
HAL Id: hal-00442730
https://hal.science/hal-00442730v1

Preprint submitted on 22 Dec 2009 (v1), last revised 4 Jun 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Almost reducibility of analytic quasi-periodic cocycles
Claire Chavaudret

To cite this version:

Claire Chavaudret. Almost reducibility of analytic quasi-periodic cocycles. 2009. �hal-00442730v1�

https://hal.science/hal-00442730v1
https://hal.archives-ouvertes.fr


Almost reduibility of analyti quasi-periodi oylesClaire ChavaudretInstitut de Mathématiques de JussieuAstrat: Let G ⊂ GL(n, C) a lassial Lie group, G the Lie algebra assoiated to G,
ω ∈ R

d a diophantine vetor, A ∈ G and a map F ∈ Cω
r (Td,G) whih is analyti ona neighbourhood of the torus of radius r ≤ 1

2
, and r′ ∈]0, r[. There exists ǫ dependingonly on n, d, A, r − r′ and on the diophantine lass of ω suh that if | F |r≤ ǫ, then thequasi-periodi oyle generated by A + F is almost reduible in Cω

r′(2Td, G). If G is aomplex Lie group or n = 2, almost reduibility holds in Cω
r′(T

d, G) and reduible oylesare dense near onstant oyles in a real analyti topology.Introdution0.1 Statement of the main resultLet n ≥ 1, d ≥ 1, ω ∈ Rd and 0 < κ < 1, τ > max(1, d − 1). Suppose ω is diophantinewith onstant κ and exponent τ , that is
∀ m ∈ Z

d \ {0}, |〈m, ω〉| ≥ κ

|m|τ (1)One an assume without loss of generality that sup |ωi| ≤ 1. Denote by Td := Rd/Zd the
d-torus and by 2T

d := R
d/(2Z

d) the double torus.De�nition: Let G be a Lie algebra, G the Lie group assoiated to G and A : 2T
d → G.The quasi-periodi oyle assoiated to A is the map X : 2Td × R → G de�ned for all

(θ, t) ∈ 2Td × R by
d

dt
X t(θ) = A(θ + tω)X t(θ); X0(θ) = Id (2)We say it is a onstant oyle if A is onstant.Remark: Terminology is explained by the fat that A is the envelope of a quasi-periodi funtion. For all θ ∈ 2Td, t 7→ A(θ + tω) is indeed a quasi-periodi funtion.A onstant oyle is always of the form t 7→ etA.1



We shall introdue an equivalene relation on oyles. In order to do this, we will haveto mention the regularity of the appliations. Let us give the following de�nitions andnotations:De�nition: A funtion f is analyti on an r-neighbourhood of the torus (resp. doubletorus) if f is holomorphi on {x = (x1, . . . , xd) ∈ Cd, supj |Im xj | < r} and 1-periodi(resp. 2-periodi) in Re xj for all 1 ≤ j ≤ d.For all subset E of gl(n, C), denote by Cω
r (Td, E) the set of funtions whih are analytion an r-neighbourhood of the torus and whose restrition to Td takes its values in E;let Cω

r (2Td, E) be the set of funtions whih are analyti on an r-neighbourhood of thedouble torus and whose restrition to 2Td takes its values in E. For all f ∈ Cω
r (2Td, E),denote

|f |r = sup
|Imx|<r

||f(x)|| (3)where ||.|| stands for the operator norm.Notation: For a funtion f ∈ C1(2Td, C), for all θ ∈ 2Td we will denote by
∂ωf(θ) =

d

dt
f(θ + tω)|t=0 (4)the derivative of f in the diretion ω.De�nition: Let G be a Lie algebra and G the Lie group assoiated to G. Let r, r′ > 0and A, B ∈ Cω

r (2T
d,G). We say that A and B are onjugate in Cω

r′(2T
d, G) if there exists

Z ∈ Cω
r′(2Td, G) suh that for all θ ∈ 2Td,

∂ωZ(θ) = A(θ)Z(θ) − Z(θ)B(θ)If B is onstant in θ, we say that A is reduible in Cω
r′(2Td, G), or reduible by Z to B.Remark: Let X be the quasi-periodi oyle assoiated to A. The map A is reduibleby Z to B if and only if

∀(t, θ), X t(θ) = Z(θ + tω)−1etBZ(θ) (5)Reduibility is also equivalent to the fat that the map from 2T
d × R

n to itself:
(

θ
v

)

7→
(

θ + ω
X1(θ)v

) (6)is onjugate to a map χ suh that
dχ

dθ

(

θ
v

)

≡
(

1̄
0

) (7)2



The aim of this paper is to show that for
G = GL(n, C), GL(n, R), SL(n, R), Sp(n, R), O(n), U(n)in the neighbourhood of a onstant oyle, every oyle whih is analyti on an r-neighbourhood of the torus and G-valued is almost reduible in Cω

r′(2Td, G) for all 0 <
r′ < r ≤ 1

2
. The radius of the neighbourhood only depends on the dimensions n, d, on thediophantine parameters κ, τ , on the onstant oyle and on the loss of analytiity r− r′.We shall prove the following theorem, for G among the groups ited above and G the Liealgebra assoiated to G:Theorem 0.1 Let 0 < r′ < r ≤ 1

2
, A ∈ G, F ∈ Cω

r (Td,G). There is ǫ0 < 1 dependingonly on n, d, κ, τ, A, r − r′ suh that if
|F |r ≤ ǫ0then for all ǫ > 0, there exists Āǫ, F̄ǫ ∈ Cω

r′(2Td,G), Zǫ ∈ Cω
r′(2Td, G) suh that for all

θ ∈ 2Td,
∂ωZǫ(θ) = (A + F (θ))Zǫ(θ) − Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ))with� Āǫ reduible in Cω

r′(2Td, G),� |F̄ǫ|r′ ≤ ǫ,� and |Zǫ − Id|r′ ≤ 2ǫ
1
2
0 .Moreover, in dimension 2 or if G = GL(n, C) or U(n), Zǫ, Āǫ, F̄ǫ are ontinuous on Td.There is a loss of analytiity in this result, but it is arbitrarily small.0.2 Generalisation and onsequenesTheorem 0.1 means that in the neighbourhood of a onstant oyle, all oyles arealmost reduible i.e they are arbitrarily lose to a reduible oyle, whih suggests thatredutibility is a predominant phenomenon. Redutibility implies almost reduibility,however the reverse is not true: there are non reduible oyles even lose to a onstantoyle (see [5℄).Almost reduibility is an interesting notion sine the dynamis of an almost reduibleoyle are quite well known on a very long time.Theorem 0.1 holds also if one hooses F in a lass whih is bigger than Cω

r (Td,G), i.e thelass of funtions in Cω
r (2Td,G) satisfying some "nie periodiity properties" with respetto the matrix A.In dimension 2 or if G is omplex, this result an be rephrased as density of reduibleoyles in the neighbourhood of onstant oyles:3



Theorem 0.2 Let G = gl(n, C), u(n), gl(2, R), sl(2, R) or o(2). Let 0 < r′ < r ≤ 1
2
and

A ∈ G, F ∈ Cω
r (Td,G). There is ǫ0 depending only on r − r′, n, d, κ, τ, A suh that if

|F |r ≤ ǫ0then for all ǫ > 0 there exists H ∈ Cω
r′(T

d,G) whih is reduible in Cω
r′(T

d,G) and suhthat
|A + F − H|r′ ≤ ǫ0.3 Well-known resultsA similar result, for smooth oyles with values in ompat Lie groups, was obtained byR. Krikorian in [8℄ (th.5.1.1). For oyles over a rotation on the irle, analytiity is farbetter ontrolled (see for instane [1℄) sine it is then possible to use global methods. Inthis artile, we are onsidering the ase of a torus of arbitrary dimension. The KAM-typemethod that is being used here had already given birth to full-measure reduibility resultsfor oyles with values in SL(2, R) ([5℄, [6℄).A result lose to Theorem 0.1 in the ase when G = GL(n, R) had already been provenin [3℄ by L.H.Eliasson:Let A ∈ gl(n, R) and F ∈ Cω

r (Td, gl(n, R)). There is ǫ0 < 1 depending only on
n, d, κ, τ, ||A|| suh that if |F |r ≤ ǫ0, then for all ǫ > 0, there exists 0 < rǫ < r,
Zǫ ∈ Cω

rǫ
(2Td, GL(n, R)) suh that for all θ ∈ 2Td,

∂ωZǫ(θ) = (A + F (θ))Zǫ(θ) − Zǫ(θ)(Aǫ + Fǫ(θ))with Aǫ ∈ gl(n, R), Fǫ ∈ Cω
rǫ

(2Td, gl(n, R)) and |Fǫ|rǫ ≤ ǫ.Remark: This result merely states almost reduibility in Cω
0 (2Td, GL(n, R)), sinethe sequene (rǫ) might well tend to 0.The ahievement of 0.1 is to state almost reduibility in a more general algebrai frame-work, but also, and mostly, to show that almost reduibility holds in a �xed neighbourhoodof a torus even when this torus has dimension greater than 1.Note that, as was the ase in [3℄, one annot avoid to lose periodiity in 0.1 if G is areal group with dimension greater than 2. The notion of "nie periodiity properties"that will be given aims at limiting this loss to a period doubling. In omparison withthe real framework, the sympleti framework introdues new onstraints in the elimina-tion of resonanes, but these onstraints have no onsequenes on the onstrution of arenormalization; therefore there is no more loss of periodiity here than in the ase when

G = GL(n, R). As before in [2℄, a single period doubling is su�ient in the ase when Gis a real sympleti group.
4



0.4 Sketh of the paperThe proof of Theorems 0.1 and 0.2 is a re�nement of the method in [3℄; it is based on aKAM sheme. Here are the main steps:� Constrution of a renormalization Φ of order R, N̄ (Proposition 2.3) for R, N ∈
N \ {0}.In dimension 2, Φ will be suh that for all H ontinuous on Td, ΦHΦ−1 is ontinuouson Td.� Resolution of the homologial equation (Proposition 3.2): if Ã has a spetrum ful�ll-ing some diophantine onditions and F̃ is a funtion with nie periodiity propertieswith respet to Ã, then there exists a solution X̃ of equation

∂ωX̃ = [Ã, X̃] + F̃ RN̄ ; ˆ̃X(0) = 0having the same periodiity properties as F̃ ; it takes its values in the same Liealgebra as does F̃ . Moreover, it an be well ontrolled by losing some analytiity.� Indutive lemma (Proposition 5.2): If F̃ ∈ Cω
r (2Td,G) has some periodiity proper-ties (with respet to Ã), if

∂ωΨ = ĀΨ − ΨÃand F̄ = ΨF̃Ψ−1, then there exists Z ∈ Cω
r′(2Td, G) suh that

∂ωZ = (Ā + F̄ )Z − Z(Ā′ + F̄ ′) (8)with Ā′ reduible, F̄ ′ is muh smaller than F̄ , Z is lose to the identity and Ψ′−1F̄ ′Ψ′has periodiity properties with respet to A′ whih are similar to the properties of
F̃ .The estimate of F̄ ′ depends on F̃ − F̃ RN̄ , on the renormalization Φ, and on thesolution X̃ of the homologial equation.� Iteration of the indutive lemma (Theorem 5.4): We shall iterate Lemma 5.2 so asto obtain estimates of analyti funtions on a sequene of neighbourhoods of thetorus not tending to 0, by means of a numerial lemma (Lemma 5.3), to redue theperturbation arbitrarily.Remark: The renormalization is de�ned in a way similar to [3℄, however here itwill remove resonanes up to an order RN̄ whih is muh greater than the value5



of the parameter N̄ appearing in the estimates. To iterate the indutive lemmawithout letting the degree of analytiity tend to 0, parameter R will be used tode�ne a renormalization map of order R, N̄ where N̄ does not depend on the lossof analytiity. This way, the renormalization map will stay under ontrol on aneighbourhood of the torus whih will not have to fade totally.0.5 NotationsDenote by 〈., .〉 the omplex eulidian salar produt, taking it antilinear in the seondvariable. For a linear operator M , we shall all M∗ its adjoint, whih is idential to thetranspose of M if M is real. Also denote by MN the nilpotent part of M , as follows:let M = PAP−1 with A in Jordan normal form, let AD be the diagonal part of A,then MN = P (A − AD)P−1. To simplify the writing, if A : 2Td → GL(n, C), we willdenote by A−1 the map θ 7→ A(θ)−1. For all m = (m1, . . . , md) ∈ 1
2
Zd, we shall denote

| m |=| m1 | + · · ·+ | md |. The letter J will stand for matrix J =

(

0 −Id
Id 0

).1 Nie periodiity propertiesA few de�nitions will �rst be given. The notion of "triviality with respet to a deom-position" will make the onstrution of the renormalization easier; the "nie periodiityproperties" have been introdued in [3℄ and are used in the real ase to make sure thatonly one period doubling will be needed in iterating the indutive lemma.1.1 Invariant deompositionsDe�nition: L = {L1, . . . , LR} is a deomposition of Cn if Cn =
⊕

j Lj.De�nition: Let L,L′ be deompositions of Cn. Then L is said to be �ner than L′ if forall L ∈ L, there is L′ ∈ L′ suh that L ⊂ L′; L is said stritly �ner than L′ if L is �nerthan L′ and L 6= L′.De�nition: Let A ∈ gl(n, C); then L = {L1, . . . , Ls} is an A-deomposition, or else
A-invariant deomposition, if it is a deomposition of Cn and for all i, ALi ⊂ Li. Subsets
Li are alled subspaes of L.Remark: An A-deomposition is always less �ne than the Jordan deomposition intogeneralized eigenspaes. Therefore, if operators A and A′ have the same deompositioninto generalized eigenspaes, then an A-deomposition is an A′-deomposition.Notation: Let L be an A-deomposition. For all L ∈ L, denote by σ(A|L) the spetrumof the restrition of A to subspae L.De�nition: Let κ′ ≥ 0. Let LA,κ′ be the unique A-deomposition L suh that for all
L 6= L′ ∈ L, α ∈ σ(A|L) and β ∈ σ(A|L′) ⇒ |α−β| > κ′ and suh that no A-deompositionstritly �ner than L has this property. 6



De�nition: Let A ∈ gl(n, C). Denote by LA the deomposition of Cn whih is the setof all generalized eigenspaes of A.Remark: Note that LA does not have to oinide with LA,0. In general LA is �ner than
LA,0.De�nition: Let L be a deomposition of Cn. For all u ∈ Cn, there is a unique deom-position u =

∑

L∈L uL suh that uL ∈ L for all L ∈ L. For all L ∈ L, the projetion on Lwith respet to L, denoted by PL
L , is the map de�ned by PL

L u = uL.Remark: Let A ∈ gl(n, C) and κ′ > 0. If L is an A-deomposition whih is less �ne than
LA,κ′, then one has the following lemma, whih an be found in [3℄, appendix, Lemma A1:Lemma 1.1 There is a onstant C0 ≥ 1 depending only on n suh that for all subspae
L ∈ L,

|| PL
L ||≤ C0

(

1+ || AN ||
κ′

)n(n+1) (9)In what follows, C0 will always stand for this onstant �xed in Lemma 1.1.De�nition: An (A, κ′, γ)-deomposition is an A-deomposition L suh that for all
L ∈ L, the projetion on L with respet to L satis�es

|| PL
L ||≤ C0

(

1+ || AN ||
κ′

)γ (10)Remark: For A ∈ gl(n, C), one always has A =
∑

L,L′∈L PL
L APL

L′ . In partiular, if L isan A-deomposition, then A =
∑

L∈L PL
L APL

L .De�nitions: Let L be a deomposition. We say that� L is a real deomposition if for all L ∈ L, L̄ ∈ L;� L is a sympleti deomposition if it is a deomposition of C
n with even n and forall L ∈ L, there is a unique L′ ∈ L suh that 〈L, JL′〉 6= 0;� L is a unitary deomposition if for all L 6= L′ ∈ L, 〈L, L′〉 = 0.Remark:� If A is a real matrix, then for all κ′ ≥ 0, LA,κ′ is a real deomposition.1Lemma A from [3℄ gives in fat an estimate whih depends on || A ||, but the proof shows learlythat the estimate in fat only depends on AN . 7



� For all L, there is at least one L′ suh that 〈L, JL′〉 6= 0. This omes from the fatthat the sympleti form 〈., J.〉 is non-degenerate.� If A ∈ sp(n, R), then any A-deomposition L whih is less �ne than LA,0 is a realand sympleti deomposition. To see this, let L, L′ ∈ L suh that 〈L, JL′〉 6= 0; let
v ∈ L, v′ ∈ L′ be eigenvetors of A suh that 〈v, Jv′〉 6= 0 and λ, λ′ their assoiatedeigenvalues. Then

λ〈v, Jv′〉 = 〈Av, Jv′〉 = 〈v, A∗Jv′〉 = −〈v, JAv′〉 = −λ̄′〈v, Jv′〉 (11)and sine 〈v, Jv′〉 6= 0, then λ = −λ̄′.� If A ∈ U(n), then any deomposition whih is less �ne than LA,0 is unitary.1.2 Triviality and nie periodiity properties with respet to adeompositionDe�nition: Let L be a deomposition of Cn. We say a map Ψ is trivial with respet to
L if there exist {mL, L ∈ L} ⊂ 1

2
Zd suh that for all θ ∈ 2Td,

Ψ(θ) =
∑

L∈L
e2iπ〈mL,θ〉PL

L (12)De�nition: We say that the funtion Ψ is trivial if there exists a deomposition L suhthat Ψ is trivial with respet to L.Remark:� If Ψ is trivial with respet to L and L′ is �ner than L, then Ψ is trivial with respetto L′.� If Φ, Ψ : 2Td → GL(n, C) are trivial with respet to L, then the produt ΦΨ istrivial with respet to L.� If Φ is trivial with respet to an A-deomposition L, then for all θ ∈ 2Td, [A, Φ(θ)] =
0.Lemma 1.2 Let L be a real deomposition of Cn, {mL, L ∈ L} ⊂ 1

2
Zd and Ψ de�ned by

Ψ(θ) =
∑

L∈L
e2iπ〈mL,θ〉PL

L (13)Then Ψ is real if and only if for all L, mL = −mL̄. Moreover, if Ψ is real, then Ψ takesits values in SL(n, R). 8



Proof: Assume that for all L ∈ L, mL = −mL̄. Let u ∈ Rn. Then
Ψ(θ)u =

∑

L∈L
e2iπ〈−mL,θ〉PL

L u =
∑

L∈L
e2iπ〈mL̄,θ〉PL

L̄ u = Ψ(θ)u (14)so Ψ(θ) is real.Now suppose that Ψ is real. Then for all θ,
∑

L∈L
e2iπ〈mL,θ〉PL

L =
∑

L∈L
e2iπ〈−mL,θ〉PL

L =
∑

L∈L
e2iπ〈−mL,θ〉PL

L̄ (15)so mL = −mL̄.Suppose Ψ is real; then for all L, mL = −mL̄ so Ψ(θ) is the exponential of a trae-zeromatrix, so it has determinant 1. �Remark: Any map whih is trivial with respet to a unitary deomposition is unitary:let L be a unitary deomposition, let Φ be trivial with respet to L and let L, L′ ∈ L.Then for all u ∈ L, v ∈ L′,
〈Φ(θ)u, Φ(θ)v〉 = 〈e2iπ〈mL,θ〉u, e2iπ〈mL′ ,θ〉v〉 = 〈u, v〉 (16)Lemma 1.3 Let L be a real and sympleti deomposition and {mL, L ∈ L} be a familyof elements of 1

2
Zd. Let Ψ =

∑

L∈L e2iπ〈mL,.〉PL
L . Then Ψ takes its values in Sp(n, R) ifand only if� for all L, mL = −mL̄� and if 〈L, JL′〉 6= 0, then mL = mL′.Proof: By Lemma 1.2, Ψ is real if and only if for all L, mL = −mL̄. Assume now Ψ isreal.We show �rst that if for all L, L′ ∈ L, 〈L, JL′〉 6= 0 ⇒ mL = mL′ , then Ψ takes its valuesin Sp(n, R). Let u, v ∈ Rn. Then

〈u, Ψ(θ)∗JΨ(θ)v〉 = 〈Ψ(θ)u, JΨ(θ)v〉 =
∑

L

e2iπ〈mL−mM(L),θ〉〈PL
L u, JPL

M(L)v〉 (17)where M(L) stands for the unique subspae suh that 〈L, JM(L)〉 6= 0. Assume that if
〈L, JL′〉 6= 0, then mL = mL′. This implies that

〈u, Ψ(θ)∗JΨ(θ)v〉 =
∑

L

〈PL
L u, JPL

M(L)v〉 = 〈u, Jv〉 (18)9



so Ψ(θ) ∈ Sp(n, R).Now we will show that if Ψ(θ) ∈ Sp(n, R) and if 〈L, JL′〉 6= 0, then mL = mL′. Suppose
Ψ(θ) ∈ Sp(n, R). For any two vetors u, v,

〈u, Jv〉 = 〈u, Ψ(θ)∗JΨ(θ)v〉 = 〈Ψ(θ)u, JΨ(θ)v〉 (19)If u ∈ L and v ∈ m(L) satisfy 〈u, Jv〉 6= 0, then
〈u, Jv〉 = 〈Ψ(θ)u, JΨ(θ)v〉 = e2iπ〈mL−mM(L),θ〉〈u, Jv〉 (20)so mL = mM(L). �We will now de�ne the periodiity properties.De�nition: Let L be a deomposition of Cn. We say that F ∈ C0(2Td, gl(n, R)) hasnie periodiity properties with respet to L if there exists a map Φ whih is trivial withrespet to L and suh that Φ−1FΦ soit ontinue sur Td.To make the family (mL) expliit, we say that F has nie periodiity properties withrespet to L and (mL).Remark:� If F ∈ C0(2Td, gl(n, R)) has nie periodiity properties with respet to a deomposi-tion L and Φ is trivial with respet to L, then ΦFΦ−1 has nie periodiity propertieswith respet to L.� If L′ is a deomposition of C

n whih is �ner than L and F has nie periodiityproperties with respet to L,then F has nie periodiity properties with respet to
L′.� Let L be a deomposition of Cn and (mL)L∈L be a family of elements of 1

2
Zd. If

F1, F2 ∈ C0(2Td, gl(n, R)) have nie periodiity properties with respet to L and
(mL), then the produt F1F2 has nie periodiity properties with respet to L and
(mL).2 Removing the resonanesIn the following we will have to solve a homologial equation and estimate the solutionon a neighbourhood of the torus; in order to have a su�ient estimate, one will assumethat the oe�ients of the equation satisfy some diophantine onditions:Let A ∈ gl(n, R) and 0 < κ′ < 1. Let N ∈ N.De�nition: Let z ∈ C, ν ∈ {1, 2}. We say that z is diophantine modulo ν withrespet to ω, with onstant κ′, exponent τ and order N if for every m ∈ 1

ν
Zd suh that

0 < |m| ≤ N , 10



|z − 2iπ〈m, ω〉| ≥ κ′

|m|τ (21)This property will be denoted by
z ∈ DCN

ω,ν(κ
′, τ) (22)Note that

DCN
ω,2(κ

′, τ) ⊂ DCN
ω,1(κ

′, τ) (23)and that every real number z is in DCN
ω,2(

κ
2τ , τ) sine for all m ∈ 1

2
Zd,

|z − 2iπ〈m, ω〉| =
(

|z|2 + (2π|〈m, ω〉|)2
)

1
2 ≥ πκ

|2m|τ ≥ κ

|2m|τ (24)Remark: In the de�nition above, the ondition is required only for non vanishing m,so (21) has a meaning.De�nition: A is said to have DCN
ω (κ′, τ) spetrum if

{

∀α, β ∈ σ(A), α − β ∈ DCN
ω,1(κ

′, τ)
∀α, β ∈ σ(A), α 6= β̄ ⇒ α − β ∈ DCN

ω,2(κ
′, τ)

(25)Let N ∈ N. Let A in a Lie algebra G. The aim is to show that there exists κ′ > 0, Ã ∈ Gsuh that Ã has DCN
ω (κ′, τ) spetrum and A and Ã are onjugate (in the aeption ofoyles, following the de�nition given in the introdution). To ahieve this, one has to�nd a family (m1, . . . , mn) satisfying

{

∀ αj, αk ∈ σ(A), αj − αk + 2iπ〈mj − mk, ω〉 ∈ DCN
ω,1(κ

′, τ)
∀ αj, αk ∈ σ(A), αj 6= ᾱk ⇒ αj − αk + 2iπ〈mj − mk, ω〉 ∈ DCN

ω,2(κ
′, τ)

(26)We shall onstrut the so-alled renormalization map Φ onjugating (in the sense ofoyles) A to the matrix obtained from A by substituting an eigenvalue αj by αj +
2iπ〈mj, ω〉, then we will prove that Φ is G-valued.2.1 Diophantine onditionsLemma 2.1 Let {α1, . . . , αn} ⊂ C. Let Ñ ∈ N and κ′ ≤ κ

n(8Ñ)τ . There exists m1, . . . , mn ∈
1
2
Zd suh that supj |mj| ≤ Ñ , and suh that letting for all j, α̃j = αj − 2iπ〈mj, ω〉, then11



{α1, . . . , αn} = {α1, . . . , αn} ⇒ ∀j, k, αj = ᾱk ⇒ mj = −mk (27)
∀j, k, αj = −ᾱk ⇒ mj = mk (28)
∀j, k, |αj − αk| ≤ κ′ ⇒ mj = mk (29)
∀j, |Imα̃j | ≤ |Imαj | (30)
∀j, k, αj = ᾱk ⇒ α̃j − α̃k ∈ DCÑ

ω,1(κ
′, τ) (31)and

∀j, k, αj 6= ᾱk ⇒ α̃j − α̃k ∈ DCÑ
ω,2(κ

′, τ) (32)and suh that if not all mj vanish, then there exist j, k suh that
|αj − αk| ≥ κ′, |α̃j − α̃k| < κ′ (33)Moreover, there exist m1, . . .mn ∈ Zd, with |mj| ≤ Ñ for all j, ful�lling onditions (28),(29), (30), suh that
∀j, k, α̃j − α̃k ∈ DCÑ

ω,1(κ
′, τ) (34)and suh that if not all mj vanish, then there exist j, k suh that (33) holds.Proof: We shall proeed in two steps. The �rst step onsists in removing resonaneswhih might our between two eigenvalues whose imaginary parts are nearly oppositeto eah other. One this �rst lot of resonanes is removed, the seond step onsists inremoving the resonanes whih might our between two eigenvalues whose imaginaryparts are far from opposite.

• Let 1 ≤ j ≤ n. Suppose that there is an m ∈ Zd, 0 <| m |≤ Ñ suh that
| 2Imαj − 2π〈m, ω〉 |< κ′

| m |τ (35)12



then let α′
j = αj − 2iπ〈m

2
, ω〉. Otherwise, let α′

j = αj. Note that if |αj − αk| ≤ κ′ andif there exist mj 6= mk suh that
| 2Imαj − 2π〈mj , ω〉 |<

κ′

| mj |τ
; | 2Imαk − 2π〈mk, ω〉 |<

κ′

| mk |τ (36)then
| 2iπ〈mj − mk, ω〉 | ≤

κ

| mj − mk |τ (37)whih is impossible sine ω is diophantine. Therefore onditions (27) to (31) hold with
α′

j = α̃j and mj suh that αj − α′
j = 2iπ〈mj , ω〉.

• Let I−r, . . . , Ir be the �nest partition of {1, . . . , n} suh that
| Im(α′

j − α′
k) |≤ κ′ ⇒ ∃− r ≤ r′ ≤ r | j, k ∈ Ir′ (38)and hoose the indies in suh a way that

r′ < r′′ ⇒ ∀j ∈ Ir′, ∀k ∈ Ir′′ , Imα′
j ≤ Imα′

k (39)Note that I0 might be empty. We will proeed by indution on r′ to prove the followingproperty P(r′):There are m′
1, m

′
−1, . . . , m

′
r′, m

′
−r′ ∈ Zd with sup|j|≤r′ |m′

j | ≤ Ñ suh that properties (27)to (32) hold for all −r′ ≤ r1, r2 ≤ r′, j ∈ Ir1 , k ∈ Ir2 with m′
j instead of mj and α′

j insteadof αj.
• Case r′ = 0: if I0 is empty, then P(0) trivially holds. Assume I0 is non empty. Thenfor all j, k ∈ I0 and all m ∈ 1

2
Zd suh that 0 <| m |≤ Ñ ,

| α′
j − α′

k − 2iπ〈m, ω〉 |≥| Im(α′
j − α′

k) − 2π〈m, ω〉 |≥ κ

| m |τ − nκ′ ≥ κ′ (40)so α′
j − α′

k ∈ DCÑ
ω,2(κ

′, τ) and P(0) holds true.
• Let r′ ≤ r − 1. Assume P(r′) holds. Consider Ir′+1 and I−r′−1. There are twopossible ases.� There exist −r′ ≤ r′′ ≤ r′, j ∈ Ir′′, k ∈ Ir′+1 and m ∈ Zd suh that | m |≤ Ñ and

| α′
j − α′

k − 2iπ〈mr′′ + m, ω〉 |< κ′

| m |τ (41)13



� The ase above does not hold.In the �rst ase, let m′
r′+1 = m = −m′

−r′−1. In the seond ase, let m′
r′+1 = m′

−r′−1 = 0.Now m′
r′+1 and m′

−r′−1 are independent from j, k. To see this, suppose there are j1, j2 ∈
Ir1, k1, k2 ∈ Ir2 , m1 6= m2 ∈ Zd suh that for l = 1, 2,

| α′
jl
− α′

kl
− 2iπ〈ml, ω〉 |<

κ′

| ml |τ
(42)Then

| 2π〈m1 − m2, ω〉 |≤
κ

| m1 − m2 |τ (43)whih is impossible. Therefore P(r′ + 1) holds true.
• One m′

1, . . . , m
′
r, m

′
−1, . . . , m

′
−r ∈ Zd are de�ned, onditions (27) to (32) hold with, forall j ∈ Ir′, α̃j = α′

j − 2iπ〈m′
r′ , ω〉 and mj suh that αj − α̃j = 2iπ〈mj , ω〉. Condition (33)is obvious by onstrution.

• By proeeding only with the seond step, one gets m1, . . .mn ∈ Zd, with |mj | ≤ Ñ forall j, satisfying onditions (28), (29), (30), suh that
∀j, k, α̃j − α̃k ∈ DCÑ

ω,1(κ
′, τ) (44)and suh that if not all mj vanish, then there are j, k suh that (33) holds true. �Lemma 2.2 Let {α1, . . . , αn} ⊂ C. For every R, N ∈ N, N ≥ 2, R ≥ 1, there exists

N̄ ∈ [N, R
1
2
n(n−1)N ] and m1, . . . , mn ∈ 1

2
Zd with

sup
j

|mj | ≤ 2N̄ (45)suh that letting α̃j = αj − 2iπ〈mj, ω〉 and
κ′′ =

κ

n(8R
1
2
n(n−1)+1N)τ

(46)onditions (27) to (30) of Lemma 2.1 hold for κ′ = κ′′, and suh that
∀j, k, α̃j − α̃k ∈ DCRN̄

ω,1 (κ′′, τ) (47)and
∀j, k, αj 6= ᾱk ⇒ α̃j − α̃k ∈ DCRN̄

ω,2 (κ′′, τ) (48)Moreover, there exist m1, . . .mn ∈ Zd with |mj| ≤ N̄ for all j suh that onditions (28),(29), (30) and (47) hold true. 14



Proof: If αj satisfy for all j, k

{

αj = ᾱk ⇒ αj − αk ∈ DCRN
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk ∈ DCRN
ω,2 (κ′′, τ)

(49)then we are done with N̄ = N and m1 = · · · = mn = 0.Suppose (49) does not hold. Then apply Lemma 2.1 with Ñ = RN, κ′ = κ′′ to get
m1

1, . . . , m
1
n suh that















∀j, k, αj = ᾱk ⇒ m1
j = −m1

k

∀j, k, αj = −ᾱk ⇒ m1
j = m1

k

∀j, k, |αj − αk| ≤ κ′′ ⇒ m1
j = m1

k

∀j, |Imαj − 2iπ〈m1
j , ω〉| ≤ |Imαj|

(50)and
{

αj = ᾱk ⇒ αj − αk − 2iπ〈m1
j − m1

k, ω〉 ∈ DCRN
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈m1
j − m1

k, ω〉 ∈ DCRN
ω,2 (κ′′, τ)

(51)and suh that there exist j1, k1 satisfying | Im(αj1 − αk1) − 2iπ〈m1
j1
− m1

k1
, ω〉 |< κ′′.Assume there are mr

1, . . . , m
r
n suh that sup |mr

j | ≤ (R + R2 + · · ·+ Rr)N and that for all
j, k,















∀j, k, αj = ᾱk ⇒ mr
j = −mr

k

∀j, k, αj = −ᾱk ⇒ mr
j = mr

k

∀j, k, |αj − αk| ≤ κ′′ ⇒ mr
j = mr

k

∀j, |Imαj − 2iπ〈mr
j , ω〉| ≤ |Imαj |

(52)and
{

αj = ᾱk ⇒ αj − αk − 2iπ〈mr
j − mr

k, ω〉 ∈ DCRrN
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mr
j − mr

k, ω〉 ∈ DCRrN
ω,2 (κ′′, τ)

(53)and suppose there exist distint (j1, k1), . . . , (jr, kr) suh that for all l ≤ r,
| Imαjl

− Imαkl
− 2iπ〈mr

jl
− mr

kl
, ω〉 |< κ′′ (54)If moreover one has for all j, k

{

αj = ᾱk ⇒ αj − αk − 2iπ〈mr
j − mr

k, ω〉 ∈ DCRr+1N
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mr
j − mr

k, ω〉 ∈ DCRr+1N
ω,2 (κ′′, τ)

(55)15



then the proess ends with N̄ = RrN and mj = mr
j sine it is true that

| mr
j |≤ (R + R2 + · · ·+ Rr)N ≤ RrN

1 − 1
Rr

1 − 1
R

≤ 2RrN (56)Otherwise, iterate one more Lemma 2.1 with Ñ = Rr+1N and αj − 2iπ〈mr
j , ω〉 in plaeof αj to get mr+1

1 , . . . , mr+1
n suh that sup |mr+1

j | ≤ (R + R2 + · · · + Rr+1)N and for all
j, k,















∀j, k, αj = ᾱk ⇒ mr+1
j = −mr+1

k

∀j, k, αj = −ᾱk ⇒ mr+1
j = mr+1

k

∀j, k, |αj − αk| ≤ κ′′ ⇒ mr+1
j = mr+1

k

∀j, |Imαj − 2iπ〈mr+1
j , ω〉| ≤ |Imαj|

(57)and
{

αj = ᾱk ⇒ αj − αk − 2iπ〈mr+1
j − mr+1

k , ω〉 ∈ DCRr+1N
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mr+1
j − mr+1

k , ω〉 ∈ DCRr+1N
ω,2 (κ′′, τ)

(58)and that there exist distint (j1, k1), . . . , (jr+1, kr+1) suh that for all l ≤ r + 1,
| Imαjl

− Imαkl
− 2iπ〈mr+1

jl
− mr+1

kl
, ω〉 |< κ′′ (59)Therefore, for all 1 ≤ l ≤ r + 1,

|αjl
− αkl

− 2iπ〈mr+1
jl

− mr+1
kl

, ω〉| < κ′′ (60)This implies that for all m ∈ 1
2
Zd suh that 0 < |m| ≤ RN̄ and for all l, 1 ≤ l ≤ r + 1,

|αjl
− αkl

− 2iπ〈mr+1
jl

− mr+1
kl

, ω〉 − 2iπ〈m, ω〉| ≥ κ

2τ+1(RN̄)τ
− κ′′ ≥ κ′′ (61)so for all l ≤ r + 1,

αjl
− αkl

− 2iπ〈mr+1
jl

− mr+1
kl

, ω〉 ∈ DCRN̄
ω,2 (κ′′, τ) (62)Therefore, after r̄ ≤ n(n−1)

2
steps, one gets onditions (47) and (48) with mj = mr̄

j and
α̃j = αj − 2iπ〈mj , ω〉 and |Imαj − 2iπ〈mj , ω〉| ≤ |Imαj |. It is true that | mr̄

j |≤ 2N̄ andonditions (27) to (30) of Lemma 2.1 are also satis�ed.Lemma 2.1 implies that if onditions (27) and (48) are not required, then one an get
m1, . . .mn ∈ Zd. � 16



2.2 RenormalizationNow the preeding lemmas will be used to de�ne the renormalization map Φ whih willonjugate A to a matrix with DCRN
ω (κ′′, τ) spetrum for some κ′′, with R, N arbitrarilygreat and Φ bounded independently of R.In all that follows, G will be a Lie algebra among

gl(n, C), gl(n, R), sp(n, R), sl(n, R), o(n), u(n)and G will be the Lie group assoiated to G.Proposition 2.3 Let A ∈ G, R ≥ 1 and N ∈ N. There exists N̄ ∈ [N, R
1
2
n(n−1)N ] suhthat if

κ′′ =
κ

n(8R
1
2
n(n−1)+1N)τ

(63)then there exists a map Φ whih is trivial with respet to LA,κ′′ and G-valued and suhthat1. for all r′ ≥ 0,
|Φ|r′ ≤ C0

(

1 + ||AN ||
κ′′

)n(n+1)

e4πN̄r′, |Φ−1|r′ ≤ C0

(

1 + ||AN ||
κ′′

)n(n+1)

e4πN̄r′ (64)2. Let Ã be suh that
∀θ ∈ 2T

d, ∂ωΦ(θ) = AΦ(θ) − Φ(θ)Ã (65)then
||Ã − A|| ≤ 4πN̄ (66)and Ã has DCRN̄

ω (κ′′, τ) spetrum.3. If G = gl(n, C) or u(n), Φ is de�ned on Td.Proof: Let {α1, . . . , αn} = σ(A). Two ases must be onsidered:� If G = gl(n, C) or u(n), Lemma 2.2 gives N̄ and mj ∈ Zd for j = 1, . . . , n suh that
N ≤ N̄ ≤ R

1
2
n(n−1)N ; sup

j

|mj| ≤ 2N̄ (67)and suh that onditions (28) to (30) of Lemma 2.1 hold with κ′ = κ′′, as well asonditions (47). 17



� If G = gl(n, R), sp(n, R), sl(n, R) or o(n), Lemma 2.2 gives N̄ and mj ∈ 1
2
Zd for

j = 1, . . . , n suh that
N ≤ N̄ ≤ R

1
2
n(n−1)N ; sup

j

|mj| ≤ 2N̄ (68)and suh that onditions (27) to (30) of Lemma 2.1 hold with κ′ = κ′′, as well asonditions (47) and (48).For all j there is a unique L ∈ LA,κ′′ suh that αj ∈ σ(A|L). Let mL = mj . Then mL isindependent of j thanks to property (29).For all θ ∈ 2Td, let
Φ(θ) =

∑

L∈LA,κ′′

e2iπ〈mL,θ〉P
LA,κ′′
L (69)By onstrution of the (mL), Φ is de�ned on T

d if G = gl(n, C) or u(n). Let us prove that
Φ is G-valued.� if G = gl(n, C), this is trivial;� if G = u(n), Φ has unitary values.� if G = gl(n, R), this omes from Lemma 1.2, sine LA,κ′′ is a real deomposition andaording to Lemma 2.2, for all L ∈ LA,κ′′, mL = −mL̄.� if G = o(n), the map Φ has values in real unitary matries, i.e orthogonal matries.� if G = sp(n, R), LA,κ′′ is a sympleti deomposition. Lemma 2.2 ensures that forall L ∈ LA,κ′′, mL = −mL̄ and

∀L, L′ ∈ LA,κ′′, 〈L, JL′〉 6= 0 ⇒ mL = mL′ (70)Therefore Lemma 1.3 implies that for all θ the matrix Φ(θ) is in Sp(n, R).Properties (47) and (48) ensure that Ã has DCRN̄
ω (κ′′, τ) spetrum.Moreover, for all L ∈ L̄, |mL| ≤ 2N̄ . The estimate of eah P L̄

L realled in Lemma 1.1implies that Φ satis�es the estimate
|Φ|r′ ≤ C0

(

1 + ||AN ||
κ′′

)n(n+1)

e4πN̄r′ (71)and so does Φ−1 sine 18



Φ−1 =
∑

L∈LA,κ′′

e−2iπ〈mL,.〉P
LA,κ′′
L (72)By de�nition of Ã,

∀L ∈ L′, σ(Ã|L) = σ(A|L) − 2iπ〈mL, ω〉 (73)and by property (30),
∀α ∈ σ(A|L), |α − 2iπ〈mL, ω〉| ≤ |α| (74)Let P be suh that PAP−1 is in Jordan normal form, let αj be the eigenvalues of A and

pj the olumns of P , then for all j,
||(Ã − A)pj|| = ||2iπ〈mj, ω〉pj|| ≤ 4πN̄ ||pj|| (75)So ||Ã − A|| ≤ 4πN̄ , whene property (66). �De�nition: A map Φ satisfying the onlusion of Proposition 2.3 will be alled a renor-malization of A of order R, N̄ .In dimension 2, the renormalization map Φ satis�es the following property: for every fun-tion H ontinuous on Td and with values in gl(2, C), ΦHΦ−1 and Φ−1HΦ are ontinuouson T

d.Dimension 2 has, indeed, the partiularity that every deomposition L of R2 at most twosubpaes L1, L2, in whih ase mL1 + mL2 ∈ Zd (if the deomposition is trivial, mL = 0).In any ase, ∑L∈L mL ∈ Zd.3 Homologial equationSolving the homologial equation is a �rst step towards reduing the perturbation.Notation: For every funtion F ∈ L2(2Td) and every N ∈ N, we will denote by F N andall trunation of F at order N the funtion that one obtains by trunating the Fourierseries of F :
F N(θ) =

∑

|m|≤N

F̂ (m)e2iπ〈m,θ〉The following lemma will be useful in the solving of the homologial equation.19



Lemma 3.1 Let f, g be trigonometri polynomial with g real on Rd. Let r > 0, r′ ∈]0, r[and suppose that there exists C suh that |f |r′ ≤ C|g|r. Then for all m ∈ 1
2
Zd,

|fe2iπ〈m,.〉|r′ ≤ C|ge2iπ〈m,.〉|r (76)Proof: Sine g is real,
∀m ∈ Z

d, ĝ(−m) = ĝ(m) (77)so for all x and all y ∈ [−r, r]d,
g(x−iy) =

∑

m

ĝ(m)e2iπ〈m,x−iy〉 =
∑

m

ĝ(−m)e2iπ〈−m,−x+iy〉 =
∑

m

ĝ(−m)e2iπ〈−m,x+iy〉 = g(x + iy)(78)whih implies that for all x, y,
| g(x − iy) |=| g(x + iy) | (79)Let us show that for every m ∈ Zd,
|g|re2π|m|r = |ge2iπ〈m,.〉|r (80)By the maximum priniple,
|g|r = sup

x;|yj|≤r,1≤j≤d

|g(x + iy)| = sup
x;|yj|=r,1≤j≤d

|g(x + iy)| (81)Let y0 suh that
| g |r= sup

x

| g(x + iy0) | (82)then, for m having only one non-zero omponent mj , either
|g|re2π|m|r = sup

x

| g(x + iy0) | | e2iπ〈m,x+iy0〉 |= |ge2iπ〈m,.〉|r (83)if mj et (y0)j have opposite signs, or
|g|re2π|m|r = sup

x

| g(x − iy0) | | e2iπ〈m,x−iy0〉 = |ge2iπ〈m,.〉|r (84)20



if mj et (y0)j have the same sign, whene (80) if m has only one non-zero omponent.Assume that
| g |r e2π|m|r =| ge2iπ〈(m1,...,mj−1,0,...,0),.〉 |r e2π(|mj |+···+|md|)r (85)and that | ge2iπ〈(m1,...,mj−1,0,...,0),.〉 |r is reahed at ȳ. Let δj ∈ {−1, 1} be suh that mj and

δj ȳj have opposite signs. Then
| g |r e2π|m|r =| ge2iπ〈(m1,...,mj−1,0,...,0),.〉 |r e2π(|mj |+···+|md|)r

= sup
x,yk,k 6=j

| g(x + i(y1, . . . , ȳj, . . . , yd))e
2iπ〈(m1,...,mj−1,0,...,0),x+i(y1,...,ȳj ,...,yd)〉 | e2π(|mj |+···+|md|)r

= sup
x,yk,k 6=j

| g(x + i(y1, . . . , δj ȳj, . . . , yd))e
2iπ〈(m1,...,mj−1,0,...,0),x+i(y1,...,δj ȳj ,...,yd)〉e2iπmj (xj+iδj ȳj) |

.e2π(|mj+1|+···+|md|)r

= sup
x,yk,k 6=j

| g(x + i(y1, . . . , δj ȳj, . . . , yd))e
2iπ〈(m1,...,mj ,0,...,0),x+i(y1,...,δj ȳj ,...,yd)〉 | e2π(|mj+1|+···+|md|)r

=| ge2iπ〈(m1,...,mj ,0,...,0),.〉 |r e2π(|mj+1|+···+|md|)r (86)and (80) is obtained through a simple iteration. Thus
|fe2iπ〈m,.〉|r′ ≤ |f |r′e2π|m|r′ ≤ C|g|re2π|m|r = C|ge2iπ〈m,.〉|r � (87)Remark: If f, g are matrix-valued trigonometri polynomials, f = (fj,k), g = (gj,k), and

g has real oe�ients on R
d, a similar statement holds. For if

|f |r′ = sup
x,|yj |≤r′

|| f(x + iy) ||≤ C|g|r = C sup
x,|yj|≤r

|| g(x + iy) || (88)as the norm of the greatest oe�ient is equivalent to the operator norm, one has
sup
j,k

|fj,k|r′ ≤ CC ′ sup
j,k

|gj,k|r (89)for some C ′ only depending on the dimension of the matries. So from Lemma 3.1, sinethere exists j0, k0 suh that
∀j, k, | fj,k |r′≤ CC ′ | gj0,k0 |r (90)then
sup
j,k

|fj,ke
2iπ〈m,.〉|r′ ≤ CC ′ sup

j,k

|gj,ke
2iπ〈m,.〉|r (91)21



and as the norms are equivalent, the statement also holds in operator norm:
|fe2iπ〈m,.〉|r′ ≤ CC ′′|ge2iπ〈m,.〉|r (92)for some C ′′ depending only on the dimension of the matries.Proposition 3.2 Let� N ∈ N,� κ′ ∈]0, κ],� γ ≥ n(n + 1),� 0 < r′ < r.Let Ã ∈ G have DCN

ω (κ′, τ) spetrum. Let F̃ ∈ Cω
r (2Td,G) with nie periodiity propertieswith respet to an (Ã, κ′, γ)-deomposition L. Then equation

∀θ ∈ 2T
d, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃ N(θ) − ˆ̃F (0); ˆ̃X(0) = 0 (93)has a solution X̃ ∈ Cω

r′(2Td,G) suh that� if F̃ has nie periodiity properties with respet to L et (mL), then X̃ has nieperiodiity properties with respet to L and (mL); in partiular, if F̃ is de�ned on
Td, then so is X̃,� if Φ is trivial with respet to L, then there exist C ′, D depending only on n, d, τ suhthat

|Φ−1X̃Φ|r′ ≤ C ′
(

1 + ||ÃN ||
(r − r′)κ′

)2n2γ+D

|Φ−1F̃Φ|r (94)Moreover, the trunation of X̃ at order N is unique.Proof: • Let C ∈ GL(n, C) be suh that C−1ÃC is in Jordan normal form. Solvingequation (93) is equivalent to solving
∀θ ∈ 2T

d, ∂ωC−1X̃(θ)C = [C−1ÃC, C−1X̃(θ)C]+C−1(F̃ N(θ)− ˆ̃F (0))C; ˆ̃X(0) = 0 (95)Equation (95) an be deomposed along oe�ients xj,k(θ) of C−1X̃(θ)C: for all j, k, andall θ ∈ 2Td,
∂ωxj,k(θ) = (α̃j − α̃k)xj,k(θ)+ δ1xj,k+1(θ)+ δ2xj−1,k(θ)+(C−1(F̃ N(θ)− ˆ̃F (0))C)j,k (96)22



where δ1 and δ2 are 0 or 1 (with δ2 = 0 if j = 1 and δ1 = 0 if k = n). Developing intoFourier series, one gets for all m ∈ 1
ν
Zd, with ν = 1 or 2 aording to the periodiity of

(C−1(F̃ N − ˆ̃F (0))C)j,k,
i〈m, ω〉x̂j,k(m) = (α̃j − α̃k)x̂j,k(m) + δ1x̂j,k+1(m) + δ2x̂j−1,k(m) + f̂(m) (97)where f̂(m) stands for the m-th Fourier oe�ient of the funtion (C−1(F̃ N − ˆ̃F (0))C)j,k.The diophantine onditions given by Proposition 2.3 allow the existene of a solution tothe set of equations (96), therefore (95) has a solution X̃2.

• Now we shall see that X̃N is unique. Suppose that X̃ and Ỹ are both solutions of (93).Then
∂ω(X̃ − Ỹ ) = [Ã, X̃ − Ỹ ]; ˆ̃X(0) − ˆ̃Y (0) = 0 (98)The diophantine onditions on Ã imply that the trunation at order N of any solution of(98) is onstant, and ondition ˆ̃X(0) − ˆ̃Y (0) = 0 implies that it vanishes, so X̃N = Ỹ N .

• To hek that X̃ is G-valued, it is enough to show it for X̃N , sine one an assume that
X̃ = X̃N .� if G = gl(n, C), this is trivial.� if G = gl(n, R), this omes from the uniity of the solution up to order N , sine X̃and its omplex onjugate are solutions of the same equation.� if G = sp(n, C), �rst note that

∀θ ∈ 2T
d, ∂ωX̃(θ)∗J = [X̃(θ)∗, Ã∗]J + F̃ N(θ)∗J − ˆ̃F (0)∗J

= −X̃(θ)∗JÃ − Ã∗X̃(θ)∗J − JF̃ N (θ) + J ˆ̃F (0)
(99)and

∀θ ∈ 2T
d, ∂ω(JX̃(θ)) = J [Ã, X̃(θ)] + JF̃ N (θ) − J ˆ̃F (0)

= −Ã∗JX̃(θ) − JX̃(θ)Ã + JF̃ N(θ) − J ˆ̃F (0)
(100)so2To solve the set of equations (96), proeed as follows: �rst solve (96) for j = 1, k = n; the solution of(96) for (1, k) gives the solution of (96) for (1, k − 1); the solution of (96) for (j, n) gives the solution of(96) for (j + 1, n); the solutions of (96) for (j − 1, k) and (j, k + 1) give the solution of (96) for any (j, k).23



∀θ ∈ 2T
d, ∂ωJ(X̃(θ)∗J + JX̃(θ)) = −J(X̃(θ)∗J + JX̃(θ))Ã − JÃ∗(X̃(θ)∗J + JX̃(θ))

= [Ã, J(X̃(θ)∗J + JX̃(θ))] (101)Diophantine onditions on Ã imply that X̃∗J +JX̃ is onstant. Condition ˆ̃X(0) = 0implies that for every θ ∈ 2Td, X̃(θ)∗J+JX̃(θ) = 0, so X̃ takes its values in sp(n, C).� if G = u(n), proeed as in the sp(n, C) ase, showing this time that X̃∗ + X̃ isonstant and thus is zero.� if G = sp(n, R) or o(n), use the previous ases and the fat that sp(n, R) = sp(n, C)∩
gl(n, R) and o(n) = u(n) ∩ gl(n, R).� if G = sl(n, R), note that the trae of X̃ is solution of

∀θ ∈ 2T
d, ∂ω(TrX̃(θ)) = Tr[Ã, X̃(θ)] = Tr(ÃX̃(θ)) − Tr(X̃(θ)Ã) = 0 (102)so it is a onstant, and as Tr ˆ̃X(0) = 0, it is idential to zero.

• As for periodiity properties, equation (93) deomposes into bloks:
∀L, L′ ∈ L,

∂ω(PL
L X̃PL

L′) = PL
L ÃPL

L X̃PL
L′ − PL

L X̃PL
L′ÃPL

L′ + PL
L (F̃ N − ˆ̃F (0))PL

L′

(103)whih again deomposes into Fourier oe�ients: for 0 < |m| ≤ N ,
2iπ〈m, ω〉(PL

L
ˆ̃X(m)PL

L′) = PL
L ÃPL

L
ˆ̃X(m)PL

L′ −PL
L

ˆ̃X(m)PL
L′ÃPL

L′ + PL
L

ˆ̃F (m)PL
L′ (104)Let (mL) be a family suh that F̃ has nie periodiity properties with respet to L and

(mL). If m is not in Zd + mL − mL′ , then PL
L

ˆ̃F (m)PL
L′ = 0 and sine X̃N is unique,

PL
L

ˆ̃X(m)PL
L′ = 0. For |m| > N one an assume ˆ̃X(m) = 0. Therefore X̃ also has nieperiodiity properties with respet to L et (mL).

• Finally let us prove the estimate (94). Let m ∈ 1
2
Zd, |m| ≤ N . First we shall prove thatfor all L, L′ ∈ L,

||PL
L

ˆ̃X(m)PL
L′|| ≤ C ′ (1 + ||ÃN ||)n2−1|m|(n2−1)τ

κ′(n2−1)
||PL

L
ˆ̃F (m)PL

L′||(||PL
L || ||PL

L′||)n2−1 (105)24



where C ′ only depends on n. The proof will be inspired by [3℄, Lemma 2. Let AL,L′ bethe linear operator from gl(n, C) into itself suh that for all M ∈ gl(n, C),
AL,L′M = ÃPL

L M − MPL
L′Ã (106)Deomposing (93) into bloks, then into Fourier series, one obtains for all L, L′ ∈ L andall m ∈ 1

2
Zd suh that 0 <| m |≤ N ,

(PL
L

ˆ̃X(m)PL
L′) = (2iπ〈m, ω〉 − AL,L′)−1PL

L
ˆ̃F (m)PL

L′ (107)Write AL,L′ as an n2-dimensional matrix. Let AD ∈ gl(n2, C) be a diagonal matrix and
AN ∈ gl(n2, C) a nilpotent matrix suh that

(2iπ〈m, ω〉 − AL,L′) = AD − AN (108)Then AN oinides with the operator
AN : B 7→ (ÃPL

L )NB − B(PL
L′Ã)N (109)Moreover,

(2iπ〈m, ω〉 − AL,L′)−1 = A−1
D (I + ANA−1

D + · · ·+ (ANA−1
D )n2−1) (110)We will estimate (2iπ〈m, ω〉 − AL,L′)−1, for m ∈ Zd if L = L̄′ and m ∈ 1

2
Zd if L 6= L̄′.Eah oe�ient of A−1

D (ANA−1
D )j−1 has the form p

q
with | p |≤|| AN ||j−1 and q = β1 . . . βjwhere βi are eigenvalues of 2iπ〈m, ω〉 − AL,L′. Now

σ(AL,L′) = {α − α′ | α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′)} (111)and for all α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′),
| α − α′ − 2iπ〈m, ω〉 |≥ κ′

| m |τ (112)for all m ∈ Zd if L = L̄′ and all m ∈ 1
2
Zd if L 6= L̄′ Thus

|| (2iπ〈m, ω〉 − AL,L′)−1 || ≤ n22n2

(1+ || ÃN || (|| PL
L || + || PL

L′ ||))n2−1

( | m |τ
κ′

)n2−1(113)and (107) implies (105). 25



• The estimate (105) implies that
|PL

L X̃PL
L′|r′ ≤ C ′ (1 + ||ÃN ||)n2−1

κ′(n2−1)

∑

m

|m|(n2−1)τ |PL
L F̃PL

L′ |re−2π|m|re2π|m|r′(||PL
L || ||PL

L′||)n2−1(114)where C ′ only depends on n. Now
∑

m

|m|(n2−1)τe−2π|m|(r−r′) ≤ Cd

∑

M≥1

M (n2−1)τ+de−2πM(r−r′)

≤ Cd

∫ ∞

0

t(n
2−1)τ+de−2πt(r−r′)dt ≤ Cd

(2π(r − r′))(n2−1)τ+d+1

(115)where Cd only depends on d, so
|PL

L X̃PL
L′ |r′ ≤

C ′′

(r − r′)(n2−1)τ+d+1

(1 + ||ÃN ||)n2−1

κ′(n2−1)
|PL

L F̃PL
L′ |r(||PL

L || ||PL
L′||)n2−1 (116)where C ′′ only depends on n, d, τ .Let (m′

L)L∈L a family of elements of 1
2
Zd and Φ de�ned by

Φ =
∑

L∈L
PL

L e2iπ〈m′
L,.〉 (117)then

|Φ−1X̃Φ|r′ = |
∑

L,L′∈L
PL

L X̃e2iπ〈m′
L−m′

L′ ,.〉PL
L′|r′ (118)thus Lemma 3.1 applied to (116) gives

|Φ−1X̃Φ|r′ ≤
C3

(r − r′)(n2−1)τ+d+1

(1 + ||ÃN ||)n2−1

κ′(n2−1)

∑

L,L′∈L
||PL

L ||n
2 |F̃ e2iπ〈m′

L−m′
L′ ,.〉|r||PL

L′||n2(119)where C3 only depends on n, d, τ ; now, sine for every L ∈ L

|| PL
L ||≤ C0

(

1+ || ÃN ||
κ′

)γ (120)then 26



|Φ−1X̃Φ|r′ ≤
C4

(r − r′)(n2−1)τ+d+1

(

1 + ||ÃN ||
κ′

)n2(2γ+1)
∑

L,L′

|PL
L Φ−1F̃ΦPL

L′ |r (121)where C4 only depends on n, d, τ , whene (94). �Remark: The loss of analytiity r − r′ is needed in order to have good estimates ofthe solution.4 Indutive lemma without renormalization4.1 Auxiliary lemmasThe �rst lemma will be used to iterate the indutive lemma without having to performrenormalization at eah step, whih will greatly improve the �nal estimates.Lemma 4.1 Let� κ′ ∈]0, 1[, C > 0,� F̃ ∈ G,� ǫ̃ = ||F̃ ||,� Ñ ∈ N,� Ã ∈ G with DCÑ
ω (κ′, τ) spetrum.There exists a onstant c only depending on nτ suh that if ǫ̃ satis�es

ǫ̃ ≤ c

(

Cτκ′

1 + ||Ã||

)2n (122)and
Ñ ≤ | log ǫ̃|

C
(123)then Ã + F̃ has DCÑ

ω (3κ′

4
, τ) spetrum.Proof: If α̃ ∈ σ(Ã + F̃ ), by Lemma 6.1 given as an appendix, there exists α ∈ σ(Ã)suh that |α − α̃| ≤ 2n(||Ã|| + 1)ǫ̃

1
n .By assumption Ã has DCÑ

ω (κ′, τ) spetrum. Thus for all α, β ∈ σ(Ã + F̃ ) and all m ∈
Zd, 0 < |m| ≤ Ñ , 27



|α − β − 2iπ〈m, ω〉| ≥ κ′

|m|τ − 4n(||Ã|| + 1)ǫ̃
1
n (124)and if α 6= β̄, (124) holds for every m ∈ 1

2
Zd, 0 < |m| ≤ Ñ . Therefore it is enough toshow that

4nÑ τ (||Ã|| + 1)ǫ̃
1
n ≤ κ′

4
(125)Now there is a onstant c ≤ 1 whih only depends on nτ suh that if ǫ̃ ≤ c, then

ǫ̃ (| log ǫ̃|)nτ ≤ ǫ̃
1
2 (126)so if

ǫ̃ ≤ c

(

Cτκ′

16n(||Ã|| + 1)

)2n (127)by asumption (123), then
4n(||Ã|| + 1)ǫ̃

1
n Ñ τ ≤ 4n(||Ã|| + 1)ǫ̃

1
2n C−τ ≤ κ′

4
(128)whih proves the Lemma. �The following lemma will be used to avoid doubling the period more than one.Lemma 4.2 Let A, A′ ∈ gl(n, R) and H : 2Td → gl(n, R). Assume that H has nieperiodiity properties with respet to an A-deomposition L and assume

∀L, L′ ∈ L, PL
L (A′ − A)PL

L′ 6= 0 ⇒ PL
L HPL

L′ ∈ C0(Td, gl(n, R)) (129)Then H has nie periodiity properties with respet to an A′-deomposition whih is less�ne than L.Proof: De�ne a deomposition L′ of Cn as follows: for all L, L′ ∈ L,
(∃L0 ∈ L′ | L ⊂ L0, L

′ ⊂ L0) ⇔ PL
L HPL

L′ ∈ C0(Td, gl(n, R)) (130)Let (mL) be a family suh that H has nie periodiity properties with respet to Land (mL). For all L′ ∈ L′, let L be a subspae of L ontained in L′ and let m̄L′ = mL;the lass of m̄L′ in the equivalene relation 28



m ∼ m′ ⇔ m − m′ ∈ Z
d (131)does not depend on a partiular hoie of L. Then for all L′ ∈ L′,

e2iπ〈m̄L′ ,.〉PL′
L′ =

∑

L∈L,L⊂L′

e2iπ〈m̄L′ ,.〉PL
L (132)so for all L1, L2 ∈ L′,

PL′
L1

HPL′
L2

e2iπ〈m̄L1
−m̄L2

,.〉 =
∑

L′
1⊂L1,L′

2⊂L2

PL
L′

1
HPL

L′
2
e
2iπ〈mL′

1
−mL′

2
,.〉

e
2iπ〈m̄L1

−mL′
1
−(m̄L2

−mL′
2
),.〉(133)whih is ontinuous on Td. Moreover, let L0 ∈ L′, then

PL′
L0

HPL′

L̄0
=

∑

L,L′∈L,L⊂L0,L′⊂L̄0

PL
L HPL

L′ (134)whih is ontinuous on Td. Thus H has nie periodiity properties with respet to L′.By de�nition, L′ is A-invariant. Moreover, assumption (129) implies
A′ − A =

∑

L′∈L′

PL′
L′ (A′ − A)PL′

L′so it also implies that L′ is A′ − A-invariant. Thus, L′ is A′-invariant and so it is an
A′-deomposition. �Here is a standard lemma on the estimate of the rest of the Fourier series for an analytifuntion.Lemma 4.3 Let H ∈ Cω

r (2Td, gl(n, C)). Soit N ∈ N and HN the trunation of H atorder N . Then for all r′ < r,
|H − HN |r′ ≤

CNd

(r − r′)d+1
|H|re−2πN(r−r′) (135)where C only depends on d.Proof: It is a simple omputation. Sine

H − HN =
∑

|m|>N

Ĥ(m)e2iπ〈m,.〉 (136)29



then
|H − HN |r′ ≤

∑

|m|>N

||Ĥ(m)||e2π|m|r′ ≤ |H|r
∑

|m|>N

e−2π|m|(r−r′)

≤ C|H|r
∑

M>N

Mde−2πM(r−r′) ≤ C|H|r
Nd

(r − r′)d+1
e−2πN(r−r′)

�

(137)4.2 Indutive lemmaProposition 4.4 Let� ǫ̃ > 0, r̃ ≤ 1, r̃′ ∈ [ r̃
2
, r̃[, κ′ > 0, Ñ ∈ N, γ ≥ n(n + 1), C > 0;� F̃ ∈ Cω

r̃ (2T
d,G), Ã ∈ G,� L an (Ã, κ′, γ)-deomposition.There exists a onstant C ′′ > 0 depending only on τ, n suh that if1. Ã has DCÑ

ω (κ′, τ) spetrum;2.
|| ˆ̃F (0)|| ≤ ǫ̃ ≤ C ′′

(

Cτκ′

1 + ||Ã||

)2n (138)and
Ñ ≤ | log ǫ̃|

C
(139)3. F̃ has nie periodiity properties with respet to Lthen there exist� C ′ ∈ R depending only on n, d, κ, τ ,� D ∈ N depending only on n, d, τ ,� X ∈ Cω

r̃′(2Td,G),� A′ ∈ G� an (A′, 3κ′

4
, γ)-deomposition L′satisfying the following properties:1. A′ has DCÑ
ω (3κ′

4
, τ) spetrum, 30



2. ||A′ − Ã|| ≤ ǫ̃;3. the map F ′ ∈ Cω
r̃′(2Td,G) de�ned by

∀θ ∈ 2T
d, ∂ωeX(θ) = (Ã + F̃ (θ))eX(θ) − eX(θ)(A′ + F ′(θ)) (140)has nie periodiity properties with respet to L′4. If Φ is trivial with respet to L,then

|Φ−1XΦ|r̃′ ≤ C ′
(

1 + ||ÃN ||
κ′(r̃ − r̃′)

)Dγ

|Φ−1F̃Φ|r̃ (141)5. and if Φ is trivial with respet to L,
|Φ−1F ′Φ|r̃′ ≤ C ′

(

1 + ||ÃN ||
κ′(r̃ − r̃′)

)Dγ

e|Φ
−1XΦ|r̃′ |Φ−1F̃Φ|r̃

(|Φ|2r̃|Φ−1|2r̃Ñde−2πÑ(r̃−r̃′) + |Φ−1F̃Φ|r̃′(1 + e|Φ
−1XΦ|r̃′ ))

(142)Moreover, if F̃ is ontinuous on T
d, then so are X and F ′.Proof: By assumption, F̃ has nie periodiity properties with respet to L and somefamily (mL) and Ã has DCÑ

ω (κ′, τ) spetrum, so one an apply Proposition 3.2. Let
X ∈ Cω

r′(2Td,G) be a solution of
∀θ ∈ 2T

d, ∂ωX(θ) = [Ã, X(θ)] + F̃ Ñ(θ) − ˆ̃F (0) (143)satisfying the onlusion of Proposition 3.2.Let A′ := Ã + ˆ̃F (0). Then A′ ∈ G and ||Ã − A′|| = || ˆ̃F (0)||, whene property 2.Moreover, let c be the onstant given by Lemma 4.1, and assume C ′′ ≤ c. Assumptions(138) and (139) make it possible to apply Lemma 4.1 and infer that A′ has DCÑ
ω (3κ′

4
, τ)spetrum, whene property 1.Let F ′ ∈ Cω

r′(2Td,G) the map de�ned in (140). Then
F ′ = e−X(F̃ − F̃ Ñ) + e−XF̃ (eX − Id) + (e−X − Id) ˆ̃F (0) − e−X

∑

k≥2

1

k!

k−1
∑

l=0

X l(F̃ Ñ − ˆ̃F (0))Xk−1−l(144)31



We shall appply Lemma 4.2 with A = Ã and G = F ′, in order to get property 3. Themap F ′ has nie periodiity properties with respet to L and some family (mL) sine Xand F̃ have them. Moreover, as F̃ has nie periodiity properties with respet to L,
PL

L
ˆ̃F (0)PL

L′ 6= 0 ⇒ PL
L F̃PL

L′ ∈ C0(Td) (145)and sine
PL

L F̃PL
L′ ∈ C0(Td) ⇒ mL − mL′ ∈ Z

d ⇒ PL
L F ′PL

L′ ∈ C0(Td) (146)then assumption (129) of Lemma 4.2 is ful�lled. By Lemma 4.2, F ′ has therefore nieperiodiity properties with respet to an A′-deomposition L′ whih is less �ne than L,so L′ is an (Ã, κ′, γ)-deomposition. As it is an (Ã, κ′, γ)-deomposition, eah subspae
L ∈ L′ satis�es

|| PL′
L ||≤ C0

(

1+ || ÃN ||
κ′

)γ (147)thus
|| PL′

L ||≤ C0

(

1+ || A′
N || +2ǫ̃

κ′

)γ

≤ C0

(

1+ || A′
N ||

3κ′
4

)γ (148)and so L′ is an (A′, 3κ′

4
, γ)-deomposition, whene property 3.Property 4 is given by Proposition 3.2.

• By Lemma 4.3,
|F̃ − F̃ Ñ |r̃′ ≤ C1Ñ

d|F̃ |r̃
e−2πÑ(r̃−r̃′)

(r̃ − r̃′)d+1
(149)where C1 only depends on d. By (144), (94) and Lemma 4.3, it is true that

|Φ−1F ′Φ|r̃′ ≤ C ′

(

1 + ||ÃN ||
κ′(r̃ − r̃′)

)Dγ

e|Φ
−1XΦ|r̃′ |Φ−1F̃Φ|r̃(|Φ|2r̃|Φ−1|2r̃Ñde−2πÑ(r̃−r̃′)

+ |Φ−1F̃Φ|r̃′(1 + e|Φ
−1XΦ|r̃′ ))

(150)where C ′ only depends on n, d, κ, τ and D only depends on n, d, τ , whene property 5. �32



5 Indutive lemma with renormalization5.1 Statement of the indutive lemmaProposition 5.1 Let� A ∈ G,� r ≤ 1
2
, r′ ∈ [95

96
r, r[, γ ≥ n(n + 1),� Ā, F̄ ∈ Cω

r (2Td,G), Ψ ∈ Cω
r (2Td, G),� |F̄ |r = ǫ,�

R =
1

(r − r′)8
804(

1

2
n(n − 1) + 1)2 (151)�

N =
1

2πr
| log ǫ| (152)Let κ′′ = κ

n(8R
1
2 n(n−1)+1N)τ

.There exists C̃ ′ > 0 only depending on n, d, κ, τ and D1 ∈ N only depending on n, d, τsuh that if1.
ǫ ≤ C̃ ′

(

κ′′(r − r′)

||A|| + 1

)D1γ (153)2. Ā is reduible to A by Ψ,3. Ψ−1F̄Ψ has nie periodiity properties with respet to an (A, κ′′, γ)-deomposition
L,4. |Ψ|r ≤ (1

ǫ
)r−r′ and |Ψ−1|r ≤ (1

ǫ
)r−r′,then there exists� N̄ ∈ [N, R

1
2
n(n−1)N ],� Z ′ ∈ Cω

r′(2T
d, G),� Ā′, F̄ ′ ∈ Cω

r′(2Td,G),� Ψ′ ∈ Cω
r (2Td, G),� A′ ∈ G 33



satisfying the following properties:1. Ā′ is reduible by Ψ′ to A′,2. the funtion (Ψ′)−1F̄ ′Ψ′ has nie periodiity properties with respet to an (A′, 3κ′′

4C0
, 2γ)-deomposition L′3. |Ψ′|r ≤ (1

ǫ
)(r−r′)+ 1

96 e4πrN̄ and |(Ψ′)−1|r ≤ (1
ǫ
)(r−r′)+ 1

96 e4πrN̄ ,4. A′ has DCRN̄
ω (3

4
κ′′, τ) spetrum,5.

∂ωZ ′ = (Ā + F̄ )Z ′ − Z ′(Ā′ + F̄ ′) (154)6. ||A′|| ≤ ||A|| + ǫ
23
24 + 4πN̄ ;7.

|Z ′ − Id|r′ ≤
1

C̃ ′

(

(1 + ||A||)| log ǫ|
r − r′

)D1γ

ǫ1−4(r−r′) (155)and so does (Z ′)−1 − Id,8. |Ψ−1F̄ ′Ψ|r′ ≤ ǫ
3
2 ,9. the funtion Ψ′−1Ψ is trivial with respet to LA,κ′′,10. for all s′ ≥ 0,

| Ψ′−1Ψ |s′≤ C

(

1 + ||A||
κ′′

)n(n+1)

e4πN̄s′; | Ψ−1Ψ′ |s′≤ C

(

1 + ||A||
κ′′

)n(n+1)

e4πN̄s′(156)where C only depends on n.Moreover, in dimension 2, if Ā, F̄ are ontinuous on Td, if assumption 3 is replaed by3' for all funtion H ontinuous on Td, ΨHΨ−1 is ontinuous on Tdthen Z ′, Ā′, F̄ ′ are ontinuous on Td and property 2 is replaed by2' for every funtion H ontinuous on Td, Ψ′H(Ψ′)−1 is ontinuous on Td.Finally, if G = gl(n, C) or u(n) and if Ā, F̄ , Ψ are ontinuous on Td, then Z ′, Ā′, F̄ ′, Ψ′are ontinuous on Td. 34



5.2 Algebrai aspets of the proof5.2.1 General aseLet N̄ be given by Proposition 2.3 and Φ a renormalization of A of order R, N̄ . Let Ã ∈ Gbe suh that
∀θ ∈ 2T

d, ∂ωΦ(θ) = AΦ(θ) − Φ(θ)Ã (157)The matrix Ã thus has DCRN̄
ω (κ′′, τ) spetrum. Let Ψ′ = ΨΦ and F̃ := (Ψ′)−1F̄Ψ′.By assumption, Ψ−1F̄Ψ has nie periodiity properties with respet to an (A, κ′′, γ)-deomposition L and some family (mL). Moreover Φ is trivial with respet to LA,κ′′.Sine L and LA,κ′′ are A-deompositions, one an de�ne an A-deomposition L̄ in thefollowing way:

L ∈ L̄ ⇔ ∃L1 ∈ L, L2 ∈ LA,κ′′ | L = L1 ∩ L2 (158)
L̄ is an (A, κ′′

C0
, 2γ)-deomposition sine L and LA,κ′′ are (A, κ′′, γ)-deompositions and so

|| P L̄
L ||=|| PL

L1
P

LA,κ′′
L2

||≤ C2
0

(

1+ || AN ||
κ′′

)2γ (159)Moreover F̃ has nie periodiity properties with respet to L̄. Sine L̄ is an (A, κ′′

C0
, 2γ)-deomposition, it is also an (Ã, κ′′

C0
, 2γ)-deomposition (beause the nilpotent parts of Aand Ã oinide).Moreover,

|| ˆ̃F (0)|| ≤ |F̃ |0 ≤ |Φ|0|Φ−1|0|Ψ|0|Ψ−1|0|F̄ |0 (160)Now by (64), for all s′ ≥ 0,
| Φ |s′≤ C0

(

1 + ||AN ||
κ′′

)n(n+1)

e4πN̄s′ (161)and so does Φ−1 (whene property 10). Thus
|| ˆ̃F (0)|| ≤ ǫ1−2(r−r′)C2

0

(

1 + ||AN ||
κ′′

)2n(n+1) (162)whene, if C̃ ′ ≤ C96
0 et D1γ ≥ 96n(n + 1),

|| ˆ̃F (0)|| ≤ ǫ1−2(r−r′)− 1
48 (163)35



Apply Proposition 4.4 with
ǫ̃ = ǫ1−2(r−r′)− 1

48 , r̃ = r, r̃′ = r′, κ′ =
κ′′

C0
, Ñ = RN̄, C =

2πr

R
1
2
n(n−1)+1

, L = L̄ (164)Let C ′′ be given by Proposition 4.4 (depending only on n and τ). Assumption (153),whih implies (138) with
C̃ ′ ≤ C ′′4

(

C

(r − r′)4n(n−1)+9

)8nτ

, D1γ ≥ 64n(n(n − 1) + 2)τ (165)(note that C

(r−r′)4n(n−1)+9 has a lower bound whih is independent of r− r′), the expression(152) whih implies (139), the nie periodiity properties of F̃ and the fat that Ã has
DCRN̄

ω (κ′′, τ) spetrum, make it possible to apply Proposition 4.4 to obtain funtions
X ∈ Cω

r′(2Td,G), F ′ ∈ Cω
r′(2Td, G), and a matrix A′ ∈ G suh that� A′ has DCRN̄

ω (3
4

(

κ′′

C0

)

, τ) spetrum (whene property 4),� ||A′ − Ã|| ≤ ǫ
23
24 , whih implies

|| A′ − A ||≤ ||A′ − Ã|| + ||A − Ã|| ≤ ǫ
23
24 + 4πN̄ (166)whene property 6,� ∂ωeX = (Ã + F̃ )eX − eX(A′ + F ′),� F ′ has nie periodiity properties with respet to an (A′, 3κ′′

4C0
, 2γ)-deomposition L′� and sine Φ is trivial with respet to L̄, for some C ′ depending only on n, d, κ, τ andsome D depending only on n, d, τ ,

|ΦXΦ−1|r′ ≤ C ′
(

C0(1 + ||AN ||)
κ′′(r − r′)

)Dγ

|ΦF̃Φ−1|r (141)and
|ΦF ′Φ−1|r′ ≤ C ′

(

C0(1 + ||AN ||)
κ′′(r − r′)

)Dγ

e|ΦXΦ−1|r′ |ΦF̃Φ−1|r(|Φ|2r|Φ−1|2r(RN̄)de−2πRN̄(r−r′)

+ |ΦF̃Φ−1|r′(1 + e|ΦXΦ−1|r′)) (167)36



Let F̄ ′ = ΨΦF ′(ΨΦ)−1 (whih satis�es property 2) and let Ā′ ∈ Cω
r (2Td,G) suh that

∂ωΨΦ = Ā′ΨΦ − ΨΦA′ (168)whih is exatly property 1. The funtion Z ′ := ΨΦeX(ΨΦ)−1 is solution of
∂ωZ ′ = (Ā + F̄ )Z ′ − Z ′(Ā′ + F̄ ′) (169)whene property 5.5.2.2 Case of dimension 2In dimension 2, sine by assumption Ψ−1F̄Ψ is ontinuous on T

d, and by the remark madein setion 2.2, then F̃ ,X et F ′ are ontinuous on Td.Thus the funtions ΦF ′Φ−1, Φ ˆ̃F (0)Φ−1 and ΦXΦ−1 are ontinuous on Td, and by assump-tion on Ψ, then ΨΦF ′(ΨΦ)−1, ΨΦ ˆ̃F (0)(ΨΦ)−1 and ΨΦX(ΨΦ)−1 are thus ontinuous on
Td and �nally Ā′ = Ā + ΨΦ ˆ̃F (0)(ΨΦ)−1 is ontinuous on Td.It only remains to show that for every funtionH ontinuous on Td, the funtion (ΨΦ)−1HΨΦis ontinuous on T

d. Now
(ΨΦ)−1HΨΦ = Φ−1Ψ−1HΨΦBy asumption, Ψ−1HΨ is ontinuous on Td, and again using 2.2, so is Φ−1Ψ−1HΨΦ.5.3 Estimates

• The estimate (161), the assumption (153) and the fat that || AN ||≤|| A ||, imply that
|Φ|r ≤ ǫ−

1
96 e4πN̄r (170)thus

|ΨΦ|r ≤ |Ψ|r|Φ|r ≤ ǫ−(r−r′)− 1
96 e4πrN̄ (171)whene property 3.

• By Proposition 4.4,
|ΦF ′Φ−1|r′ ≤ C ′

(

C0(1 + ||AN ||)
κ′′(r − r′)

)Dγ

e|ΦXΦ−1|r′ |ΦF̃Φ−1|r((RN̄)de16πrN̄e−2πRN̄(r−r′)

+ |ΦF̃Φ−1|r′(1 + e|ΦXΦ−1|r′ ))

(167)37



for some C ′ depending only on n, d, κ, τ and some D depending only on n, d, τ . Now
|ΦF̃Φ−1|r ≤ |Ψ|r|Ψ−1|r|F̄ |r ≤ ǫ1−2(r−r′) (172)and by property 4 of Proposition 4.4,
|ΦXΦ−1|r′ ≤ C ′

(

C0(1 + ||AN ||)
κ′′(r − r′)

)Dγ

|ΦF̃Φ−1|r (141)so, by (153), if D1 is great enough as a funtion of n, γ, D, then
|ΦXΦ−1|r′ ≤ ǫ−

1
96 |ΦF̃Φ−1|r′ ≤ ǫ

7
8 (173)so

e|ΦXΦ−1|r′ ≤ 2 (174)Moreover
e16πrN̄−2πRN̄(r−r′) = e2πN̄(8r−R(r−r′)) ≤ ǫ100 (175)so by assumption (153),
|ΦF ′Φ−1|r′ ≤ ǫ−

1
96 ǫ1−2(r−r′)((RN̄)dǫ100 + ǫ1−2(r−r′)) (176)There exists a onstant cd whih only depends on d suh that if ǫ ≤ cd, then

| log ǫ |d≤ ǫ−1 (177)and in this ase there exists c2, D2 whih only depend on n, d, τ suh that
|ΦF ′Φ−1|r′ ≤ ǫ−

1
96 ǫ1−2(r−r′)(

c2

(r − r′)D2
ǫ99 + ǫ1−2(r−r′)) (178)thus if C̃ ′ is small enough and D1 big enough (as a funtion of c2, D2),

|ΦF ′Φ−1|r′ ≤ ǫ2−4(r−r′)− 1
96 (179)whene 8.

• We shall estimate |ΨΦeX(ΨΦ)−1 − Id|r′. The estimate (141) implies38



|ΦeXΦ−1 − Id|r′ ≤ C ′′
(

(1 + ||AN ||)R 1
2
(n(n−1)+1)τN τ

r − r′

)Dγ

|ΦF̃Φ−1|r (180)for some C ′′ only depending on n, d, κ, τ , so
|ΨΦeX(ΨΦ)−1 − Id|r′ ≤ C3

(

(1 + ||AN ||)| log ǫ|
r − r′

)D′
1γ

|F̄ |r(
1

ǫ
)4(r−r′) (181)for some C3 depending only on n, d, κ, τ and D′

1 depending only on n, d, τ . The sameestimate holds for |ΨΦe−X(ΨΦ)−1 − Id|r′, so property 7 holds with C̃ ′ ≤ 1
C3

, D1 ≥ 2D′
1.

�5.4 Indutive stepNow we are able to state the whole indutive step. In the following we will denote










N(r, ǫ) = 1
2πr

| log ǫ|
R(r, r′) = 1

(r−r′)8 804(1
2
n(n − 1) + 1)2

κ′′(r, r′, ǫ) = κ

n(8R(r,r′)
1
2 n(n−1)+1

N(r,ǫ))τ

(182)These funtions oinide with funtions R, N, κ′′ de�ned in Proposition 5.1.5.4.1 StatementProposition 5.2 Let� A ∈ G,� r ≤ 1
2
, r′′ ∈ [95

96
r, r[,γ ≥ n(n + 1),� Ā, F̄ ∈ Cω

r (2T
d,G) and Ψ ∈ Cω

r (2T
d, G),� ǫ = |F̄ |r,There exists C ′ > 0 depending only on n, d, κ, τ, γ and there exists D3 ∈ N depending onlyon n, d, τ suh that if1. Āis reduible to A by Ψ,2. Ψ−1F̄Ψ has nie periodiity properties with respet to an (A, κ′′(r, r′′, ǫ), γ)-deomposition

L3.
ǫ ≤ C ′

(||A|| + 1)D3γ
(r − r′′)D3γ (183)39



4. |Ψ|r ≤ (1
ǫ
)−

1
2
(r−r′′) et |Ψ−1|r ≤ (1

ǫ
)−

1
2
(r−r′′),then there exist� ǫ′ ≤ ǫ100;� Z ′ ∈ Cω

r′′(2Td, G),� Ā′, F̄ ′ ∈ Cω
r′′(2Td,G),� Ψ′ ∈ Cω

r (2T
d, G),� A′ ∈ Gsatisfying the following properties:1. Ā′ is reduible by Ψ′ to A′,2. the map Ψ′−1F̄ ′Ψ′ has nie periodiity properties with respet to an (A′, κ′′(r′′, r′′ − r−r′′

2
, ǫ′), 2γ))-deomposition L′3. |F̄ ′|r′′ ≤ ǫ′,4. |Ψ′|r′′ ≤ ( 1

ǫ′ )
1
4
(r−r′′) and |Ψ′−1|r′′ ≤ ( 1

ǫ′ )
1
4
(r−r′′),5. ||A′|| ≤ ||A||+ | log ǫ |

(

1
r−r′

)D3;6.
∂ωZ ′ = (Ā + F̄ )Z ′ − Z ′(Ā′ + F̄ ′) (184)7.
|Z ′ − Id|r′′ ≤

1

C ′

(

(1 + ||A||)| log ǫ|
r − r′′

)D3γ

ǫ1−4(r−r′′) (185)and so does (Z ′)−1 − Id.Moreover, in dimension 2, if Ā, F̄ are ontinuous on Td, and if assumption 2 is replaedby 2'. Ψ is suh that for all funtion H ontinuous on Td, ΨHΨ−1 is ontinuous on Td,then Z ′, Ā′, F̄ ′ are ontinuous on Td and property 2 is replaed by2'. Ψ′ is suh that for every funtion H ontinuous on Td, Ψ′HΨ′−1 is ontinuous on
Td.Finally, if G = gl(n, C) or u(n) and if Ā, F̄ , Ψ are ontinuous on Td, then Z ′, Ā′, F̄ ′, Ψ′are ontinuous on T

d.The proof will be made in two steps: the �rst step is to apply Proposition 5.1 to reduethe perturbation when there are resonanes. The seond step is to iterate Proposition 4.4as many times as possible using the fat that resonanes, one removed, do not reappearimmediately. 40



5.4.2 First step: removing the resonanesApply Proposition 5.1 with r′ = r+r′′

2
. Let R = R(r, r′); N = N(r, ǫ); κ′′ = κ′′(r, r′, ǫ) andlet C̃ ′, D1 as in Proposition 5.1. Let c depending only on D1, γ, τ suh that if ǫ ≤ c, then

ǫ
1
2 | log ǫ |D1γτ≤ 1 (186)Assumption (183) with C ′ small enough as a funtion of C̃ ′, D1, n, κ, τ, γ and D3 bigenough as a funtion of D1, γ, n, implies that
ǫ ≤ C̃ ′

(

κ(r − r′)

n(8R
1
2
n(n−1)+1N)τ (||A|| + 1)

)D1γ (187)so the assumption (153) of Proposition 5.1:
ǫ ≤ C̃ ′

(

κ′′(r − r′)

||A|| + 1

)D1γ (153)holds true. Thus it is possible to apply Proposition 5.1 to get� N̄ ∈ [N, R
1
2
n(n−1)N ],� Z1, Ψ

′ ∈ Cω
r′(2T

d, G),� A1 ∈ G� Ā1 ∈ Cω
r′(2Td,G)� and F1 = (Ψ′)−1F̄1Ψ

′suh that1. Ā1 is reduible to A1 by Ψ′2. F1 has nie periodiity properties with respet to an (A1,
3κ′′

4C0
, 2γ)-deomposition L13. | Ψ′ |r′≤ ǫ−(r−r′)− 1

96 e4πrN̄ and | Ψ′−1 |r′≤ ǫ−(r−r′)− 1
96 e4πrN̄4. A1 has DCRN̄

ω (3
4
κ′′, τ) spetrum,5. ∂ωZ1 = (Ā + F̄ )Z1 − Z1(Ā1 + F̄1),6. ||A1|| ≤ ||A|| + ǫ
23
24 + 4πN̄ ,7.

|Z1 − Id|r′ ≤
1

C̃ ′

(

(1 + ||AN ||)| log ǫ|
r − r′

)D1γ

ǫ1−4(r−r′) (188)and so does |Z−1
1 − Id|r′, 41



8.
|Ψ−1F̄1Ψ|r′ ≤ ǫ

3
2 (189)9. Ψ′−1Ψ is trivial with respet to LA,κ′′,10. and for every s′ ≥ 0,

| Ψ′−1Ψ |s′≤ Cn

(

1+ || AN ||
κ′′

)n(n+1)

e4πN̄s′ (190)and so does | Ψ−1Ψ′ |s′, where Cn only depends on n.5.4.3 Seond step: iteration far from resonanesLet l suh that
ǫ( 4

3
)l+1 ≤ e−2π(r−r′′) 4√

RN̄ := ǫ′ ≤ ǫ( 4
3
)l (191)De�ne the sequene ǫj = ǫ( 3

2
)j− 1

48 . We shall iterate l − 1 times Proposition 4.4, startingwith j = 2, with� ǫ̃ = ǫj−1,� C =
(

r−r′′

160( 1
2
n(n−1)+1)

)8( 1
2
n(n−1)+1)� r̃ = rj−2 = r+r′′

2
− (j − 2) r−r′′

2l
,� r̃′ = rj−1 = r+r′′

2
− (j − 1) r−r′′

2l
,� κ′ = (3

4
)j−1 κ′′

C0
,� Ñ = RN̄ ,� F̃ = Fj−1,� Ã = Aj−1,� Φ = Ψ−1Ψ′,� L = L1,Note that for every j,

ǫj ≤ C ′′
(

Cτ (3
4
)j κ′′

C0

1 + ||A1|| +
∑j−1

l=1 ǫl

)2n (192)42



Estimates (189) and (190) imply
||F̂1(0)|| ≤| F1 |0≤| Ψ′−1Ψ |0 | Ψ−1Ψ′ |0 |Ψ−1F̄1Ψ|0 ≤ C2

n

(

1 + ||AN ||
κ′′

)2n(n+1)

ǫ
3
2 ≤ ǫ

3
2
− 1

48(193)Moreover, A1 has DCRN̄
ω (3

4
κ′′, τ) spetrum and F1 has nie periodiity properties withrespet to L. Let C ′′ be the onstant given by Proposition 4.4. By assumption on ǫ, with

C ′ depending only on n, d, κ, τ and D3 depending only on n, τ , one has
ǫ̃ ≤ C ′′

(1 + ||A1||)2n

(

3κ′′

4C0

)2n

C2nτ (194)Moreover,
RN̄ ≤ Rn0+1N ≤ 1

C
| log ǫ| (195)so the assumptions (138) and (139) of Proposition 4.4 hold with F̃ = F1, κ

′ = κ′′, Ñ = RN̄ .Fix j and assume Aj−1 has DCÑ
ω (κ′, τ) spetrum, Fj−1 has nie periodiity propertieswith respet to an (Aj−1, (

3
4
)j−1 κ′′

C0
, 2γ)-deomposition,

|| F̂j−1(0) ||≤ ǫj−1 (196)and
CRN̄ ≤| log ǫj−1 | (197)One obtains funtions Fj , Xj and a matrix Aj suh that1. Aj has DCRN̄((3

4
)j κ′′

C0
, τ) spetrum,2. ||Aj|| ≤ ||Aj−1|| + ǫj−1,3.

∂ωeXj = (Aj−1 + Fj−1)e
Xj − eXj (Aj + Fj) (198)and Fj has nie periodiity properties with respet to an (Aj , (

3
4
)j κ′′

C0
, 2γ)-deomposition4.

| Ψ−1Ψ′XjΨ
′−1Ψ |rj−1

≤ C ′
(

1 + ||(Aj−1)N ||
κ′′(rj−2 − rj−1)

)Dγ

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

(199)for some C ′ depending only on n, d, κ, τ and some D depending only on n, d, τ ,43



5. and
|Ψ−1Ψ′FjΨ

′−1Ψ|rj−1
≤ C ′

(

1 + ||(Aj−1)N ||
κ′′(rj−2 − rj−1)

)Dγ

e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2 |Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2

(| Ψ′−1Ψ |4rj−2
(RN̄)de−2πRN̄(rj−2−rj−1)

+ (1 + 2e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2 )|Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2
) (200)We shall bound || F̂j(0) || to iterate Proposition 4.4. Estimates (189) and (183) imply

e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2 ≤ 2so

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ 3C ′
(

1 + ||(Aj−1)N ||
κ′′(rj−2 − rj−1)

)Dγ

|Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

(| Ψ′−1Ψ |4rj−2
(RN̄)de−2πRN̄(rj−2−rj−1) + |Ψ−1Ψ′Fj−1Ψ

′−1Ψ|rj−2
)

(201)and sine rj−2 − rj−1 = r−r′′

2l
,

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
4
rj−2(| Ψ′−1Ψ |4rj−2

(RN̄)de−2π
RN̄(r−r′′)

2l + |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

)

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
4
rj−2(| Ψ′−1Ψ |4rj−2

(RN̄)dǫ′
R

3
4

2l + |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

)(202)Now l is bounded by
l ≤ 8(

1

2
n(n − 1) + 1)

4
√

R (203)Moreover
| Ψ′−1Ψ |rj−2

≤ Cn

(

1+ || A ||
κ′′

)n(n+1)

e4πN̄rj−2 ≤ Cn

(

1+ || A ||
κ′′

)n(n+1)

ǫ
′− 2rj−2

(r−r′′) 4√
R (204)and so

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
4
rj−2(ǫ

′ + |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|rj−2

)

≤ |Ψ−1Ψ′Fj−1Ψ
′−1Ψ|

3
2
rj−2

(205)44



By a simple indution, for every j,
|Ψ−1Ψ′FjΨ

′−1Ψ|rj−1
≤ |Ψ−1Ψ′F1Ψ

′−1Ψ|(
3
2
)j−1

r0 ≤ ǫ( 3
2
)j (206)Finally

|| F̂j(0) ||≤ |Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

|| Ψ−1Ψ′ ||0 || Ψ′−1Ψ ||0≤ ǫj (207)so it is possible to iterate Proposition 4.4.5.4.4 ConlusionAfter l − 1 steps,
|Ψ−1Ψ′Fl+1Ψ

′−1Ψ|rl
≤ ǫ′

17
16 (208)Let Z = eX2 . . . eXl+1 ∈ Cω

r′(2Td, G)), A′ = Al+1, F
′ = Fl+1. Then

∂ωZ = (A1 + F1)Z − Z(A′ + F ′) (209)and
||A′|| ≤ ||A1|| +

l
∑

j=1

||F̂j(0)|| + 4πN̄ ≤ ||A||+ | log ǫ |
(

1

r − r′

)D4 (210)for D4 great enough depending only on n, whene property 5.
• To prove that Ll+1 is indeed an (Al+1, κ

′′(r′′, r − r−r′′

2
, ǫ′), 2γ)-deomposition, it isenough to show that

κ′′(r′′, r′′ − r − r′′

2
, ǫ′) ≤ (

3

4
)l+1 κ′′

C0
(211)whih omes from the de�nition of the funtion κ′′.

• Let us prove property 4. It is true that
|Ψ′|r′′ ≤ ǫ−

1
2
(r−r′′)ǫ−

1
96 e4πrN̄ ≤ ǫ−

1
2
(r−r′′)ǫ−

1
96 ǫ′−

r−r′′
200 (212)and property 4 omes from it, sine 45



ǫ = ǫ
′ | log ǫ|
2π

4√
RN̄(r−r′′) (213)

• Moreover,
|Ψ′F ′Ψ′−1|r′′ ≤ |Ψ|r|Ψ−1|r|Ψ−1Ψ′F ′Ψ′−1Ψ|r′′ ≤ ǫ′ (214)whene 3. Let Z ′ = Z1Ψ

′ZΨ′−1, F̄ ′ = Ψ′F ′Ψ−1 (whih satis�es property 2) and Ā suhthat
∂ωΨ′ = Ā′Ψ′ − Ψ′A′ (215)Then
∂ωZ ′ = (Ā1 + F̄1)Z

′ − Z ′(Ā′ + F̄ ′) (216)whene 6 and 1, so by (188),
|Z ′ − Id|r′′ ≤ |Z1 − Id|r1 + |Ψ|r|Ψ−1|r

∑

j

|Ψ−1Ψ′XjΨ
′−1Ψ|rj

≤ 1

C̃ ′

(

l(1 + ||AN ||)| log ǫ|
r − r′′

)D1γ

(
1

ǫ
)4(r−r′′)(ǫ +

∑

j

|Ψ−1Ψ′FjΨ
′−1Ψ|rj

)

(217)and by (189) and (206),
|Z ′ − Id|r′′ ≤

2

C̃ ′

(

l(1 + ||AN ||)| log ǫ|
r − r′′

)D1γ

(
1

ǫ
)4(r−r′′)ǫ (218)whene property 7 with D3γ ≥ 2D1γ if C ′ ≤ C̃′

2(l(r−r′′))D1γ , sine l(r − r′′) has a boundwhih is independent of r − r′′. �This proposition is the indutive step whih an be iterated as a whole. It is neessaryto obtain an ǫ′ whih is muh smaller than ǫ so as to ontrol |Ψ′|r′ as a funtion of ǫ′ andmake sure that the output be similar to the input.5.5 Main theorem5.5.1 Numerial lemmaFirst let us give a lemma whih will enable us to iterate Proposition 5.2.46



Lemma 5.3 Let C ′ ≤ 1, b0 > 0, r ≤ 1
2
and r′ ∈ [95

96
r, r[. Let D5, γ0 ∈ N.There exists Cdepending only on C ′, D5, γ0 suh that for all ǫ ≤ C
(

r−r′

b0+1

)2γ0D5, hoosing a sequene (ǫk)suh that for all k,
ǫk ≤ ǫ100

k−1 < 1 (219)and letting for all k











γk = 2kγ0

rk = r′ + r−r′

2k

bk := bk−1+ | log ǫk−1 |
(

2k

r−r′

)D5
(220)then for every k ∈ N,

| log ǫk |2D5γk≤ ǫ
− 1

4
k (221)and

ak :=

(

bk + 1

rk − rk+1

)D5γk

ǫk ≤ C ′ (222)Proof: Let us �rst prove (221). It is equivalent to
2k+3D5γ0 ≤

| log ǫk |
log | log ǫk | (223)The funtion t 7→ |log t|
log|log t| is dereasing for t ∈]0, e−

1
e ] so it is enough to show that

2k+3D5γ0 ≤
100k | log ǫ |

k log 100 + log | log ǫ | (224)whih is true if we hoose C as a funtion of D5, γ0.
• For all k,

ak+1 =

(

(bk+1 + 1)2k+2

r − r′

)D5γk+1

ǫk+1

≤
(

(b0 + (k + 1) | log ǫk |)2k+2

r − r′

)2D5γk+1 ǫk+1

ǫk

ak

(225)so by (221), 47



ak+1 ≤
(

(b0 + 1)

r − r′

)γ016k+1D5

ǫ100k .98ak
(226)thus, if ǫ is also smaller than ( r−r′

b0+1
)16γ0D5, then ak+1 ≤ ak. If ǫ is also small enough tosatisfy

a0 =

(

b0 + 1

r − r′

)D5γ0

ǫ ≤ C ′ (227)for instane
(

b0 + 1

r − r′

)D5γ0

ǫ
3
4 ≤ C ′ (228)then (222) is true for all k. �Lemma 5.3 implies that assumption (183) of Proposition 5.2 holds for all k with ǫ ≤ ǫk,

||A|| = bk, r = rk and r′′ = rk+1.As a onsequene, one gets the main result, of whih we will give various formulations.5.5.2 Almost reduibilityTheorem 5.4 Let r ≤ 1
2
, A ∈ G and F ∈ Cω

r (2Td,G) with nie periodiity properties withrespet to LA. Let
r′ ∈ [

95

96
r, r[There exists D7 depending only on n, d, τ, κ, A suh that if

|F |r ≤ ǫ′0(r, r
′) =

(

r − r′

|| A || +1

)D7then for any ǫ ≤ ǫ′0, there exists� Zǫ ∈ Cω
r′(2Td, G),� Aǫ ∈ G,� Āǫ, F̄ǫ ∈ Cω

r′(2Td,G),suh that1. Āǫ is reduible to Aǫ,2. |F̄ǫ|r′ ≤ ǫ 48



3. for every θ ∈ 2Td,
∂ωZǫ(θ) = (A + F (θ))Zǫ(θ) − Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ))4.

|Zǫ − Id|r′ ≤ 2D7ǫ
1
4
−4(r−r′)

0and so does Z−1
ǫ − Id,5. Zǫ, ∂ωZǫ are bounded in Cω

r′(2Td, gl(n, C)) uniformly in ǫ.Moreover, in dimension 2 or if G = gl(n, C) or u(n), if F is ontinuous on Td, then Āǫ, F̄ǫand Zǫ are ontinuous on Td.Proof: The proof will be made by indution as follows. Let r′′ = r+r′

2
. Let R(r, r′′), N(r, ǫ), κ′′(r, r′′, ǫ)be as in (182). There exists γ0 ∈ N depending only on n, d, τ, κ, A, suh that LA is a

(A, κ, γ0)-deomposition (one an assume γ0 ≥ n(n+1)). Let C ′, D3 be as in Proposition5.2. Let D5 = 2D3. Let C be as in Lemma 5.3 and D7 suh that
ǫ′0 :=

(

r − r′′

||A|| + 1

)D7

≤ C

(

r − r′′

||A|| + 1

)4γ0D5 (229)For all k ∈ N, let










rk = r′′ + r−r′′

2k ,
b0 = ||A||,

bk+1 = ||A|| +
∑

j≤k

|log ǫj |
(rj−1−rj)D5

(230)where (ǫj) will be de�ned by indution in the following. Suppose that |F |r ≤ ǫ′0. ApplyProposition 5.2 a �rst time: there exist funtions� Z1 ∈ Cω
r1

(2Td, G),� Ā1, F̄1 ∈ Cω
r1

(2Td,G),� A1 ∈ G,� Ψ0 ∈ Cω
r1

(2Td, G)and a real number ǫ1 ≤| F |100r suh that1. Ā1 is reduible to A1 by Ψ0.2. Ψ−1
0 F̄1Ψ0 has nie periodiity properties with respet to an (A1, κ

′′(r1, r2, ǫ1), 2γ0)-deomposition,3. |F̄1|r1 ≤ ǫ1, 49



4. |Ψ0|r1 ≤ ǫ
− 1

2
(r1−r2)

1 and |Ψ−1
0 |r1 ≤ ǫ

− 1
2
(r1−r2)

1 ,5. ||A1|| ≤ b1;6. for all θ ∈ 2T
d,

∂ω(Z1(θ)) = (A + F (θ))Z1(θ) − Z1(θ)(Ā1(θ) + F̄1(θ))7.
|Z1 − Id|r1 ≤

1

C ′

(

(1 + ||A||)| log ǫ0|
r0 − r1

)D3γ0

ǫ
1−4(r0−r1)
0whih implies, using Lemma 5.3, that

|Z1 − Id|r1 ≤
1

C ′ ǫ
1
4
−4(r0−r1)

0and so does Z−1
1 − Id.

• Let k ≥ 1. Let� Āk ∈ Cω(2Td,G),� Ak ∈ G,� F̄k ∈ Cω
rk

(2Td,G)� Ψk−1 ∈ Cω
rk

(2Td, G)� ǫk ≤| F |100ksuh that� Āk is reduible to Ak ∈ G by Ψk−1,� Ψ−1
k−1F̄kΨk−1 has nie periodiity properties with respet to an (Ak, κ

′′(rk, rk+1, ǫk), 2
kγ0)-deomposition,� |F̄k|rk

≤ ǫk,� |Ψk−1|r ≤ ǫ
− 1

2
(rk−rk+1)

k et |Ψ−1
k−1|r ≤ ǫ

− 1
2
(rk−rk+1)

k ,Lemma 5.3 says that
(

bk + 1

rk − rk+1

)2kD3γ0

ǫk ≤ C ′ (231)Therefore one an apply again Proposition 5.2 to �nd50



� Zk+1 ∈ Cω
rk+1

(2Td, G),� Ak+1 ∈ G,� Āk+1 ∈ Cω
r (2Td,G),� Ψk ∈ Cω

r (2Td, G),� F̄k+1 ∈ Cω
rk+1

(2T
d,G)� ǫk+1 ≤| F |100k+1suh that1. Āk+1 is reduible to Ak+1 by Ψk,2. Ψ−1

k F̄k+1Ψk has nie periodiity properties with respet to an (Ak+1, κ
′′(rk+1, rk+2, ǫk+1), 2

k+1γ0)-deomposition,3. |F̄k+1|rk+1
≤ ǫk+1,4. |Ψk|r ≤ ǫ

− 1
2
(rk+1−rk+2)

k+1 and |Ψ−1
k |r ≤ ǫ

− 1
2
(rk+1−rk+2)

k+1 ,5. ||Ak+1|| ≤ bk+1,6.
∂ωZk+1 = (Āk + F̄k)Zk+1 − Zk+1(Āk+1 + F̄k+1)7.

|Zk+1 − Id|rk+1
≤ 1

C ′

(

(1 + ||Ak||)| log ǫk|
rk − rk+1

)2kD3γ0

ǫ
1−4(rk−rk+1)
kwhih implies, using Lemma 5.3, that

|Zk+1 − Id|rk+1
≤ 1

C ′ ǫ
1
4
−4(rk−rk+1)

kand so does Z−1
k+1 − Id.

• Let ǫ ≤ ǫ′0 and kǫ ∈ N suh that |F |100kǫ

r ≤ ǫ. Let






Zǫ = Z1 . . . Zkǫ

Āǫ = Ākǫ

F̄ǫ = F̄kǫ

(232)then properties 1 and 2 hold. Thus for all θ ∈ 2Td,
∂ωZǫ(θ) = (A + F (θ))Zǫ(θ) − Zǫ(θ)(Āǫ(θ) + F̄ǫ(θ)) (233)whene property 3. Moreover, let ak := |Z1 . . . Zk − Id|r′′, then51



�
a1 = |Z1 − Id|r′′ ≤

1

C ′ ǫ
1
4
−4(r0−r1)

0 (234)so
|Z1|r′′ ≤ 1 +

1

C ′ ǫ
1
4
−4(r0−r1)

0 (235)� let k ≥ 2 and assume that for all j ≤ k − 1,
|Z1 . . . Zj|r′′ ≤ 1 +

3

C ′ ǫ
1
4
−4(r0−r1)

0 (236)then
ak ≤ |Zk − Id|r′′|Z1 . . . Zk−1|r′′ + ak−1

≤ a1 +
1

C ′

k−1
∑

j=1

|Z1 . . . Zj|r′′ǫ
1
4
−4(rj−rj+1)

j ≤ 3

C ′ ǫ
1
4
−4(r0−r1)

0

(237)and
|Z1 . . . Zk|r′′ ≤ 1 +

3

C ′ ǫ
1
4
−4(r0−r1)

0 (238)whene property 4. This also implies that
|Zǫ|r′′ ≤ 2 +

3

C ′ ǫ
1
4
−4(r0−r1)

0 (239)Moreover, by a Cauhy estimate,
|∂ωZǫ|r′ ≤

1

r′′ − r′
|Zǫ|r′′ (240)so 5 is true.If G is either gl(n, C) or u(n) or in dimension 2, if F is ontinuous on Td, eah step willgive funtions Zk+1, Ak+1, Āk+1, F̄k+1 ontinuous on Td so, at the end of the proess, thefuntions Zǫ, Āǫ et F̄ǫ are ontinuous on T

d. �This proves Theorem 0.1. 52



In general, almost reduibility does not imply reduibility. Reduibility happens if thereare a �nite number of renormalizations, or if the sequene (Ψk) given by Theorem 5.4onverges in Cω
r′(2Td, G). In general, this sequene is not even bounded in Cω

0 (2Td, G).However, if the method above has been used to onjugate the system A + F to a system
Āǫ + F̄ǫ where Āǫ is reduible by Ψǫ to a onstant Aǫ, and where F̄ǫ is bounded by ǫ, onean also bound Ψ−1

ǫ F̄ǫΨǫ.Corollary 5.5 Let r ≤ 1
2
, A ∈ G and F ∈ Cω

r (2Td,G) with nie periodiity propertieswith respet to LA. Let r′ ∈ [95
96

r, r[. There exists D8 depending only on n, d, κ, τ, A suhthat if
|F |r ≤ (r − r′)D8then there exists� Z ∈ Cω

r′(2Td, G),� a family (Al) of reduible funtions in Cω
r′(2Td,G)� and A∞ ∈ Cω

r′(2Td,G)suh that
∂ωZ(θ) = (A + F (θ))Z(θ) − Z(θ)A∞(θ) (241)and
lim
l→∞

|Al − A∞|r′ = 0 (242)Moreover, in dimension 2 or if G = gl(n, C) or u(n), if F is ontinuous on Td, then Z,
Al and A∞ are ontinuous on T

d.Proof: Let D7 be as in Theorem 5.4 and D8 suh that
(r − r′)D8 ≤

(

r − r′

1+ || A ||

)D7 (243)Let Zǫ ∈ Cω
r′(2Td, G), Aǫ ∈ Cω

r′(2Td,G) be as in Theorem 5.4. Then Zǫ and ∂ωZǫ remainbounded in Cω
r′(2Td, G) when ǫ → 0. Let Z be the limit in Cω

r′(2Td, G) of a subsequene
(Z 1

kl

) of (Z 1
k
)k∈N\{0} and

A∞(θ) := Z(θ)−1(A + F (θ))Z(θ) − Z(θ)−1∂ωZ(θ)then
A∞ ∈ Cω

r′(2T
d,G), lim

l→∞
|A 1

kl

− A∞|r′ = 053



and so equation (241) holds.In dimension 2 or if G = gl(n, C) or u(n), if F is ontinuous on Td, all funtions that onehas to onsider are ontinuous on Td. �Remark: In Corollary 5.5, the funtion A∞ is not reduible in general, it is only alimit of reduible funtions.5.5.3 A result of density of reduible oylesCorollary 5.6 Let 0 < r′ < r ≤ 1
2
, A ∈ G and F ∈ Cω

r (Td,G). There exists ǫ′0 dependingonly on n, d, τ, κ, A, r − r′ suh that if |F − A|r ≤ ǫ′0, then for all ǫ > 0 there exists
H ∈ Cω

r′(2Td,G) suh that |F − H|r′ ≤ ǫ and H is reduible.Proof: Let D7 be as in Theorem 5.4. Assume that
|F − A|r ≤ (r − r′)D7 =: ǫ′0 (244)Let ǫ > 0. By Theorem 5.4, there exist Zǫ ∈ Cω

r′(2Td, G), Āǫ, F̄ǫ ∈ Cω
r′(2Td,G) and Aǫ ∈ Gsuh that� Āǫ is reduible to Aǫ,� ∂ωZǫ = FZǫ − Zǫ(Āǫ + F̄ǫ),� |Zǫ|r′ ≤ 2, |Z−1

ǫ |r′ ≤ 2,� |F̄ǫ|r′ ≤ ǫ
4
.Therefore

∂ωZǫ = HZǫ − ZǫĀǫ (245)where H = F − ZǫF̄ǫZ
−1
ǫ is reduible to Aǫ and satis�es

|H − F |r′ ≤ 4|F̄ǫ|r′ ≤ ǫ � (246)Corollary 5.7 Let 0 < r′ < r ≤ 1
2
, A ∈ sl(2, R) and F ∈ Cω

r (Td, sl(2, R)). There exists
ǫ′0 depending only on n, d, τ, κ, A, r − r′ suh that if |F − A|r ≤ ǫ′0, then for any ǫ > 0there exist H ∈ Cω

r′(T
d, sl(2, R)) suh that |F − H|r′ ≤ ǫ and H is reduible.Proof: Do the same onstrution as in Corollary 5.6. Theorem 5.4 gives funtions

Āǫ, F̄ǫ, Zǫ whih are, in fat, ontinuous on Td. Thus H is ontinuous on Td. �Corollary 5.7 also holds with gl(n, C) or u(n) instead of sl(2, R). This proves Theorem0.2. 54



6 AppendixLemma 6.1 Let G be a Lie algebra and A, F ∈ G with ||F || ≤ 1. Let α1(λ), . . . , αn(λ) bea ontinuous hoie of the eigenvalues of A + λF as λ varies from 0 to 1. Then for all
1 ≤ j ≤ n,

| αj(λ) − αj(0) |≤ 2nλ
1
n (|| A || +1) (247)Proof: Fix j ≤ n. Let λ0 > 0. For every λ, let

f(λ) = det(αj(λ0)I − A − λF ) (248)Then f(λ0) = 0 and
f(0) =

∑∏

[(αj(0)I − A)k,σ(k) + (αj(λ0) − αj(0))] ≥ (αj(λ0) − αj(0))n (249)so
(αj(λ0) − αj(0))n ≤| f(λ0) − f(0) |≤ sup

λ

| f ′(λ) | | λ0 | (250)and sine
| f ′(λ) | =|

∑

σ

d

dλ

∏

k

(αj(λ0)I − A − λF )k,σ(k) |

≤ nn![|| A(λ0) || + || A(λ) ||]n−1

≤ 2n−1nn![|| A || +1]n−1

(251)then �nally
(αj(λ0) − αj(0)) ≤ 2nλ

1
n
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