉.

• Let I−r, . . . , Ir be the finest partition of {1, . . . , n} such that

13



| Im(α′
j − α′

k) |≤ κ′ ⇒ ∃− r ≤ r′ ≤ r | j, k ∈ Ir′

and choose the indices in such a way that

r′ < r′′ ⇒ ∀j ∈ Ir′, ∀k ∈ Ir′′ , Imα′
j ≤ Imα′

k

Note that I0 might be empty. We will proceed by induction on r′ to prove the following
property P(r′):

There are m′
1, m

′
−1, . . . , m

′
r′, m

′
−r′ ∈ Zd with sup|j|≤r′ |m′

j | ≤ Ñ such that properties (19)
to (25) hold for all −r′ ≤ r1, r2 ≤ r′, j ∈ Ir1 , k ∈ Ir2 with m′

j instead of mj and α′
j instead

of αj.

• Case r′ = 0: if I0 is empty, then P(0) trivially holds. Assume I0 is non empty. Then
for all j, k ∈ I0 and all m ∈ 1

2
Zd such that 0 <| m |≤ Ñ ,

| α′
j − α′

k − 2iπ〈m,ω〉 |≥| Im(α′
j − α′

k)− 2π〈m,ω〉 |≥ κ

| m |τ − nκ′ ≥ κ′

so α′
j − α′

k ∈ DCÑ
ω,2(κ

′, τ) and P(0) holds true.

• Let r′ ≤ r − 1. Assume P(r′) holds. Consider Ir′+1 and I−r′−1. There are two
possible cases.

• There exist −r′ ≤ r′′ ≤ r′, j ∈ Ir′′, k ∈ Ir′+1 and m ∈ Zd such that | m |≤ Ñ and

| α′
j − α′

k − 2iπ〈mr′′ +m,ω〉 |< κ′

| m |τ

• The case above does not hold.

In the first case, let m′
r′+1 = m = −m′

−r′−1. In the second case, let m′
r′+1 = m′

−r′−1 = 0.

Now m′
r′+1 and m′

−r′−1 are independent from j, k. To see this, suppose there are j1, j2 ∈
Ir1, k1, k2 ∈ Ir2 , m1 6= m2 ∈ Zd such that for l = 1, 2,

| α′
jl
− α′

kl
− 2iπ〈ml, ω〉 |<

κ′

| ml |τ
Then

| 2π〈m1 −m2, ω〉 |≤
κ

| m1 −m2 |τ

which is impossible. Therefore P(r′ + 1) holds true.

• Once m′
1, . . . , m

′
r, m

′
−1, . . . , m

′
−r ∈ Zd are defined, conditions (19) to (25) hold with, for

all j ∈ Ir′, α̃j = α′
j − 2iπ〈m′

r′ , ω〉 and mj such that αj − α̃j = 2iπ〈mj , ω〉. Condition (26)
is obvious by construction.
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• By proceeding only with the second step, one gets m1, . . .mn ∈ Zd, with |mj | ≤ Ñ for
all j, satisfying conditions (21), (22), (23), such that

∀j, k, α̃j − α̃k ∈ DCÑ
ω,1(κ

′, τ)

and such that if not all mj vanish, then there are j, k such that (26) holds true. �

Lemma 2.5 Let {α1, . . . , αn} ⊂ C. For every R,N ∈ N, N ≥ 2, R ≥ 1, there exists

N̄ ∈ [N,R
1
2
n(n−1)N ] and m1, . . . , mn ∈ 1

2
Zd with

sup
j

|mj| ≤ 2N̄ (28)

such that letting α̃j = αj − 2iπ〈mj, ω〉 and

κ′′ =
κ

n(8R
1
2
n(n−1)+1N)τ

(29)

conditions (19) to (23) of Lemma 2.4 hold for κ′ = κ′′, and such that

∀j, k, α̃j − α̃k ∈ DCRN̄
ω,1 (κ

′′, τ) (30)

and

∀j, k, αj 6= ᾱk ⇒ α̃j − α̃k ∈ DCRN̄
ω,2 (κ

′′, τ) (31)

Moreover, there exist m1, . . .mn ∈ Zd with |mj| ≤ N̄ for all j such that conditions (21),
(22), (23) and (30) hold true.

Proof: If αj satisfy for all j, k

{
αj = ᾱk ⇒ αj − αk ∈ DCRN

ω,1 (κ
′′, τ)

αj 6= ᾱk ⇒ αj − αk ∈ DCRN
ω,2 (κ

′′, τ)
(32)

then we are done with N̄ = N and m1 = · · · = mn = 0.
Suppose (32) does not hold. Then apply Lemma 2.4 with Ñ = RN, κ′ = κ′′ to get

m1
1, . . . , m

1
n such that





∀j, k, αj = ᾱk ⇒ m1
j = −m1

k

∀j, k, αj = −ᾱk ⇒ m1
j = m1

k

∀j, k, |αj − αk| ≤ κ′′ ⇒ m1
j = m1

k

∀j, |Imαj − 2iπ〈m1
j , ω〉| ≤ |Imαj|

(33)

and

{
αj = ᾱk ⇒ αj − αk − 2iπ〈m1

j −m1
k, ω〉 ∈ DCRN

ω,1 (κ
′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈m1
j −m1

k, ω〉 ∈ DCRN
ω,2 (κ

′′, τ)
(34)

and such that there exist j1, k1 satisfying | Im(αj1 − αk1)− 2iπ〈m1
j1
−m1

k1
, ω〉 |< κ′′.

Assume there are mr
1, . . . , m

r
n such that sup |mr

j | ≤ (R+R2 + · · ·+Rr)N and that for all
j, k,
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



∀j, k, αj = ᾱk ⇒ mr
j = −mr

k

∀j, k, αj = −ᾱk ⇒ mr
j = mr

k

∀j, k, |αj − αk| ≤ κ′′ ⇒ mr
j = mr

k

∀j, |Imαj − 2iπ〈mr
j , ω〉| ≤ |Imαj |

(35)

and

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mr

j −mr
k, ω〉 ∈ DCRrN

ω,1 (κ′′, τ)
αj 6= ᾱk ⇒ αj − αk − 2iπ〈mr

j −mr
k, ω〉 ∈ DCRrN

ω,2 (κ′′, τ)
(36)

and suppose there exist distinct (j1, k1), . . . , (jr, kr) such that for all l ≤ r,

| Imαjl − Imαkl − 2iπ〈mr
jl
−mr

kl
, ω〉 |< κ′′ (37)

If moreover one has for all j, k

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mr

j −mr
k, ω〉 ∈ DCRr+1N

ω,1 (κ′′, τ)
αj 6= ᾱk ⇒ αj − αk − 2iπ〈mr

j −mr
k, ω〉 ∈ DCRr+1N

ω,2 (κ′′, τ)
(38)

then the process ends with N̄ = RrN and mj = mr
j since it is true that

| mr
j |≤ (R +R2 + · · ·+Rr)N ≤ RrN

1− 1
Rr

1− 1
R

≤ 2RrN (39)

Otherwise, iterate once more Lemma 2.4 with Ñ = Rr+1N and αj − 2iπ〈mr
j , ω〉 in place

of αj to get mr+1
1 , . . . , mr+1

n such that sup |mr+1
j | ≤ (R + R2 + · · · + Rr+1)N and for all

j, k,





∀j, k, αj = ᾱk ⇒ mr+1
j = −mr+1

k

∀j, k, αj = −ᾱk ⇒ mr+1
j = mr+1

k

∀j, k, |αj − αk| ≤ κ′′ ⇒ mr+1
j = mr+1

k

∀j, |Imαj − 2iπ〈mr+1
j , ω〉| ≤ |Imαj |

(40)

and

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mr+1

j −mr+1
k , ω〉 ∈ DCRr+1N

ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mr+1
j −mr+1

k , ω〉 ∈ DCRr+1N
ω,2 (κ′′, τ)

(41)

and that there exist distinct (j1, k1), . . . , (jr+1, kr+1) such that for all l ≤ r + 1,

| Imαjl − Imαkl − 2iπ〈mr+1
jl

−mr+1
kl

, ω〉 |< κ′′ (42)

Therefore, for all 1 ≤ l ≤ r + 1,

|αjl − αkl − 2iπ〈mr+1
jl

−mr+1
kl

, ω〉| < κ′′ (43)

This implies that for all m ∈ 1
2
Zd such that 0 < |m| ≤ RN̄ and for all l, 1 ≤ l ≤ r + 1,

|αjl − αkl − 2iπ〈mr+1
jl

−mr+1
kl

, ω〉 − 2iπ〈m,ω〉| ≥ κ

2τ+1(RN̄)τ
− κ′′ ≥ κ′′ (44)
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so for all l ≤ r + 1,

αjl − αkl − 2iπ〈mr+1
jl

−mr+1
kl

, ω〉 ∈ DCRN̄
ω,2 (κ

′′, τ) (45)

Therefore, after r̄ ≤ n(n−1)
2

steps, one gets conditions (30) and (31) with mj = mr̄
j and

α̃j = αj − 2iπ〈mj , ω〉 and |Imαj − 2iπ〈mj , ω〉| ≤ |Imαj |. It is true that | mr̄
j |≤ 2N̄ and

conditions (19) to (23) of Lemma 2.4 are also satisfied.

Lemma 2.4 implies that if conditions (19) and (31) are not required, then one can get
m1, . . .mn ∈ Zd. �

2.2.2 Reduction of the eigenvalue

Now the preceding lemmas will be used to define the map of reduction of the eigenvalues
Φ which will conjugate A to a matrix with DCRN

ω (κ′′, τ) spectrum for some κ′′, with R,N
arbitrarily great and Φ bounded independently of R.

In all that follows, G will be a Lie group among

GL(n,C), GL(n,R), Sp(n,R), SL(2,C), SL(n,R), O(n), U(n)

and G will be the Lie algebra associated to G.

Proposition 2.6 Let A ∈ G, R ≥ 1 and N ∈ N. There exists N̄ ∈ [N,R
1
2
n(n−1)N ] such

that if

κ′′ =
κ

n(8R
1
2
n(n−1)+1N)τ

(46)

then there exists a map Φ which is trivial with respect to LA,κ′′ and G-valued and such
that

1. for all r′ ≥ 0,

|Φ|r′ ≤ nC0

(
1 + ||AN ||

κ′′

)n(n+1)

e4πN̄r′, |Φ−1|r′ ≤ nC0

(
1 + ||AN ||

κ′′

)n(n+1)

e4πN̄r′

(47)

2. Let Ã be such that

∀θ ∈ 2Td, ∂ωΦ(θ) = AΦ(θ)− Φ(θ)Ã (48)

then

||Ã− A|| ≤ 4πN̄ (49)

and Ã has DCRN̄
ω (κ′′, τ) spectrum.
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3. If G = gl(n,C) or u(n), Φ is defined on Td.

4. If G = o(n) or u(n), then

|Φ|r′ ≤ ne4πN̄r′, |Φ−1|r′ ≤ ne4πN̄r′ (50)

5. If G = sl(2,C) or sl(2,R), then either Φ is the identity or || Ã ||≤ κ′′.

Proof: Let {α1, . . . , αn} = σ(A). Two cases must be considered:

• If G = gl(n,C) or u(n), Lemma 2.5 gives N̄ and mj ∈ Zd for j = 1, . . . , n such that

N ≤ N̄ ≤ R
1
2
n(n−1)N ; sup

j

|mj | ≤ 2N̄

and such that conditions (21) to (23) of Lemma 2.4 hold with κ′ = κ′′, as well as
conditions (30).

• If G = gl(n,R), sp(n,R), sl(n,R), sl(2,C) or o(n), Lemma 2.5 gives N̄ and mj ∈ 1
2
Zd

for j = 1, . . . , n such that

N ≤ N̄ ≤ R
1
2
n(n−1)N ; sup

j

|mj | ≤ 2N̄

and such that conditions (19) to (23) of Lemma 2.4 hold with κ′ = κ′′, as well as
conditions (30) and (31).

For all j there is a unique L ∈ LA,κ′′ such that αj ∈ σ(A|L). Let mL = mj . Then mL is
independent of j thanks to property (22).
For all θ ∈ 2Td, let

Φ(θ) =
∑

L∈LA,κ′′

e2iπ〈mL,θ〉P
LA,κ′′
L

By construction of the (mL), Φ is defined on Td if G = gl(n,C) or u(n). Let us prove that
Φ is G-valued.

• if G = gl(n,C), this is trivial;

• if G = sl(2,C) or sl(2,R), this comes from condition (20);

• if G = u(n), Φ has unitary values.

• if G = gl(n,R), this comes from Lemma 2.2, since LA,κ′′ is a real decomposition and
according to Lemma 2.5, for all L ∈ LA,κ′′, mL = −mL̄.

• if G = o(n), the map Φ has values in real unitary matrices, i.e orthogonal matrices.
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• if G = sp(n,R), LA,κ′′ is a symplectic decomposition. Lemma 2.5 ensures that for
all L ∈ LA,κ′′, mL = −mL̄ and

∀L, L′ ∈ LA,κ′′, 〈L, JL′〉 6= 0 ⇒ mL = mL′

Therefore Lemma 2.3 implies that for all θ the matrix Φ(θ) is in Sp(n,R).

Properties (30) and (31) ensure that Ã has DCRN̄
ω (κ′′, τ) spectrum.

Moreover, for all L ∈ L̄, |mL| ≤ 2N̄ . The estimate of each P L̄
L recalled in Lemma 2.1

implies that Φ satisfies the estimate

|Φ|r′ ≤ nC0

(
1 + ||AN ||

κ′′

)n(n+1)

e4πN̄r′

and so does Φ−1 since

Φ−1 =
∑

L∈LA,κ′′

e−2iπ〈mL,.〉P
LA,κ′′
L

Now if G is o(n) or u(n), then every projection P
LA,κ′′
L has norm 1 and therefore Φ and

Φ−1 satisfy (50). By definition of Ã,

∀L ∈ L′, σ(Ã|L) = σ(A|L)− 2iπ〈mL, ω〉
and by property (23),

∀α ∈ σ(A|L), |α− 2iπ〈mL, ω〉| ≤ |α|
Let P be such that PAP−1 is in Jordan normal form, let αj be the eigenvalues of A and
pj the columns of P , then for all j,

||(Ã−A)pj || = ||2iπ〈mj, ω〉pj|| ≤ 4πN̄ ||pj||
So ||Ã−A|| ≤ 4πN̄ , whence property (49). Finally, if G = sl(2,C) or sl(2,R), then either
Ã = A, or A is diagonalizable, and then Ã is also diagonalizable, so their norms are the
modulus of their eigenvalues and by condition (26), || Ã ||≤ κ′′. �

Definition: A map Φ satisfying the conclusion of Proposition 2.6 will be called a map
of reduction of the eigenvalues of A at order R, N̄ .

In dimension 2, the map of reduction of the eigenvalues Φ satisfies the following property:
for every function H continuous on Td and with values in gl(2,C), ΦHΦ−1 and Φ−1HΦ
are continuous on Td.
Dimension 2 has, indeed, the particularity that every decomposition L of R2 at most two
subpaces L1, L2, in which case mL1 +mL2 ∈ Zd (if the decomposition is trivial, mL = 0).
In any case,

∑
L∈LmL ∈ Zd.
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2.3 Homological equation

Solving the homological equation is a first step towards reducing the perturbation.

Notation: For every function F ∈ L2(2Td) and every N ∈ N, we will denote by FN and
call truncation of F at order N the function that one obtains by truncating the Fourier
series of F :

FN(θ) =
∑

|m|≤N

F̂ (m)e2iπ〈m,θ〉

The following lemma will be useful in the solving of the homological equation.

Lemma 2.7 Let f, g be trigonometric polynomial with g real on Rd. Let r > 0, r′ ∈]0, r[
and suppose that there exists C such that |f |r′ ≤ C|g|r. Then for all m ∈ 1

2
Zd,

|fe2iπ〈m,.〉|r′ ≤ C|ge2iπ〈m,.〉|r (51)

Proof: Since g is real,

∀m ∈ Z
d, ĝ(−m) = ĝ(m) (52)

so for all x and all y ∈ [−r, r]d,

g(x−iy) =
∑

m

ĝ(m)e2iπ〈m,x−iy〉 =
∑

m

ĝ(−m)e2iπ〈−m,−x+iy〉 =
∑

m

ĝ(−m)e2iπ〈−m,x+iy〉 = g(x+ iy)

which implies that for all x, y,

| g(x− iy) |=| g(x+ iy) | (53)

Let us show that for every m ∈ Zd,

|g|re2π|m|r = |ge2iπ〈m,.〉|r (54)

By the maximum principle,

|g|r = sup
x;|yj |≤r,1≤j≤d

|g(x+ iy)| = sup
x;|yj|=r,1≤j≤d

|g(x+ iy)|

Let y0 such that

| g |r= sup
x

| g(x+ iy0) |

then, for m having only one non-zero component mj , either

|g|re2π|m|r = sup
x

| g(x+ iy0) | | e2iπ〈m,x+iy0〉 |= |ge2iπ〈m,.〉|r

if mj et (y0)j have opposite signs, or
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|g|re2π|m|r = sup
x

| g(x− iy0) | | e2iπ〈m,x−iy0〉 = |ge2iπ〈m,.〉|r

if mj et (y0)j have the same sign, whence (54) if m has only one non-zero component. For
1 ≤ l ≤ d, let m̄l = (m1, . . . , ml, 0, . . . , 0). Assume that

| g |r e2π|m|r =| ge2iπ〈m̄j−1,.〉 |r e2π(|mj |+···+|md|)r

and that | ge2iπ〈m̄j−1,.〉 |r is reached at ȳ. Let δj ∈ {−1, 1} be such that mj and δj ȳj have
opposite signs. Then

| g |r e2π|m|r =| ge2iπ〈m̄j−1,.〉 |r e2π(|mj |+···+|md|)r

= sup
x,yk,k 6=j

| g(x+ i(y1, . . . , ȳj, . . . , yd))e
2iπ〈m̄j−1,x+i(y1,...,ȳj ,...,yd)〉 | e2π(|mj |+···+|md|)r

= sup
x,yk,k 6=j

| g(x+ i(y1, . . . , δj ȳj, . . . , yd))e
2iπ〈m̄j−1,x+i(y1,...,δj ȳj ,...,yd)〉e2iπmj(xj+iδj ȳj) |

.e2π(|mj+1|+···+|md|)r

= sup
x,yk,k 6=j

| g(x+ i(y1, . . . , δj ȳj, . . . , yd))e
2iπ〈m̄j ,x+i(y1,...,δj ȳj ,...,yd)〉 | e2π(|mj+1|+···+|md|)r

=| ge2iπ〈m̄j ,.〉 |r e2π(|mj+1|+···+|md|)r

and (54) is obtained through a simple iteration. Thus

|fe2iπ〈m,.〉|r′ ≤ |f |r′e2π|m|r′ ≤ C|g|re2π|m|r = C|ge2iπ〈m,.〉|r �

Remark: If f, g are matrix-valued trigonometric polynomials, f = (fj,k), g = (gj,k), and
g has real coefficients on Rd, a similar statement holds. For if

|f |r′ = sup
x,|yj |≤r′

|| f(x+ iy) ||≤ C|g|r = C sup
x,|yj|≤r

|| g(x+ iy) ||

as the norm of the greatest coefficient is equivalent to the operator norm, one has

sup
j,k

|fj,k|r′ ≤ CC ′ sup
j,k

|gj,k|r

for some C ′ only depending on the dimension of the matrices. So from Lemma 2.7, since
there exists j0, k0 such that

∀j, k, | fj,k |r′≤ CC ′ | gj0,k0 |r
then

sup
j,k

|fj,ke2iπ〈m,.〉|r′ ≤ CC ′ sup
j,k

|gj,ke2iπ〈m,.〉|r

and as the norms are equivalent, the statement also holds in operator norm:

|fe2iπ〈m,.〉|r′ ≤ CC ′′|ge2iπ〈m,.〉|r
for some C ′′ depending only on the dimension of the matrices.
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Proposition 2.8 Let

• N ∈ N,

• κ′ ∈]0, κ],

• γ ≥ n(n+ 1),

• 0 < r′ < r.

Let Ã ∈ G have DCN
ω (κ′, τ) spectrum. Let F̃ ∈ Cω

r (2T
d,G) with nice periodicity properties

with respect to an (Ã, κ′, γ)-decomposition L. Then equation

∀θ ∈ 2Td, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃N(θ)− ˆ̃F (0); ˆ̃X(0) = 0 (55)

has a solution X̃ ∈ Cω
r′(2T

d,G) such that

• if F̃ has nice periodicity properties with respect to L and (mL), then X̃ has nice
periodicity properties with respect to L and (mL); in particular, if F̃ is defined on
Td, then so is X̃,

• if Φ is trivial with respect to L, then there exist C ′, D depending only on n, d, τ such
that

|Φ−1X̃Φ|r′ ≤ C ′

(
1 + ||ÃN ||
(r − r′)κ′

)2n2γ+D

|Φ−1F̃Φ|r (56)

Moreover, the truncation of X̃ at order N is unique.

Proof: • Let C ∈ GL(n,C) be such that C−1ÃC is in Jordan normal form. Conju-
gating equation (55) by C−1, decomposing into coefficients xj,k of C−1X̃C and developing
into Fourier series, one gets for all m ∈ 1

ν
Zd, with ν = 1 or 2 according to the periodicity

of (C−1(F̃N − ˆ̃F (0))C)j,k,

i〈m,ω〉x̂j,k(m) = (α̃j − α̃k)x̂j,k(m) + δ1x̂j,k+1(m) + δ2x̂j−1,k(m) + f̂(m) (57)

where δ1, δ2 are 0 or 1 and f̂(m) stands for the m-th Fourier coefficient of the function

(C−1(F̃N − ˆ̃F (0))C)j,k.
The diophantine conditions given by Proposition 2.6 allow the existence of an analytic
solution to the set of equations (57), therefore (55) has a solution X̃.

• Now we shall see that X̃N is unique. Suppose that X̃ and Ỹ are both solutions of (55).
Then

∂ω(X̃ − Ỹ ) = [Ã, X̃ − Ỹ ]; ˆ̃X(0)− ˆ̃Y (0) = 0 (58)

The diophantine conditions on Ã imply that the truncation at order N of any solution of

(58) is constant, and condition ˆ̃X(0)− ˆ̃Y (0) = 0 implies that it vanishes, so X̃N = Ỹ N .
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• To check that X̃ is G-valued, it is enough to show it for X̃N , since one can assume that
X̃ = X̃N .

• if G = gl(n,C), this is trivial.

• if G = gl(n,R), this comes from the unicity of the solution up to order N , since X̃
and its complex conjugate are solutions of the same equation.

• if G = sp(n,C), then

∀θ ∈ 2Td, ∂ωJ(X̃(θ)∗J + JX̃(θ)) = −J(X̃(θ)∗J + JX̃(θ))Ã− JÃ∗(X̃(θ)∗J + JX̃(θ))

= [Ã, J(X̃(θ)∗J + JX̃(θ))]

Diophantine conditions on Ã imply that X̃∗J+JX̃ is constant. Condition ˆ̃X(0) = 0
implies that for every θ ∈ 2Td, X̃(θ)∗J+JX̃(θ) = 0, so X̃ takes its values in sp(n,C).

• if G = u(n), proceed as in the sp(n,C) case, showing this time that X̃∗ + X̃ is
constant and thus is zero.

• if G = sp(n,R) or o(n), use the previous cases and the fact that sp(n,R) = sp(n,C)∩
gl(n,R) and o(n) = u(n) ∩ gl(n,R).

• if G = sl(n,R) or sl(2,C), note that the trace of X̃ is solution of

∀θ ∈ 2Td, ∂ω(TrX̃(θ)) = Tr[Ã, X̃(θ)] = Tr(ÃX̃(θ))− Tr(X̃(θ)Ã) = 0

so it is a constant, and as Tr ˆ̃X(0) = 0, it is identical to zero.

• As for periodicity properties, equation (55) decomposes into blocks according to L, then
into Fourier coefficients: for 0 < |m| ≤ N ,

2iπ〈m,ω〉(PL
L
ˆ̃X(m)PL

L′) = PL
L ÃP

L
L
ˆ̃X(m)PL

L′ − PL
L
ˆ̃X(m)PL

L′ÃPL
L′ + PL

L
ˆ̃F (m)PL

L′ (59)

Let (mL) be a family such that F̃ has nice periodicity properties with respect to L and

(mL). If m is not in Zd + mL − mL′ , then PL
L
ˆ̃F (m)PL

L′ = 0 and since X̃N is unique,

PL
L
ˆ̃X(m)PL

L′ = 0. For |m| > N one can assume ˆ̃X(m) = 0. Therefore X̃ also has nice
periodicity properties with respect to L et (mL).

• Finally let us prove the estimate (56). Let m ∈ 1
2
Zd, |m| ≤ N . First we shall prove that

for all L, L′ ∈ L,

||PL
L
ˆ̃X(m)PL

L′|| ≤ C ′ (1 + ||ÃN ||)n2−1|m|(n2−1)τ

κ′(n2−1)
||PL

L
ˆ̃F (m)PL

L′||(||PL
L || ||PL

L′||)n2−1 (60)
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where C ′ only depends on n. The proof will be inspired by [3], Lemma 2. Let AL,L′ be
the linear operator from gl(n,C) into itself such that for all M ∈ gl(n,C),

AL,L′M = ÃPL
LM −MPL

L′Ã

Decomposing (55) into blocks, then into Fourier series, one obtains for all L, L′ ∈ L and
all m ∈ 1

2
Zd such that 0 <| m |≤ N ,

(PL
L
ˆ̃X(m)PL

L′) = (2iπ〈m,ω〉 − AL,L′)−1PL
L
ˆ̃F (m)PL

L′ (61)

Write AL,L′ as an n2-dimensional matrix. Let AD ∈ gl(n2,C) be a diagonal matrix and
AN ∈ gl(n2,C) a nilpotent matrix such that

(2iπ〈m,ω〉 − AL,L′) = AD − AN

Then AN coincides with the operator

AN : B 7→ (ÃPL
L )NB − B(PL

L′Ã)N

Moreover,

(2iπ〈m,ω〉 − AL,L′)−1 = A−1
D (I + ANA

−1
D + · · ·+ (ANA

−1
D )n

2−1)

We will estimate (2iπ〈m,ω〉 − AL,L′)−1, for m ∈ Zd if L = L̄′ and m ∈ 1
2
Zd if L 6= L̄′.

Each coefficient of A−1
D (ANA

−1
D )j−1 has the form p

q
with | p |≤|| AN ||j−1 and q = β1 . . . βj

where βi are eigenvalues of 2iπ〈m,ω〉 − AL,L′. Now

σ(AL,L′) = {α− α′ | α ∈ σ(Ã|L), α
′ ∈ σ(Ã|L′)}

and for all α ∈ σ(Ã|L), α
′ ∈ σ(Ã|L′),

| α− α′ − 2iπ〈m,ω〉 |≥ κ′

| m |τ

for all m ∈ Zd if L = L̄′ and all m ∈ 1
2
Zd if L 6= L̄′ Thus

|| (2iπ〈m,ω〉 − AL,L′)−1 || ≤ n22n
2

(1+ || ÃN || (|| PL
L || + || PL

L′ ||))n2−1

( | m |τ
κ′

)n2−1

and (61) implies (60).

• The estimate (60) implies that

|PL
L X̃PL

L′ |r′ ≤ C ′ (1 + ||ÃN ||)n2−1

κ′(n2−1)

∑

m

|m|(n2−1)τ |PL
L F̃PL

L′|re−2π|m|re2π|m|r′(||PL
L || ||PL

L′||)n2−1

(62)

where C ′ only depends on n. Now
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∑

m

|m|(n2−1)τe−2π|m|(r−r′) ≤ Cd

∑

M≥1

M (n2−1)τ+de−2πM(r−r′)

≤ Cd

∫ ∞

0

t(n
2−1)τ+de−2πt(r−r′)dt ≤ Cd

(2π(r − r′))(n2−1)τ+d+1

where Cd only depends on d, so

|PL
L X̃PL

L′|r′ ≤
C ′′

(r − r′)(n2−1)τ+d+1

(1 + ||ÃN ||)n2−1

κ′(n2−1)
|PL

L F̃PL
L′|r(||PL

L || ||PL
L′||)n2−1 (63)

where C ′′ only depends on n, d, τ .
Let (m′

L)L∈L a family of elements of 1
2
Zd and Φ defined by

Φ =
∑

L∈L
PL
L e

2iπ〈m′
L,.〉

then

|Φ−1X̃Φ|r′ = |
∑

L,L′∈L
PL
L X̃e2iπ〈m

′
L−m′

L′ ,.〉PL
L′|r′

and since L is an (Ã, κ′, γ)-decomposition, then Lemma 2.7 applied to (63) gives

|Φ−1X̃Φ|r′ ≤
C3

(r − r′)(n2−1)τ+d+1

(
1 + ||ÃN ||

κ′

)n2(2γ+1)∑

L,L′

|PL
LΦ

−1F̃ΦPL
L′|r

where C3 only depends on n, d, τ , whence (56). �

Remark: The loss of analyticity r − r′ is needed in order to have good estimates of
the solution. Note that when G = o(n) or u(n), then ÃN is zero, thus the estimate does
not depend on Ã.

2.4 Inductive lemma without reduction of the eigenvalues

2.4.1 Auxiliary lemmas

The first lemma will be used to iterate the inductive lemma without having to perform
reduction of the eigenvalues at each step, which will greatly improve the final estimates.

Lemma 2.9 Let

• κ′ ∈]0, 1[, C > 0,

• F̃ ∈ G,
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• ǫ̃ = ||F̃ ||,

• Ñ ∈ N,

• Ã ∈ G with DCÑ
ω (κ′, τ) spectrum.

There exists a constant c only depending on nτ such that if ǫ̃ satisfies

ǫ̃ ≤ c

(
Cτκ′

1 + ||Ã||

)2n

(64)

and

Ñ ≤ | log ǫ̃|
C

(65)

then Ã + F̃ has DCÑ
ω (3κ

′

4
, τ) spectrum.

Proof: If α̃ ∈ σ(Ã + F̃ ), by Lemma 4.1 given as an appendix, there exists α ∈ σ(Ã)

such that |α− α̃| ≤ 2n(||Ã||+ 1)ǫ̃
1
n .

By assumption Ã has DCÑ
ω (κ′, τ) spectrum. Thus for all α, β ∈ σ(Ã + F̃ ) and all m ∈

Zd, 0 < |m| ≤ Ñ ,

|α− β − 2iπ〈m,ω〉| ≥ κ′

|m|τ − 4n(||Ã||+ 1)ǫ̃
1
n (66)

and if α 6= β̄, (66) holds for every m ∈ 1
2
Zd, 0 < |m| ≤ Ñ . Therefore it is enough to show

that

4nÑ τ (||Ã||+ 1)ǫ̃
1
n ≤ κ′

4

Now there is a constant c ≤ 1 which only depends on nτ such that if ǫ̃ ≤ c, then

ǫ̃ (| log ǫ̃|)nτ ≤ ǫ̃
1
2

so if

ǫ̃ ≤ c

(
Cτκ′

16n(||Ã||+ 1)

)2n

by asumption (65), then

4n(||Ã||+ 1)ǫ̃
1
n Ñ τ ≤ 4n(||Ã||+ 1)ǫ̃

1
2nC−τ ≤ κ′

4

which proves the Lemma. �

If G is compact, then by lemma 4.2, the same is true under a smallness condition which
does not depend on Ã.

Lemma 2.10 Let
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• κ′ ∈]0, 1[, C > 0,

• F̃ ∈ G,

• ǫ̃ = ||F̃ ||,

• Ñ ∈ N,

• Ã ∈ G with DCÑ
ω (κ′, τ) spectrum.

There exists a constant c only depending on τ such that if ǫ̃ satisfies

ǫ̃ ≤ c(Cτκ′)2 (67)

and

Ñ ≤ | log ǫ̃|
C

(68)

then Ã + F̃ has DCÑ
ω (3κ

′

4
, τ) spectrum.

Proof: If α̃ ∈ σ(Ã+ F̃ ), by Lemma 4.2, there exists α ∈ σ(Ã) such that |α− α̃| ≤ ǫ̃.

Since Ã has DCÑ
ω (κ′, τ) spectrum, then for all α, β ∈ σ(Ã+ F̃ ) and all m ∈ Zd, 0 < |m| ≤

Ñ ,

|α− β − 2iπ〈m,ω〉| ≥ κ′

|m|τ − 2ǫ̃ (69)

and if α 6= β̄, (69) holds for every m ∈ 1
2
Zd, 0 < |m| ≤ Ñ . There is a constant c ≤ 1

which only depends on τ such that if ǫ̃ ≤ c, then

ǫ̃ (| log ǫ̃|)τ ≤ ǫ̃
1
2

so it is enough that

ǫ̃ ≤ c

(
Cτκ′

8

)2

�

The following lemma will be used to avoid doubling the period more than once.

Lemma 2.11 Let A,A′ ∈ gl(n,R) and H : 2Td → gl(n,R). Assume that H has nice
periodicity properties with respect to an A-decomposition L and assume

∀L, L′ ∈ L, PL
L (A

′ − A)PL
L′ 6= 0 ⇒ PL

LHPL
L′ ∈ C0(Td, gl(n,R)) (70)

Then H has nice periodicity properties with respect to an A′-decomposition which is less
fine than L.
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Proof: Define a decomposition L′ of Cn as follows: for all L, L′ ∈ L,

(∃L0 ∈ L′ | L ⊂ L0, L
′ ⊂ L0) ⇔ PL

LHPL
L′ ∈ C0(Td, gl(n,R))

Let (mL) be a family such that H has nice periodicity properties with respect to L
and (mL). For all L′ ∈ L′, let L be a subspace of L contained in L′ and let m̄L′ = mL;
the class of m̄L′ in the equivalence relation

m ∼ m′ ⇔ m−m′ ∈ Z
d

does not depend on a particular choice of L. Then for all L′ ∈ L′,

e2iπ〈m̄L′ ,.〉PL′
L′ =

∑

L∈L,L⊂L′

e2iπ〈m̄L′ ,.〉PL
L

so for all L1, L2 ∈ L′,

PL′
L1
HPL′

L2
e2iπ〈m̄L1

−m̄L2
,.〉 =

∑

L′
1⊂L1,L

′
2⊂L2

PL
L′
1
HPL

L′
2
e
2iπ〈mL′

1
−mL′

2
,.〉
e
2iπ〈m̄L1

−mL′
1
−(m̄L2

−mL′
2
),.〉

which is continuous on Td. Moreover, let L0 ∈ L′, then

PL′
L0
HPL′

L̄0
=

∑

L,L′∈L,L⊂L0,L′⊂L̄0

PL
LHPL

L′

which is continuous on Td. Thus H has nice periodicity properties with respect to L′.

By definition, L′ is A-invariant. Moreover, assumption (70) implies

A′ − A =
∑

L′∈L′

PL′
L′ (A′ − A)PL′

L′

so it also implies that L′ is A′ − A-invariant. Thus, L′ is A′-invariant and so it is an
A′-decomposition. �

Here is a standard lemma on the estimate of the rest of the Fourier series for an analytic
function.

Lemma 2.12 Let H ∈ Cω
r (2T

d, gl(n,C)). Soit N ∈ N and HN the truncation of H at
order N . Then for all r′ < r,

|H −HN |r′ ≤
CNd

(r − r′)d+1
|H|re−2πN(r−r′) (71)

where C only depends on d.

Proof: It is a simple computation. Since

H −HN =
∑

|m|>N

Ĥ(m)e2iπ〈m,.〉
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then

|H −HN |r′ ≤
∑

|m|>N

||Ĥ(m)||e2π|m|r′ ≤ |H|r
∑

|m|>N

e−2π|m|(r−r′)

≤ C|H|r
∑

M>N

Mde−2πM(r−r′) ≤ C|H|r
Nd

(r − r′)d+1
e−2πN(r−r′)

�

2.4.2 Inductive lemma

Proposition 2.13 Let

• ǫ̃ > 0, r̃ ≤ 1, r̃′ ∈ [ r̃
2
, r̃[, κ′ > 0, Ñ ∈ N, γ ≥ n(n + 1), C > 0;

• F̃ ∈ Cω
r̃ (2T

d,G), Ã ∈ G,

• L an (Ã, κ′, γ)-decomposition.

There exists a constant C ′′ > 0 depending only on τ, n such that if

1. Ã has DCÑ
ω (κ′, τ) spectrum;

2.

|| ˆ̃F (0)|| ≤ ǫ̃ ≤ C ′′
(

Cτκ′

1 + ||Ã||

)2n

(72)

and

Ñ ≤ | log ǫ̃|
C

(73)

3. F̃ has nice periodicity properties with respect to L

then there exist

• C ′ ∈ R depending only on n, d, κ, τ ,

• D ∈ N depending only on n, d, τ ,

• X ∈ Cω
r̃′(2T

d,G),

• A′ ∈ G

• an (A′, 3κ
′

4
, γ)-decomposition L′

satisfying the following properties:

1. A′ has DCÑ
ω (3κ

′

4
, τ) spectrum,

2. ||A′ − Ã|| ≤ ǫ̃;
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3. the map F ′ ∈ Cω
r̃′(2T

d,G) defined by

∀θ ∈ 2Td, ∂ωe
X(θ) = (Ã+ F̃ (θ))eX(θ) − eX(θ)(A′ + F ′(θ)) (74)

has nice periodicity properties with respect to L′

4. If Φ is trivial with respect to L,

then

|Φ−1XΦ|r̃′ ≤ C ′
(
1 + ||ÃN ||
κ′(r̃ − r̃′)

)Dγ

|Φ−1F̃Φ|r̃ (75)

5. and if Φ is trivial with respect to L,

|Φ−1F ′Φ|r̃′ ≤ C ′
(
1 + ||ÃN ||
κ′(r̃ − r̃′)

)Dγ

e|Φ
−1XΦ|r̃′ |Φ−1F̃Φ|r̃

(|Φ|2r̃|Φ−1|2r̃Ñde−2πÑ(r̃−r̃′) + |Φ−1F̃Φ|r̃′(1 + e|Φ
−1XΦ|r̃′ ))

(76)

Moreover, if F̃ is continuous on Td, then so are X and F ′. If G = o(n) or u(n), then the
same holds replacing condition (72) by

|| ˆ̃F (0)|| ≤ ǫ̃ ≤ C ′′(Cτκ′)2 (77)

Proof: By assumption, F̃ has nice periodicity properties with respect to L and some
family (mL) and Ã has DCÑ

ω (κ′, τ) spectrum, so one can apply Proposition 2.8. Let
X ∈ Cω

r′(2T
d,G) be a solution of

∀θ ∈ 2Td, ∂ωX(θ) = [Ã, X(θ)] + F̃ Ñ (θ)− ˆ̃F (0)

satisfying the conclusion of Proposition 2.8.

Let A′ = Ã+ ˆ̃F (0). Then A′ ∈ G and ||Ã− A′|| = || ˆ̃F (0)||, so property 2 holds.
Moreover, let c be the constant given by Lemma 2.9, and assume C ′′ ≤ c. Assumptions
(72) and (73) make it possible to apply Lemma 2.9 and infer that A′ has DCÑ

ω (3κ
′

4
, τ)

spectrum, thus property 1 holds. If G = o(n) or u(n), one can apply lemma 2.10 instead
of lemma 2.9 to get the same result with the weaker smallness condition (77).
Let F ′ ∈ Cω

r′(2T
d,G) the map defined in (74). Then

F ′ = e−X(F̃ − F̃ Ñ) + e−XF̃ (eX − Id) + (e−X − Id) ˆ̃F (0)− e−X
∑

k≥2

1

k!

k−1∑

l=0

X l(F̃ Ñ − ˆ̃F (0))Xk−1−l

(78)
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We shall appply Lemma 2.11 with A = Ã and G = F ′, in order to get property 3. The
map F ′ has nice periodicity properties with respect to L and some family (mL) since X
and F̃ have them. Moreover, as F̃ has nice periodicity properties with respect to L,

PL
L
ˆ̃F (0)PL

L′ 6= 0 ⇒ PL
L F̃PL

L′ ∈ C0(Td)

and since

PL
L F̃PL

L′ ∈ C0(Td) ⇒ mL −mL′ ∈ Z
d ⇒ PL

LF
′PL

L′ ∈ C0(Td)

then assumption (70) of Lemma 2.11 is fulfilled. By Lemma 2.11, F ′ has therefore nice
periodicity properties with respect to an A′-decomposition L′ which is less fine than L,
so L′ is an (Ã, κ′, γ)-decomposition. As it is an (Ã, κ′, γ)-decomposition, and by property
2, each subspace L ∈ L′ satisfies

|| PL′
L ||≤ C0

(
1+ || A′

N || +2ǫ̃

κ′

)γ

≤ C0

(
1+ || A′

N ||
3κ′
4

)γ

and so L′ is an (A′, 3κ
′

4
, γ)-decomposition, thus property 3 is satisfied.

Property 4 is given by Proposition 2.8.

• By Lemma 2.12,

|F̃ − F̃ Ñ |r̃′ ≤ C1Ñ
d|F̃ |r̃

e−2πÑ(r̃−r̃′)

(r̃ − r̃′)d+1

where C1 only depends on d. By (78), (56) and Lemma 2.12, it is true that

|Φ−1F ′Φ|r̃′ ≤ C ′

(
1 + ||ÃN ||
κ′(r̃ − r̃′)

)Dγ

e|Φ
−1XΦ|r̃′ |Φ−1F̃Φ|r̃(|Φ|2r̃|Φ−1|2r̃Ñde−2πÑ(r̃−r̃′)

+ |Φ−1F̃Φ|r̃′(1 + e|Φ
−1XΦ|r̃′ ))

where C ′ only depends on n, d, κ, τ and D only depends on n, d, τ , whence property 5. �

2.5 Inductive step

Now we are able to state the whole inductive step. In the following we will denote





N(r, ǫ) = 1
2πr

| log ǫ|
R(r, r′) = 1

(r−r′)880
4(1

2
n(n− 1) + 1)2

κ′′(r, r′, ǫ) = κ

n(8R(r,r′)
1
2n(n−1)+1N(r,ǫ))τ

(79)

Proposition 2.14 Let

• A ∈ G,
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• r ≤ 1
2
, r′′ ∈ [95

96
r, r[,γ ≥ n(n + 1),

• Ā, F̄ ∈ Cω
r (2T

d,G) and Ψ ∈ Cω
r (2T

d, G),

• ǫ = |F̄ |r,

There exists C̃ ′ > 0 depending only on n, d, κ, τ, γ and there exists D3 ∈ N depending only
on n, d, τ such that if

1. Ā is reducible to A by Ψ,

2. Ψ−1F̄Ψ has nice periodicity properties with respect to an (A, κ′′(r, r′′, ǫ), γ)-decomposition
L

3.

ǫ ≤ C̃ ′

(||A||+ 1)D3γ
(r − r′′)D3γ (80)

4. |Ψ|r ≤ (1
ǫ
)−

1
2
(r−r′′) et |Ψ−1|r ≤ (1

ǫ
)−

1
2
(r−r′′),

then there exist

• ǫ′ ∈ [ǫR(r,r′′)n
2

, ǫ100];

• Z ′ ∈ Cω
r′′(2T

d, G),

• Ā′, F̄ ′ ∈ Cω
r′′(2T

d,G),

• Ψ′ ∈ Cω
r (2T

d, G),

• A′ ∈ G

satisfying the following properties:

1. Ā′ is reducible by Ψ′ to A′,

2. the map Ψ′−1F̄ ′Ψ′ has nice periodicity properties with respect to an (A′, κ′′(r′′, r′′ − r−r′′

2
, ǫ′), 2γ))-

decomposition L′

3. |F̄ ′|r′′ ≤ ǫ′,

4. |Ψ′|r′′ ≤ ( 1
ǫ′ )

1
4
(r−r′′) and |Ψ′−1|r′′ ≤ ( 1

ǫ′ )
1
4
(r−r′′),

5. ||A′|| ≤ ||A||+ | log ǫ |
(

1
r−r′

)D3;

6.
∂ωZ

′ = (Ā + F̄ )Z ′ − Z ′(Ā′ + F̄ ′) (81)

7.

|Z ′ − Id|r′′ ≤
1

C̃ ′

(
(1 + ||A||)| log ǫ|

r − r′′

)D3γ

ǫ1−4(r−r′′) (82)

and so does (Z ′)−1 − Id.
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Moreover,

• in dimension 2, if Ā, F̄ are continuous on Td, and if assumption 2 is replaced by

2’. Ψ is such that for all function H continuous on Td, ΨHΨ−1 is continuous on
Td,

then Z ′, Ā′, F̄ ′ are continuous on Td and property 2 is replaced by

2’. Ψ′ is such that for every function H continuous on Td, Ψ′HΨ′−1 is continuous
on Td.

• If G = gl(n,C) or u(n) and if Ā, F̄ ,Ψ are continuous on Td, then Z ′, Ā′, F̄ ′,Ψ′ are
continuous on Td.

• if G = o(n) or u(n), the same holds with the weaker condition

ǫ ≤ C̃ ′(r − r′′)D3γ (83)

instead of (80);

• if G = sl(2,C) or sl(2,R), then either Ψ′−1Ψ is the identity or || A′ ||≤ κ′′(r, r′′, ǫ)+
ǫ
1
2 .

The proof will be made in two steps: the first step is to reduce the perturbation when
there are resonances. The second step is to iterate Proposition 2.13 as many times as
possible using the fact that resonances, once removed, do not reappear immediately.

First step: removing the resonances Let r′ = r+r′′

2
. Let R = R(r, r′);N =

N(r, ǫ); κ′′ = κ′′(r, r′, ǫ). Let N̄ be given by Proposition 2.6 and Φ a map of reduction of
the eigenvalues of A at order R, N̄ . Let Ψ′ = ΨΦ and F̃ = (Ψ′)−1F̄Ψ′.
We shall apply Proposition 2.13 with

ǫ̃ = ǫ1−2(r−r′)− 1
48 , r̃ = r, r̃′ = r′, κ′ =

κ′′

C0
, Ñ = RN̄, C =

2πr

R
1
2
n(n−1)+1

and Ã ∈ G such that

∀θ ∈ 2Td, ∂ωΦ(θ) = AΦ(θ)− Φ(θ)Ã

Let C ′′ be given by Proposition 2.13 (depending only on n and τ).

The matrix Ã has DCRN̄
ω (κ′′, τ) spectrum. By assumption, Ψ−1F̄Ψ has nice periodicity

properties with respect to an (A, κ′′, γ)-decomposition L and some family (mL). Moreover
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Φ is trivial with respect to LA,κ′′. Since L is an A-decomposition, there is a Jordan decom-
position which is finer than L; and since LA,κ′′ is less fine than any Jordan decomposition,
one can define an A-decomposition L̄ in the following way:

L ∈ L̄ ⇔ ∃L1 ∈ L, L2 ∈ LA,κ′′ | L = L1 ∩ L2

L̄ is an (A, κ′′

C0
, 2γ)-decomposition since L and LA,κ′′ are (A, κ′′, γ)-decompositions and F̃

has nice periodicity properties with respect to L̄. Since L̄ is an (A, κ′′

C0
, 2γ)-decomposition,

it is also an (Ã, κ′′

C0
, 2γ)-decomposition (because the nilpotent parts of A and Ã coincide,

and because any Jordan decomposition for A is a Jordan decomposition for Ã).
Moreover,

|| ˆ̃F (0)|| ≤ |F̃ |0 ≤ |Φ|0|Φ−1|0|Ψ|0|Ψ−1|0|F̄ |0
Now by (47), for all s′ ≥ 0,

| Φ |s′≤ C0

(
1 + ||AN ||

κ′′

)n(n+1)

e4πN̄s′ (84)

and so does Φ−1. Thus

|| ˆ̃F (0)|| ≤ ǫ1−2(r−r′)C2
0

(
1 + ||AN ||

κ′′

)2n(n+1)

therefore, if C̃ ′ ≤ C96
0 and D3γ ≥ 96n(n+ 1), then

|| ˆ̃F (0)|| ≤ ǫ1−2(r−r′)− 1
48

Assumption (80), which implies (72) with

C̃ ′ ≤ C ′′4
(

C

(r − r′)4n(n−1)+9

)8nτ

, D3γ ≥ 64n(n(n− 1) + 2)τ

(note that C
(r−r′)4n(n−1)+9 has a lower bound which is independent of r− r′), together with

the choice of Ñ which implies (73), make it possible to apply Proposition 2.13 to obtain
C ′ > 0 depending only on n, d, κ, τ , D ∈ N depending only on n, d, τ and functions
X ∈ Cω

r′(2T
d,G), F1 ∈ Cω

r′(2T
d,G), and a matrix A1 ∈ G such that

• A1 has DCRN̄
ω (3

4

(
κ′′

C0

)
, τ) spectrum

• ||A1 − Ã|| ≤ ǫ
23
24 , which implies

|| A1 −A ||≤ ||A1 − Ã||+ ||A− Ã|| ≤ ǫ
23
24 + 4πN̄ (85)

If G = sl(2,C) or sl(2,R), then

||A1|| ≤|| Ã || +ǫ
23
24 ≤ κ′′ + ǫ

23
24
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• ∂ωe
X = (Ã + F̃ )eX − eX(A1 + F1),

• F1 has nice periodicity properties with respect to an (A1,
3κ′′

4C0
, 2γ)-decomposition L′

• and since Φ is trivial with respect to L̄,

|ΦXΦ−1|r′ ≤ C ′
(
C0(1 + ||AN ||)
κ′′(r − r′)

)Dγ

|ΦF̃Φ−1|r (75)

and

|ΦF1Φ
−1|r′ ≤ C ′

(
C0(1 + ||AN ||)
κ′′(r − r′)

)Dγ

e|ΦXΦ−1|r′ |ΦF̃Φ−1|r(|Φ|2r|Φ−1|2r(RN̄)de−2πRN̄(r−r′)

+ |ΦF̃Φ−1|r′(1 + e|ΦXΦ−1|r′ ))
(86)

Now

|ΦF̃Φ−1|r ≤ |Ψ|r|Ψ−1|r|F̄ |r ≤ ǫ1−2(r−r′)

so, by (80), if D3 is great enough as a function of n, γ,D, then

|ΦF1Φ
−1|r′ ≤ ǫ−

1
96 ǫ1−2(r−r′)((RN̄)dǫ100 + ǫ1−2(r−r′))

There exists a constant cd which only depends on D, γ, τ such that if ǫ ≤ cd, then

ǫ
1
2 | log ǫ |Dγτ≤ 1

thus if C̃ ′ is small enough and D3 big enough (as a function of n, d, γ, τ),

|ΦF1Φ
−1|r′ ≤ ǫ2−4(r−r′)− 1

96

The estimate (84), the assumption (80) and the fact that || AN ||≤|| A ||, imply that

|ΨΦ|r ≤ |Ψ|r|Φ|r ≤ ǫ−(r−r′)− 1
96 e4πrN̄

We shall estimate |ΨΦeX(ΨΦ)−1 − Id|r′. The estimate (75) implies

|ΦeXΦ−1 − Id|r′ ≤ C ′′

(
(1 + ||AN ||)R 1

2
(n(n−1)+1)τN τ

r − r′

)Dγ

|ΦF̃Φ−1|r

for some C ′′ only depending on n, d, κ, τ , so

|ΨΦeX(ΨΦ)−1 − Id|r′ ≤ C3

(
(1 + ||AN ||)| log ǫ|

r − r′

)D′
1γ

|F̄ |r(
1

ǫ
)4(r−r′)
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for some C3 depending only on n, d, κ, τ and D′
1 depending only on n, d, τ . The same

estimate holds for |ΨΦe−X(ΨΦ)−1 − Id|r′.

Let F̄1 = ΨΦF1(ΨΦ)−1 and let Ā1 ∈ Cω
r (2T

d,G) such that

∂ωΨΦ = Ā1ΨΦ−ΨΦA1

Thus we have obtained

• N̄ ∈ [N,R
1
2
n(n−1)N ],

• Z1,Ψ
′ ∈ Cω

r′(2T
d, G),

• A1 ∈ G

• Ā1 ∈ Cω
r′(2T

d,G)

• and F1 = (Ψ′)−1F̄1Ψ
′

such that

1. Ā1 is reducible to A1 by Ψ′

2. F1 has nice periodicity properties with respect to an (A1,
3κ′′

4C0
, 2γ)-decomposition L1

3. | Ψ′ |r′≤ ǫ−(r−r′)− 1
96 e4πrN̄ and | Ψ′−1 |r′≤ ǫ−(r−r′)− 1

96 e4πrN̄

4. A1 has DCRN̄
ω (3

4
κ′′, τ) spectrum,

5. ∂ωZ1 = (Ā+ F̄ )Z1 − Z1(Ā1 + F̄1),

6. ||A1|| ≤ ||A|| + ǫ
23
24 + 4πN̄ , and, if G = sl(2,C) or sl(2,R) and Ψ′−1Ψ is not the

identity, ||A1|| ≤ κ′′(r, r′′, ǫ) + ǫ
23
24 ;

7.

|Z1 − Id|r′ ≤
1

C̃ ′

(
(1 + ||AN ||)| log ǫ|

r − r′

)D1γ

ǫ1−4(r−r′) (87)

and so does |Z−1
1 − Id|r′,

8.
|Ψ−1F̄1Ψ|r′ ≤ ǫ

3
2 (88)

9. Ψ′−1Ψ is trivial with respect to LA,κ′′,

10. and for every s′ ≥ 0,

| Ψ′−1Ψ |s′≤ Cn

(
1+ || AN ||

κ′′

)n(n+1)

e4πN̄s′ (89)

and so does | Ψ−1Ψ′ |s′, where Cn only depends on n.
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Second step: iteration far from resonances Let l such that

ǫ(
4
3
)l+1 ≤ e−2π(r−r′′) 4√

RN̄ ≤ ǫ(
4
3
)l

Let ǫ′ = e−2π(r−r′′) 4√
RN̄ . Define the sequence ǫj = ǫ(

3
2
)j− 1

48 . We shall iterate l − 1 times
Proposition 2.13, starting with j = 2, with

• ǫ̃ = ǫj−1,

• C =
(

r−r′′

160( 1
2
n(n−1)+1)

)8( 1
2
n(n−1)+1)

• r̃ = rj−2 =
r+r′′

2
− (j − 2) r−r′′

2l
,

• r̃′ = rj−1 =
r+r′′

2
− (j − 1) r−r′′

2l
,

• κ′ = (3
4
)j−1 κ′′

C0
,

• Ñ = RN̄ ,

• F̃ = Fj−1,

• Ã = Aj−1,

• Φ = Ψ−1Ψ′,

• L = L1,

Note that for every j,

ǫj ≤ C ′′
(

Cτ (3
4
)j κ

′′

C0

1 + ||A1||+
∑j−1

l=1 ǫl

)2n

Estimates (88) and (89) imply

||F̂1(0)|| ≤| F1 |0≤| Ψ′−1Ψ |0 | Ψ−1Ψ′ |0 |Ψ−1F̄1Ψ|0 ≤ C2
n

(
1 + ||AN ||

κ′′

)2n(n+1)

ǫ
3
2 ≤ ǫ

3
2
− 1

48

Moreover, A1 has DCRN̄
ω (3

4
κ′′, τ) spectrum and F1 has nice periodicity properties with

respect to L. Let C ′′ be the constant given by Proposition 2.13. By assumption on ǫ,
with C ′ depending only on n, d, κ, τ and D3 depending only on n, τ , one has

ǫ̃ ≤ C ′′

(1 + ||A1||)2n
(
3κ′′

4C0

)2n

C2nτ

Moreover,

RN̄ ≤ Rn0+1N ≤ 1

C
| log ǫ|
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so the assumptions (72) and (73) of Proposition 2.13 hold with F̃ = F1, κ
′ = κ′′, Ñ = RN̄ .

Fix j and assume Aj−1 has DCÑ
ω (κ′, τ) spectrum, Fj−1 has nice periodicity properties

with respect to an (Aj−1, (
3
4
)j−1 κ′′

C0
, 2γ)-decomposition,

|| F̂j−1(0) ||≤ ǫj−1

and

CRN̄ ≤| log ǫj−1 |
One obtains functions Fj , Xj and a matrix Aj such that

1. Aj has DCRN̄((3
4
)j κ

′′

C0
, τ) spectrum,

2. ||Aj|| ≤ ||Aj−1||+ ǫj−1,

3.
∂ωe

Xj = (Aj−1 + Fj−1)e
Xj − eXj (Aj + Fj)

and Fj has nice periodicity properties with respect to an (Aj , (
3
4
)j κ

′′

C0
, 2γ)-decomposition

4.

| Ψ−1Ψ′XjΨ
′−1Ψ |rj−1

≤ C ′
(
1 + ||(Aj−1)N ||
κ′′(rj−2 − rj−1)

)Dγ

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

(90)

for some C ′ depending only on n, d, κ, τ and some D depending only on n, d, τ ,

5. and

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ C ′
(
1 + ||(Aj−1)N ||
κ′′(rj−2 − rj−1)

)Dγ

e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2 |Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2

(| Ψ′−1Ψ |4rj−2
(RN̄)de−2πRN̄(rj−2−rj−1)

+ (1 + 2e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2 )|Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2
)

(91)

We shall bound || F̂j(0) || to iterate Proposition 2.13. Estimates (88) and (80) imply

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ 3C ′
(
1 + ||(Aj−1)N ||
κ′′(rj−2 − rj−1)

)Dγ

|Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

(| Ψ′−1Ψ |4rj−2
(RN̄)de−2πRN̄(rj−2−rj−1) + |Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2
)

(92)

and since rj−2 − rj−1 =
r−r′′

2l
,
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|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
4
rj−2(| Ψ′−1Ψ |4rj−2

(RN̄)de−2πRN̄(r−r′′)
2l + |Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2
)

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
4
rj−2(| Ψ′−1Ψ |4rj−2

(RN̄)dǫ′
R

3
4

2l + |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

)

(93)

Now l is bounded by

l ≤ 8(
1

2
n(n− 1) + 1)

4
√
R (94)

Moreover

| Ψ′−1Ψ |rj−2
≤ Cn

(
1+ || A ||

κ′′

)n(n+1)

e4πN̄rj−2 ≤ Cn

(
1+ || A ||

κ′′

)n(n+1)

ǫ
′− 2rj−2

(r−r′′) 4√
R

and so

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
4
rj−2(ǫ

′ + |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

)

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
2
rj−2

(95)

By a simple induction, for every j,

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′F1Ψ
′−1Ψ|(

3
2
)j−1

r0 ≤ ǫ(
3
2
)j (96)

Finally

|| F̂j(0) ||≤ |Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

|| Ψ−1Ψ′ ||0 || Ψ′−1Ψ ||0≤ ǫj

so it is possible to iterate Proposition 2.13.

Conclusion After l − 1 steps,

|Ψ−1Ψ′Fl+1Ψ
′−1Ψ|rl ≤ ǫ′

17
16

Let Z = eX2 . . . eXl+1 ∈ Cω
r′(2T

d, G)), A′ = Al+1, F
′ = Fl+1. Then

∂ωZ = (A1 + F1)Z − Z(A′ + F ′)

and

||A′|| ≤ ||A1||+
l∑

j=1

||F̂j(0)||+ 4πN̄ ≤ ||A||+ | log ǫ |
(

1

r − r′

)D4

for D4 great enough depending only on n, whence property 5. If G = sl(2,C) or sl(2,R)
and Ψ′−1Ψ is not the identity, then
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||A′|| ≤ ||A1||+
l∑

j=1

||F̂j(0)|| ≤ κ′′(r, r′′, ǫ) + ǫ
1
2

To prove that Ll+1 is indeed an (Al+1, κ
′′(r′′, r − r−r′′

2
, ǫ′), 2γ)-decomposition, it is

enough to show that

κ′′(r′′, r′′ − r − r′′

2
, ǫ′) ≤ (

3

4
)l+1 κ

′′

C0

which comes from the definition of the function κ′′.

Let us prove property 4. It is true that

|Ψ′|r′′ ≤ ǫ−
1
2
(r−r′′)ǫ−

1
96 e4πrN̄ ≤ ǫ−

1
2
(r−r′′)ǫ−

1
96 ǫ′−

r−r′′
200 (97)

and property 4 comes from it, since

ǫ = ǫ
′ | log ǫ|
2π

4√
RN̄(r−r′′)

Moreover,

|Ψ′F ′Ψ′−1|r′′ ≤ |Ψ|r|Ψ−1|r|Ψ−1Ψ′F ′Ψ′−1Ψ|r′′ ≤ ǫ′

whence 3. Let Z ′ = Z1Ψ
′ZΨ′−1, F̄ ′ = Ψ′F ′Ψ−1 (which satisfies property 2) and Ā such

that

∂ωΨ
′ = Ā′Ψ′ −Ψ′A′

Then 6 and 1 hold, and by (87),

|Z ′ − Id|r′′ ≤ |Z1 − Id|r1 + |Ψ|r|Ψ−1|r
∑

j

|Ψ−1Ψ′XjΨ
′−1Ψ|rj

≤ 1

C̃ ′

(
l(1 + ||AN ||)| log ǫ|

r − r′′

)D1γ

(
1

ǫ
)4(r−r′′)(ǫ+

∑

j

|Ψ−1Ψ′FjΨ
′−1Ψ|rj )

and by (88) and (96),

|Z ′ − Id|r′′ ≤
2

C̃ ′

(
l(1 + ||AN ||)| log ǫ|

r − r′′

)D1γ

(
1

ǫ
)4(r−r′′)ǫ

whence property 7 with D3γ ≥ 2D1γ if C ′ ≤ C̃′

2(l(r−r′′))D1γ
, since l(r − r′′) has a bound

which is independent of r − r′′. �

This proposition is the inductive step which can be iterated as a whole. It is necessary
to obtain an ǫ′ which is much smaller than ǫ so as to control |Ψ′|r′ as a function of ǫ′ and
make sure that the output be similar to the input.
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2.6 Main theorem

First let us give a lemma which will enable us to iterate Proposition 2.14.

Lemma 2.15 Let C ′ ≤ 1, b0 > 0, r ≤ 1
2

and r′ ∈ [95
96
r, r[. Let D5, γ0 ∈ N.There exists C

depending only on C ′, D5, γ0 such that for all ǫ ≤ C
(

r−r′

b0+1

)2γ0D5

, choosing a sequence (ǫk)

such that for all k,

ǫk ≤ ǫ100k−1 < 1

and letting for all k





γk = 2kγ0
rk = r′ + r−r′

2k

bk = bk−1+ | log ǫk−1 |
(

2k

r−r′

)D5

then for every k ∈ N,

| log ǫk |2D5γk≤ ǫ
− 1

4
k (98)

and

(
bk + 1

rk − rk+1

)D5γk

ǫk ≤ C ′ (99)

Proof: Let us first prove (98). It is equivalent to

2k+3D5γ0 ≤
| log ǫk |

log | log ǫk |
The function t 7→ |log t|

log|log t| is decreasing for t ∈]0, e− 1
e ] so it is enough to show that

2k+3D5γ0 ≤
100k | log ǫ |

k log 100 + log | log ǫ |
which is true if we choose C as a function of D5, γ0.

• Let ak =
(

bk+1
rk−rk+1

)D5γk
ǫk. For all k,

ak+1 =

(
(bk+1 + 1)2k+2

r − r′

)D5γk+1

ǫk+1

≤
(
(b0 + (k + 1) | log ǫk |)2k+2

r − r′

)2D5γk+1 ǫk+1

ǫk
ak

so by (98),

ak+1 ≤
(
(b0 + 1)

r − r′

)γ016k+1D5

ǫ100
k .98ak
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thus, if ǫ is also smaller than ( r−r′

b0+1
)16γ0D5, then ak+1 ≤ ak. If ǫ is also small enough to

satisfy

a0 =

(
b0 + 1

r − r′

)D5γ0

ǫ ≤ C ′

for instance

(
b0 + 1

r − r′

)D5γ0

ǫ
3
4 ≤ C ′

then (99) is true for all k. �

Lemma 2.15 implies that assumption (80) of Proposition 2.14 holds for all k with ǫ ≤ ǫk,
||A|| = bk, r = rk and r′′ = rk+1.

As a consequence, one gets the main result, of which we will give various formulations.

Theorem 2.16 Let r ≤ 1
2
, A ∈ G and F ∈ Cω

r (2T
d,G) with nice periodicity properties

with respect to LA. Let

r′ ∈ [
95

96
r, r[

There exists D7 depending only on n, d, τ, κ, A such that if

|F |r ≤ ǫ′0(r, r
′) =

(
r − r′

|| A || +1

)D7

(100)

then for any ǫ ≤ ǫ′0, there exists

• Zǫ,Ψǫ ∈ Cω
r′(2T

d, G),

• Aǫ ∈ G,

• Āǫ, F̄ǫ ∈ Cω
r′(2T

d,G),

such that

1. Āǫ is reducible to Aǫ by Ψǫ,

2. |F̄ǫ|r′ ≤ ǫ

3. for every θ ∈ 2Td,

∂ωZǫ(θ) = (A+ F (θ))Zǫ(θ)− Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ))

4.

|Zǫ − Id|r′ ≤ 2D7ǫ
1
4
−4(r−r′)

0

and so does Z−1
ǫ − Id,
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5. Zǫ, ∂ωZǫ are bounded in Cω
r′(2T

d, gl(n,C)) uniformly in ǫ,

6.
| Ψǫ |r′≤ ǫ−( 1

2
)c

′√log|log ǫ|

where c′ only depends on n, d, κ, τ, A.

Moreover,

• in dimension 2 or if G = gl(n,C) or u(n), if F is continuous on Td, then Āǫ, F̄ǫ and
Zǫ are continuous on Td.

• If G is o(n) or u(n), then D7 does not depend on A and the same holds replacing
(100) by | F |r≤ (r − r′)D7.

• if G = sl(2,C) or sl(2,R) and A + F is not reducible, then there exists a sequence
ǫk → 0 such that || Aǫk || | log ǫk |τ is bounded.

Proof: The proof will be made by induction as follows. Let r′′ = r+r′

2
. Let R(r, r′′), N(r, ǫ),

κ′′(r, r′′, ǫ) be as in (79). There exists γ0 ∈ N depending only on n, d, τ, κ, A, such that
LA is an (A, κ, γ0)-decomposition (one can assume γ0 ≥ n(n + 1)). Let C ′, D3 be as in
Proposition 2.14. Let D5 = 2D3. Let C be as in Lemma 2.15 and D7 such that

(
r − r′′

||A||+ 1

)D7

≤ C

(
r − r′′

||A||+ 1

)4γ0D5

Let

ǫ′0 =

(
r − r′′

||A||+ 1

)D7

(101)

Before carrying on with the proof, note that if G is o(n) or u(n), then LA is a unitary
decomposition, therefore it is an (A, κ, 0)-decomposition, so one can take γ0 = n(n + 1)
and then γ0, D3, D5 and D7 do not depend on A. For all k ∈ N, let





rk = r′′ + r−r′′

2k
,

b0 = ||A||,
bk+1 = ||A||+

∑
j≤k

|log ǫj |
(rj−1−rj)D5

where (ǫj) will be defined by induction in the following. Suppose that |F |r ≤ ǫ′0. Let
F̄1 = F, Ā1 = A1 = A and Ψ0 = Id. Iterate Proposition 2.14 using lemma 2.15 to find,
for all k ≥ 1,

• Zk+1 ∈ Cω
rk+1

(2Td, G),

• Ak+1 ∈ G,

• Āk+1 ∈ Cω
r (2T

d,G),

• Ψk ∈ Cω
r (2T

d, G),
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• F̄k+1 ∈ Cω
rk+1

(2Td,G)

• ǫk+1 ∈ [ǫ
R(rk ,rk+1)

n2

k , ǫ100k ]

such that

1. Āk+1 is reducible to Ak+1 by Ψk,

2. Ψ−1
k F̄k+1Ψk has nice periodicity properties with respect to an (Ak+1, κ

′′(rk+1, rk+2, ǫk+1), 2
k+1γ0)-

decomposition,

3. |F̄k+1|rk+1
≤ ǫk+1,

4. |Ψk|r ≤ ǫ
− 1

2
(rk+1−rk+2)

k+1 and |Ψ−1
k |r ≤ ǫ

− 1
2
(rk+1−rk+2)

k+1 ,

5. ||Ak+1|| ≤ bk+1, and, if G = sl(2,C) or sl(2,R) and Ψ−1
k Ψk−1 is not the identity,

||Ak+1|| ≤ κ′′(rk, rk+1, ǫk) + ǫ
1
2
k ;

6.
∂ωZk+1 = (Āk + F̄k)Zk+1 − Zk+1(Āk+1 + F̄k+1)

7.

|Zk+1 − Id|rk+1
≤ 1

C ′

(
(1 + ||Ak||)| log ǫk|

rk − rk+1

)2kD3γ0

ǫ
1−4(rk−rk+1)
k

which implies, using Lemma 2.15, that

|Zk+1 − Id|rk+1
≤ 1

C ′ ǫ
1
4
−4(rk−rk+1)

k

and so does Z−1
k+1 − Id.

• Let ǫ ≤ ǫ′0 and kǫ ∈ N such that ǫkǫ+1 ≤ ǫ ≤ ǫkǫ. Let





Zǫ = Z1 . . . Zkǫ

Āǫ = Ākǫ

F̄ǫ = F̄kǫ

then properties 1 and 2 hold. Thus for all θ ∈ 2Td,

∂ωZǫ(θ) = (A+ F (θ))Zǫ(θ)− Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ)) (102)

whence property 3. Moreover, let ak := |Z1 . . . Zk − Id|r′′, then
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•

a1 = |Z1 − Id|r′′ ≤
1

C ′ ǫ
1
4
−4(r0−r1)

0

so

|Z1|r′′ ≤ 1 +
1

C ′ ǫ
1
4
−4(r0−r1)

0

• let k ≥ 2 and assume that for all j ≤ k − 1,

|Z1 . . . Zj |r′′ ≤ 1 +
3

C ′ ǫ
1
4
−4(r0−r1)

0

then

ak ≤ |Zk − Id|r′′|Z1 . . . Zk−1|r′′ + ak−1

≤ a1 +
1

C ′

k−1∑

j=1

|Z1 . . . Zj |r′′ǫ
1
4
−4(rj−rj+1)

j ≤ 3

C ′ ǫ
1
4
−4(r0−r1)

0

and

|Z1 . . . Zk|r′′ ≤ 1 +
3

C ′ ǫ
1
4
−4(r0−r1)

0

whence property 4. This also implies that

|Zǫ|r′′ ≤ 2 +
3

C ′ ǫ
1
4
−4(r0−r1)

0

Moreover, by a Cauchy estimate,

|∂ωZǫ|r′ ≤
1

r′′ − r′
|Zǫ|r′′

so 5 is true. Also note that

| Ψǫ |r′′=| Ψkǫ−1 |r′′≤ ǫ
− 1

2
(rkǫ−rkǫ+1)

kǫ
≤ ǫ−

1

2kǫ+2

Since

kǫ(kǫ + 1) ≥ c log

( | log ǫ |
| log(| F |r) |

)

where c only depends on n, d, κ, τ, A, then

| Ψǫ |r′′≤ ǫ−( 1
2
)c

′√log|log ǫ|

where c′ only depends on n, d, κ, τ, A; therefore property 6 holds.
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If G is either gl(n,C) or u(n) or in dimension 2, if F is continuous on Td, each step will
give functions Zk+1, Ak+1, Āk+1, F̄k+1 continuous on Td so, at the end of the process, the
functions Zǫ, Āǫ et F̄ǫ are continuous on Td. The fact that || Aǫk || | log ǫk |τ is bounded
for some sequence ǫk if G = sl(2,C) or sl(2,R) and A + F is not reducible comes from
property 5 in the iteration. �

This proves Theorem 1.1.

In general, almost reducibility does not imply reducibility. Reducibility happens if there
are a finite number of steps at which one has to reduce the eigenvalues, or if the sequence
(Ψk) given by Theorem 2.16 converges in Cω

r′(2T
d, G). In general, this sequence is not

even bounded in Cω
0 (2T

d, G). However, if the method above has been used to conjugate
the system A+ F to a system Āǫ + F̄ǫ where Āǫ is reducible by Ψǫ to a constant Aǫ, and
where F̄ǫ is bounded by ǫ, one can also bound Ψ−1

ǫ F̄ǫΨǫ.

Corollary 2.17 Let r ≤ 1
2
, A ∈ G and F ∈ Cω

r (2T
d,G) with nice periodicity properties

with respect to LA. Let r′ ∈ [95
96
r, r[. There exists D8 depending only on n, d, κ, τ, A such

that if

|F |r ≤ (r − r′)D8

then there exists

• Z ∈ Cω
r′(2T

d, G),

• a family (Al) of reducible functions in Cω
r′(2T

d,G)

• and A∞ ∈ Cω
r′(2T

d,G)

such that

∂ωZ(θ) = (A + F (θ))Z(θ)− Z(θ)A∞(θ) (103)

and

lim
l→∞

|Al − A∞|r′ = 0

Moreover, in dimension 2 or if G = gl(n,C) or u(n), if F is continuous on Td, then Z,
Al and A∞ are continuous on Td. Finally, if G = o(n) or u(n), then D8 does not depend
on A.

Proof: Let D7 be as in Theorem 2.16 and D8 such that

(r − r′)D8 ≤
(

r − r′

1+ || A ||

)D7

(104)

Let Zǫ ∈ Cω
r′(2T

d, G), Aǫ ∈ Cω
r′(2T

d,G) be as in Theorem 2.16. Then Zǫ and ∂ωZǫ

remain bounded in Cω
r′(2T

d, G) when ǫ → 0. Let Z be the limit in Cω
r′(2T

d, G) of a
subsequence (Z 1

kl

) of (Z 1
k
)k∈N\{0} and
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A∞(θ) := Z(θ)−1(A+ F (θ))Z(θ)− Z(θ)−1∂ωZ(θ)

then

A∞ ∈ Cω
r′(2T

d,G), lim
l→∞

|A 1
kl

−A∞|r′ = 0

and so equation (103) holds.

In dimension 2 or if G = gl(n,C) or u(n), if F is continuous on Td, all functions that one
has to consider are continuous on Td. �

Remark: In Corollary 2.17, the function A∞ is not reducible in general, it is only a
limit of reducible functions.

Corollary 2.18 Let 0 < r′ < r ≤ 1
2
, A ∈ G and F ∈ Cω

r (T
d,G). There exists ǫ′0 depending

only on n, d, τ, κ, A, r − r′ such that if |F − A|r ≤ ǫ′0, then for all ǫ > 0 there exists
H ∈ Cω

r′(2T
d,G) such that |F −H|r′ ≤ ǫ and H is reducible.

Proof: Let D7 be as in Theorem 2.16. Assume that

|F − A|r ≤ (r − r′)D7 =: ǫ′0

Let ǫ > 0. By Theorem 2.16, there exist Zǫ ∈ Cω
r′(2T

d, G), Āǫ, F̄ǫ ∈ Cω
r′(2T

d,G) and
Aǫ ∈ G such that

• Āǫ is reducible to Aǫ,

• ∂ωZǫ = FZǫ − Zǫ(Āǫ + F̄ǫ),

• |Zǫ|r′ ≤ 2, |Z−1
ǫ |r′ ≤ 2,

• |F̄ǫ|r′ ≤ ǫ
4
.

Therefore

∂ωZǫ = HZǫ − ZǫĀǫ

where H = F − ZǫF̄ǫZ
−1
ǫ is reducible to Aǫ and satisfies

|H − F |r′ ≤ 4|F̄ǫ|r′ ≤ ǫ �

Corollary 2.19 Let 0 < r′ < r ≤ 1
2
, A ∈ sl(2,R) and F ∈ Cω

r (T
d, sl(2,R)). There exists

ǫ′0 depending only on n, d, τ, κ, A, r − r′ such that if |F − A|r ≤ ǫ′0, then for any ǫ > 0
there exist H ∈ Cω

r′(T
d, sl(2,R)) such that |F −H|r′ ≤ ǫ and H is reducible.

Proof: Do the same construction as in Corollary 2.18. Theorem 2.16 gives functions
Āǫ, F̄ǫ, Zǫ which are, in fact, continuous on Td. Thus H is continuous on Td. �

Corollary 2.19 also holds with gl(n,C) or u(n) instead of sl(2,R). This proves Theorem
1.3. Again, note that if G is a compact group, then the smallness condition does not
depend on A.
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3 Strong almost reducibility for quasi-periodic cocycles

in a Gevrey class

Let β > 1 and r > 0. Let CG,β
r (2Td, gl(n,C)) be the functions of class Gevrey β with

parameter r, i.e the functions F ∈ C∞(2Td, gl(n,C)) satisfying

∑

α∈Nd

rβ|α|

α!β
sup
θ

|| ∂αF (θ) ||< +∞

Denote by || . ||β,r the norm

|| F ||β,r=
∑

α∈Nd

rβ|α|

α!β
sup
θ

|| ∂αF (θ) ||

The main theorem in this part is formulated analogously to Theorem 1.1.

Theorem 3.1 Let 0 < r′ < r ≤ 1
2
, A ∈ G, F ∈ CG,β

r (Td,G). There is ǫ0 < 1 depending
only on n, d, κ, τ, A, r − r′ such that if

||F ||β,r ≤ ǫ0

then for all ǫ > 0, there exists Āǫ, F̄ǫ ∈ CG,β
r′ (2Td,G), Ψǫ, Zǫ ∈ CG,β

r′ (2Td, G) and Aǫ ∈ G
such that for all θ ∈ 2Td,

∂ωZǫ(θ) = (A+ F (θ))Zǫ(θ)− Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ))

with

• Āǫ reducible to Aǫ by Ψǫ,

• ||F̄ǫ||β,r′ ≤ ǫ,

• || Ψǫ ||β,r′≤ ǫ−
1
8 ,

• and ||Zǫ − Id||β,r′ ≤ 2ǫ
1
2
0 .

Moreover,

• in dimension 2 or if G = GL(n,C) or U(n), Zǫ, Āǫ, F̄ǫ are continuous on Td;

• If G is o(n) or u(n), then ǫ0 does not depend on A;

• if G = sl(2,C) or sl(2,R) and A + F is not reducible, then there exists a sequence
ǫk → 0 such that || Aǫk || | log ǫk |τ is bounded.
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3.1 Preliminaries on Gevrey class functions

Remark:

• For all 0 < r′ < r, one has the inclusion CG,β
r (2Td,G) ⊂ CG,β

r′ (2Td,G) and

|| f ||β,r′≤|| f ||β,r

• For f, g ∈ CG,β
r (2Td,G), one has ||fg||β,r ≤ ||f ||β,r||g||β,r (see [8], appendix).

Lemma 3.2 For all m ∈ Zd and all r′ > 0, the map θ 7→ e2iπ〈m,θ〉 satisfies

|| e2iπ〈m,.〉 ||β,r′≤ eβπr
′d|m|

1
β

Proof: For all α ∈ Nd and all θ ∈ Td,

r′β|α|

(α!)β
| ∂α(e2iπ〈m,θ〉) | ≤ r′β|α|

(α!)β

∏

j

| 2πmj |αj

≤
∏

j

(r′β | 2πmj |)αj

(αj !)β

≤
∏

j

(
(r′ | 2πmj |

1
β )αj

αj !

)β

thus

∑

α

r′β|α|

(α!)β
| ∂α(e2iπ〈m,θ〉) | ≤

∏

j

∑

αj

(
(r′ | 2πmj |

1
β )αj

αj !

)β

≤
∏

j


∑

αj

(r′ | 2πmj |
1
β )αj

αj !




β

≤
∏

j

eβr
′|2πmj |

1
β ≤ eβπr

′d|m|
1
β

�

Remark: This implies that the functions which are analytic on an r-neighbourhood of
the torus or the double torus are Gevrey β with parameter r for all β > 1;

Sublemma 3.3 Let f ∈ CG,β
r (2Td, gl(n,C)). Then for all m ∈ 1

2
Zd,

|| f̂(m) ||≤|| f ||β,r (1−
1

2
β

β−1

)1−βe−
∑

j(2π|mj |)
1
β r
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Proof: By definition of || f ||β,r,

∑

α∈Nd

|| ∂̂αf(m) || r
β|α|

α!β
≤
∑

α∈Nd

sup
θ

|| ∂αf(θ) || r
β|α|

α!β
=|| f ||β,r

Now

∂αf(θ) ∼
∑

m

f̂(m)∂α(e2iπ〈m,θ〉) ∼
∑

m

f̂(m)
∏

j

(2iπmj)
αj .(e2iπ〈m,θ〉)

thus

∂̂αf(m) =
∏

j

(2iπmj)
αj f̂(m)

and therefore

|| f̂(m) ||
∑

α∈Nd

∏

j

(2π | mj |)αj
rβαj

αj!β
≤|| f ||β,r (105)

that is to say,

|| f̂(m) ||
∏

j

∑

αj∈N
(2π | mj |)αj

rβ|αj |

αj !β
≤|| f ||β,r (106)

Now, by Lemma 4.3,

∑

αj∈N
(2π | mj | rβ)αj

1

αj!β
≥ (1− 1

2
β

β−1

)β−1e(2π|mj |)
1
β r

therefore

|| f̂(m) ||≤|| f ||β,r (1−
1

2
β

β−1

)1−βe−
∑

j(2π|mj |)
1
β r

�

Lemma 3.4 Let 0 < r ≤ 1, f ∈ CG,β
r (2Td, gl(n,C)), N ∈ N and fN the truncation of f

at order N . Then for all r′ < r,

||f − fN ||β,r′ ≤ Cd,β || f ||β,r Nd+1 1

(r − r′)2(d+1)
e−2(r−r′)N

1
β

where Cd,β only depends on d, β.

Proof: By definition,

||f − fN ||β,r′ =
∑

α

sup
θ

r′β|α|

α!β
| ∂α(f − fN)(θ) |

Now
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| ∂α(f − fN)(θ) |≤
∑

|m|>N

|| f̂(m) ||
d∏

j=1

| mj |αj

so by Sublemma 3.3,

| ∂α(f − fN)(θ) |≤ (1− 1

2
β

β−1

)1−β || f ||β,r
∑

|m|>N

e−
∑

l(2π|ml|)
1
β r

d∏

j=1

| mj |αj

whence

||f − fN ||β,r′ ≤ (1− 1

2
β

β−1

)1−β || f ||β,r
∑

α

r′β|α|

α!β

∑

|m|>N

e−
∑

l(2π|ml|)
1
β r

d∏

j=1

| mj |αj

≤ (1− 1

2
β

β−1

)1−β || f ||β,r
∑

|m|>N

e−
∑

l(2π|ml|)
1
β r

d∏

j=1

∑

αj

r′βαj

αj!β
| mj |αj

thus, using Lemma 4.3,

||f − fN ||β,r′ ≤ (1− 1

2
β

β−1

)1−β || f ||β,r
∑

|m|>N

e−2(r−r′)
∑

j |mj |
1
β

≤ (1− 1

2
β

β−1

)1−β || f ||β,r
∑

|m|>N

e−2(r−r′)|m|
1
β

and finally

||f − fN ||β,r′ ≤ Cd,β || f ||β,r
∑

M>N

Mde−2(r−r′)M
1
β ≤ C ′

d,β || f ||β,r
Nd+1

(r − r′)2(d+1)
e−2(r−r′)N

1
β

where Cd,β, C
′
d,β only depend on d, β. �

3.2 Reduction of the eigenvalues

The reduction of the eigenvalues of a matrix A at order R, N̄ satisfies a good estimate in
the Gevrey norm, as shows the following proposition:

Lemma 3.5 Let R,N ∈ N\{0}, A ∈ gl(n,C) and Φ a map of reduction of the eigenvalues
of A at order R, N̄ . Then Φ satisfies for all r′ the Gevrey norm estimate

||Φ||β,r′ ≤ nC.C0

(
1 + ||AN ||

κ′′

)n(n+1)

e2βπr
′dN̄

1
β

(107)

where C only depends on d, and so does Φ−1. Moreover, if G = o(n) or u(n), then

||Φ||β,r′ ≤ nCe2βπr
′dN̄

1
β

(108)

and so does Φ−1.
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Proof: For all m ∈ Zd and all r′ > 0, by Lemma 3.2,

||e2iπ〈m,.〉||β,r′ ≤ Ceβπr
′d|m|

1
β

where C only depends on d. Therefore

||Φ||r′ ≤
∑

L∈LA,κ′′

|| PLA,κ′′
L || || e2iπ〈mL,.〉 ||r′

≤ C
∑

L∈LA,κ′′

|| PLA,κ′′
L || eβπr′d|mL|

1
β

≤ C
∑

L∈LA,κ′′

|| PLA,κ′′
L || e2βπr′dN̄

1
β

Now by Lemma 2.1,

|| PLA,κ′′
L ||≤ C0

(
1+ || AN ||

κ′′

)n(n+1)

so (107) holds. If G is either o(n) or u(n), then LA,κ′′ is a unitary decomposition and thus

P
LA,κ′′
L has norm 1, thus (108) holds. �

3.3 Homological equation

Lemma 3.6 Let 0 < r′ < r ≤ 1, f ∈ CG,β
r (2Td,G) and g ∈ CG,β

r′ (2Td,G). Let
C > 0, D ≥ 0. Assume that for all m ∈ 1

2
Zd,

||ĝ(m)|| ≤ C|m|D||f̂(m)||
Then

||g||β,r′ ≤ C ′C||f ||β,r
(

1

r − r′

)2β(D+2)d

where C ′ only depends on d,D, β.

Proof: For all θ ∈ NTd and all α ∈ Nd,

||∂αg(θ)|| ≤
∑

m∈ 1
2
Zd

|| ĝ(m) || | ∂αe2iπ〈m,θ〉 |

≤
∑

m∈ 1
2
Zd

|| ĝ(m) ||
∏

j

| 2πmj |αj

Therefore, by assumption,
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||∂αg(θ)|| ≤ C
∑

m∈ 1
2
Zd

|m|D||f̂(m)||
∏

j

| 2πmj |αj

≤ C ′C
∑

m6=0

1

| 2πm |2d
∏

j

| 2πmj |αj+D+2 ||f̂(m)||

so, letting 1̄ = (1, . . . , 1),

||∂αg(θ)|| ≤ C ′C
∑

m6=0

1

| 2πm |2d ||
̂∂α+(D+2)1̄f(m)||

≤ C ′C sup
θ

||∂α+(D+2)1̄f(θ)||

where C ′ only depends on d,D, thus

||g||β,r′ =
∑

α∈Nd

(r′)β|α|
1

(α!)β
sup
θ

||∂αg(θ)||

≤ C ′C
∑

α

(r′)β|α|
1

(α!)β
sup
θ

||∂α+(D+2)1̄f(θ)||

≤ C ′C
∑

α

rβ|α+(D+2)1̄|

((α + (D + 2)1̄)!)β
sup
θ

||∂α+(D+2)1̄f(θ)|| r′β|α|

rβ|α+(D+2)1̄|

(
(α + (D + 2)1̄)!

α!

)β

≤ C ′C || f ||β,r
∑

α

r′β|α|

rβ(|α|+(D+2)d)

∏

j

(
(αj +D + 2)!

αj !

)β

≤ C ′C || f ||β,r
∑

α

r′β|α|

rβ(|α|+(D+2)d)

(
(| α | +D + 2)!

| α |!

)βd

≤ C ′C || f ||β,r
∑

α

r′β|α|

rβ(|α|+(D+2)d)
(| α | +D + 2)β(D+2)d

Now the function

φ : [0,+∞[→ [0,+∞[, t 7→
(
r′

r

)t

tβ(D+2)d

has its maximum at t = β(D+2)d
ln r

r′
where it takes the value e−β(D+2)d

(
β(D+2)d

ln r
r′

)β(D+2)d

.

Therefore

||g||β,r′ ≤ C ′C||f ||β,re−β(D+2)d

(
β(D + 2)d

r′ ln r
r′

)β(D+2)d

≤ C ′C||f ||β,re−β(D+2)d (β(D + 2)d)β(D+2)d

(r − r′)2β(D+2)d
�
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Proposition 3.7 Let

• N ∈ N,

• κ′ ∈]0, κ],

• γ ≥ n(n+ 1),

• 0 < r′ < r.

Let Ã ∈ G with a DCN
ω (κ′, τ) spectrum. Let F̃ ∈ CG,β

r (2Td,G) with nice periodicity
properties with respect to an (Ã, κ′, γ)-decomposition L. Then there exists a solution
X̃ ∈ CG,β

r′ (2Td,G) of equation

∀θ ∈ 2Td, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃N(θ)− ˆ̃F (0); ˆ̃X(0) = 0 (109)

such that

• if F̃ has nice periodicity properties with respect to L et (mL), then so does X̃; in
particular, if F̃ is defined on Td, then so is X̃,

• Let Φ be trivial with respect to L and a family (mL) such that for all L, | mL |≤ N ′.
There exists C ′, D′ depending only on n, d, τ, β such that

|| ΦX̃Φ−1 ||β,r′≤ C ′
(
(1 + ||ÃN ||)N ′

(r − r′)κ′

)D′γ

|| ΦF̃Φ−1 ||β,r (110)

Moreover, the truncation of X̃ at order N is unique.

Proof: The existence of X̃, its unicity up to order N , the fact that it takes its values in
G and its nice periodicity properties with respect to L are proved as in part 2, proposition
2.8.

To get the estimate (110), one first shows that for all m ∈ 1
2
Zd and all L, L′ ∈ L′,

||PL
L
ˆ̃X(m)PL

L′ || ≤ C ′ (1 + ||ÃN ||)n2−1|m|(n2−1)τ

κ′(n2−1)
||PL

L
ˆ̃F (m)PL

L′||(||PL
L || ||PL

L′||)n2−1 (111)

It is done exactly as in proposition 2.8 to get (60). The estimate (111) and Lemma 3.6
imply

||PL′
L X̃e2iπ〈mL−mL′ 〉PL′

L′ ||β,r′ ≤ C ′′
(
(1 + ||ÃN ||)N ′

(r − r′)κ′

)Dγ

||PL′
L F̃ e2iπ〈mL−mL′ 〉PL′

L′ ||β,r

where C ′′, D only depend on n, d, τ, β. Thus

54



||ΦX̃Φ−1||β,r′ ≤
∑

L,L′

||PL′
L X̃e2iπ〈mL−mL′ 〉PL′

L′ ||β,r ≤ C ′′

(
(1 + ||ÃN ||)N ′

(r − r′)κ′

)Dγ∑

L,L′

||PL′
L F̃ e2iπ〈mL−mL′ 〉PL′

L′ ||β,r

and therefore

||ΦX̃Φ−1||β,r′ ≤ C3

(
(1 + ||Ã||)N ′

(r − r′)κ′

)D′γ

||ΦF̃Φ−1||β,r

where D′, C3 only depend on n, d, τ, β. �

3.4 Inductive lemmas

In Gevrey regularity, we will need a Lemma which is almost identical to Lemma 2.9, apart
from the presence of the parameter β, which is fixed and does not modify the proof:

Lemma 3.8 Let

• κ′ ∈]0, 1[, C > 0, β > 1;

• F̃ ∈ G,

• ǫ̃ = ||F̃ ||,

• Ñ ∈ N,

• Ã ∈ G with DCÑ
ω (κ′, τ) spectrum.

There exists a constant c only depending on nτ, β such that if ǫ̃ satisfies

ǫ̃ ≤ c

(
Cτκ′

1 + ||Ã||

)2n

(112)

and

Ñ ≤ | log ǫ̃|β
C

(113)

then Ã + F̃ has DCÑ
ω (3κ

′

4
, τ) spectrum.

Exactly as in the analytic case, one obtains the following inductive lemmas, where
only the estimates slightly differ from their analytic analogues; since β is fixed, the proofs
go on in quite the same way:

Proposition 3.9 Let

• ǫ̃ > 0, r̃ ≤ 1, r̃′ ∈ [ r̃
2
, r̃[, κ′ > 0, Ñ ∈ N, γ ≥ n(n + 1), C > 0;

• F̃ ∈ CG,β
r̃ (2Td,G), Ã ∈ G,
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• L an (Ã, κ′, γ)-decomposition.

There exists a constant C ′′ > 0 depending only on τ, n, β such that if

1. Ã has DCÑ
ω (κ′, τ) spectrum;

2.

|| ˆ̃F (0)|| ≤ ǫ̃ ≤ C ′′
(

Cτκ′

1 + ||Ã||

)2n

(114)

and

Ñ ≤ | log ǫ̃|β
C

(115)

3. F̃ has nice periodicity properties with respect to L

then there exist

• C ′ ∈ R depending only on n, d, κ, τ, β,

• D ∈ N depending only on n, d, τ, β,

• X ∈ CG,β
r̃′ (2Td,G),

• A′ ∈ G

• an (A′, 3κ
′

4
, γ)-decomposition L′

satisfying the following properties:

1. A′ has DCÑ
ω (3κ

′

4
, τ) spectrum,

2. ||A′ − Ã|| ≤ ǫ̃;

3. the map F ′ ∈ CG,β
r̃′ (2Td,G) defined by

∀θ ∈ 2Td, ∂ωe
X(θ) = (Ã+ F̃ (θ))eX(θ) − eX(θ)(A′ + F ′(θ)) (116)

has nice periodicity properties with respect to L′

4. If Φ is trivial with respect to L and a family (mL) satisfying, for all L, | mL |≤ N ′,
then

||Φ−1XΦ||β,r̃′ ≤ C ′

(
(1 + ||ÃN ||)N ′

κ′(r̃ − r̃′)

)Dγ

||Φ−1F̃Φ||β,r̃ (117)
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5. and if Φ is trivial with respect to L and a family (mL) satisfying, for all L, | mL |≤
N ′, then

||Φ−1F ′Φ||β,r̃′ ≤ C ′
(
(1 + ||ÃN ||)N ′

κ′(r̃ − r̃′)

)Dγ

e||Φ
−1XΦ||β,r̃′ ||Φ−1F̃Φ||β,r̃

(||Φ||2β,r̃||Φ−1||2β,r̃Ñde−2πÑ(r̃−r̃′) + ||Φ−1F̃Φ||β,r̃′(1 + e||Φ
−1XΦ||β,r̃′))

Moreover, if F̃ is continuous on Td, then so are X and F ′. If G = o(n) or u(n), then the
same holds replacing condition (114) by

|| ˆ̃F (0)|| ≤ ǫ̃ ≤ C ′′(Cτκ′)2 (118)

In Proposition 3.9, the only difference with Proposition 2.13 is the introduction of the
parameters β and N ′. The inductive step is formulated exactly as proposition 2.14, with
the only difference that the parameters N,R will be chosen as

{
N(r, ǫ) = ( 1

2πr
| log ǫ|)β

R(r, r′) = [ 1
(r−r′)880

4(1
2
n(n− 1) + 1)2]β

(119)

and not as in (79). Note that the parameter N ′ in the estimates of properties 4 and 5 in
proposition 3.9 does not modify essentially the proof, once it is instantiated by N̄ . The
statement and the proof of the main theorem are identical.

4 Appendix

4.1 Spectrum of a one-parameter family of matrices

Lemma 4.1 Let G be a Lie algebra and A, F ∈ G with ||F || ≤ 1. Let α1(λ), . . . , αn(λ) be
a continuous choice of the eigenvalues of A + λF as λ varies from 0 to 1. Then for all
1 ≤ j ≤ n, there exists 1 ≤ j′ ≤ n such that

| αj′(λ)− αj(0) |≤ 2nλ
1
n (|| A || +1)

Proof: Fix j ≤ n. For every λ, let

A(λ) = A+ λF

and

f(λ) = det(αj(0)I −A(λ))

Then f(0) = 0 and for every λ,

f(λ) = det(αj(0)I − A(λ)) =
∏

j′

(αj(0)− αj′(λ))
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so

|
∏

j′

(αj(0)− αj′(λ)) |=| f(0)− f(λ) |≤ sup
λ′′

| f ′(λ′′) | | λ |

and since

| f ′(λ′′) | =|
∑

σ

d

dλ′′

∏

k

(αj(0)I − A− λ′′F )k,σ(k) |

≤ nn![|| A || + || A(λ′′) ||]n−1

≤ 2n−1nn![|| A || +1]n−1

then there exists j′ such that

| αj(0)− αj′(λ) |≤ 2n | λ | 1n [|| A || +1] �

In case G is compact, we have the following lemma (see [5], lemma A.5):

Lemma 4.2 Let G = o(n) or u(n) and A, F ∈ G with ||F || ≤ 1. Let α1(λ), . . . , αn(λ)
be an analytic choice of the eigenvalues of A + λF as λ varies from 0 to 1. Then for all
1 ≤ j ≤ n,

| αj(λ)− αj(0) |≤ λ (120)

Proof: For each λ, let p1(λ), . . . , pn(λ) be an orthonormal basis of eigenvectors of
A+ λF (take them analytic in λ). Then for each 1 ≤ j ≤ n, one can assume

(A+ λF )pj(λ) = αj(λ)pj(λ)

and derivating this along λ, one gets

(A+ λF − αj(λ))p
′
j(λ) + (F − α′

j(λ))pj(λ) = 0

Now let β1, . . . , βn be such that

p′j(λ) =
n∑

l=1

βlpl(λ)

Then

∑

l 6=j

βl(A+ λF − αj(λ))pl(λ) + (F − α′
j(λ))pj(λ) = 0

and taking the scalar product with pj(λ),

〈(Fpj(λ), pj(λ)〉 = α′
j(λ)

Therefore

| αj(0)− αj(λ) |≤| λ | sup
λ′

| α′
j(λ

′) |≤ λ �
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4.2 A lemma on integer series with non-negative terms

The following lemma was proven by D. Sauzin and is used in Section 3.

Lemma 4.3 Let a > 0. For all r ≥ 0, consider Ea(r) =
∑

k≥0
rk

k!a
. Then

{
K1e

λar
1
α ≤ Ea(r) ≤ ear

1
a if a > 1, 0 < λ < 1

ear
1
a ≤ Ea(r) ≤ K1e

λar
1
a if 0 < a < 1, λ > 1

(121)

where

K1 = (1− λ
a

a−1 )a−1 < 1

Proof: One uses the following inequalities: if α > 1 and (Xk)k∈N, (Yk)k∈N are families
of non-negative numbers,

∑
Xα

k ≤ (
∑

Xk)
α (122)

and

∑
Xα

k ≥ (
∑

XkYk)
α

(
∑

Y β
k )

α
β

(123)

for β = α
α−1

, if
∑

XkYk < ∞. Note that (122) is equivalent to

∑
x

1
α

k ≥ (
∑

xk)
1
α (124)

with Xk = x
1
α

k . Also (123) is equivalent to

∑
x

1
α

k ≤ (
∑

y
α

α−1

k )1−
1
α (
∑ xk

yk
)

1
α (125)

with Xk = (xk

yk
)

1
α and yk = Y α

k .

1. In the first case, apply (122) and (123) with α = a,Xk =
r
k
α

k!
and Yk = λk.

2. In the second case, apply (124) and (125) with α = 1
a
, xk =

r
k
a

k!
and yk = λ−k. �
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