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Weighted estimates for the maximal regularity operator

Assume -A is a densely defined, closed linear operator, generating a bounded analytic semigroup {e -zA , | arg z | < δ}, 0 < δ < π/2, on a Hilbert space H. Equivalently, A is sectorial of type ω(A) = π/2 -δ. Let D(A) denote its domain. The maximal regularity operator is defined by the formula

M + f (t) = t 0 Ae -(t-s)A f (s) ds.
This operator is associated to the forward abstract evolution equation u(t) + Au(t) = f (t), t > 0; u(0) = 0 as for appropriate f , Au(t) = M + f (t). An estimate on M + f in the same space as f gives therefore bounds on u and Au separately. See Section 2.

The integral defining M + f converges strongly in H for each f ∈ L 2 (0, ∞; dt, D(A)) and t > 0. The estimate Ae -(t-s)A ≤ C(t -s) -1 following from the analyticity of the semigroup shows that the integral is singular if one only assumes f (s) ∈ H. The maximal regularity operator is an example of a singular integral operator with operator-valued kernel. The celebrated theorem by de Simon [START_REF] De Simon | Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine[END_REF] asserts Theorem 1.1. Assume -A generates a bounded holomorphic semigroup in H. The operator M + , initially defined on L 2 (0, ∞; dt, D(A)), extends to a bounded operator on L 2 (0, ∞; dt, H).

Motivated by boundary value problems for some second order elliptic equations, we proved in [START_REF] Auscher | Weighted maximal regularity and solvability of non-smooth elliptic systems[END_REF] the following result.

Theorem 1.2. Assume -A generates a bounded holomorphic semigroup in H and furthermore that A has bounded holomorphic functional calculus, then M + , initially defined on L 2 c (0, ∞; dt, D(A)), extends to a bounded operator on L 2 (0, ∞; t β dt, H) for all β ∈ (-∞, 1). The proof given there uses the operational calculus defined in the thesis of Albrecht [START_REF] Albrecht | Functional calculi of commuting unbounded operators[END_REF]. It used as an assumption that A has bounded holomorphic functional calculus as defined by McIntosh [START_REF] Mcintosh | Operators which have an H ∞ functional calculus[END_REF]. Under this assumption estimates of integral operators more general than the maximal regularity operator, with operator-kernels defined through functional calculus of A, were proved and gave other useful informations to understand also the case β = 1 needed for the boundary value problems. However, not all generators of bounded analytic semigroups have a bounded holomorphic functional calculus. (See [START_REF] Mcintosh | Operators of type ω without a bounded H ∞ functional calculus[END_REF], and Kunstmann and Weis [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Section 11] for a list of equivalent conditions.) So if we only consider the maximal regularity operator, it is natural to ask whether one can drop the assumption on bounded holomorphic functional calculus in Theorem 1.2. It is indeed the case and as we shall see the proof is extremely simple assuming we know Theorem 1.1.

Theorem 1.3. Let -A be the generator of a bounded analytic semigroup on H. Then M + , initially defined on L 2 c (0, ∞; dt, D(A)), extends to a bounded operator on L 2 (0, ∞; t β dt, H) for all β ∈ (-∞, 1).

The subscript c means with compact support in (0, ∞). 

Set |||f (t)||| 2 = ∞ 0 f (t)
= ∞ 0 h(u) du u < ∞, then ||| ∞ 0 U (t, s)f (s) ds s ||| ≤ C|||f (s)|||.
Proof of Theorem 1.3. Let β < 1. For β = 0, this is Theorem 1.1. Assume β = 0 and set α = β/2. Observe that

M + f (t) L 2 (t β dt,H) = t α M + f (t) L 2 (dt,H) .
We have, with f α (s) = s α f (s),

t α M + f (t) = M + (f α )(t) + t 0 Ae -(t-s)A (t α -s α )f (s) ds.
For the first term apply Theorem 1.1. For the second, write 

t 0 Ae -(t-s)A (t α -s α )f (s) ds L 2 (dt,H) = ||| ∞ 0 U (t,
U (t, s) ≤ C |t α -s α | |t -s| s 1/2-α t 1/2 , s < t.
It is easy to see that it is on the order of (s/t) 1/2-max(α,0) as s < t. We conclude by applying Schur's lemma.

Let M -f (t) = ∞ t Ae -(s-t)A f (s) ds.
This operator is associated to the backward abstract evolution equation

v(t) -Av(t) = f (t), t > 0; v(∞) = 0 as for appropriate f , Av(t) = -M -f (t).
Corollary 1.4. Assume that -A generates a bounded analytic semigroup on H. Then M -, initially defined on L 2 c (0, ∞; dt, D(A)), extends to a bounded operator on L 2 (0, ∞; t β dt, H) for all β ∈ (-1, ∞).

Proof. Observe that the adjoint of M -in L 2 (0, ∞; t β dt, H) for the duality defined by

L 2 (0, ∞; dt, H) is M + in L 2 (0, ∞; t -β dt, H) associated to A * and apply Theorem 1.3.
We next show that the range of β is optimal in both results.

Theorem 1.5. For any non zero -A generating a bounded analytic semigroup on H and

β ≥ 1, M + is not bounded on L 2 (0, ∞; t β dt, H) and M -is not bounded on L 2 (0, ∞; t -β dt, H). Proof. It suffices to consider M -. Since A = 0, R(A), the closure of the range of A, contains non zero elements. As R(A) ∩ D(A) is dense in it, pick u ∈ R(A) ∩ D(A), u = 0, and set f (t) = u for 1 ≤ t ≤ 2 and 0 elsewhere. Then f ∈ L 2 c (0, ∞; dt, D(A)) and f ∈ L 2 (0, ∞; t -β dt, H) with f (t) L 2 (0,∞;t -β dt,H) = c β u < ∞. For t < 1, one has M -f (t) = (e -(1-t)A -e -(2-t)A )u,
which converges to (e -A -e -2A )u in H when t → 0. We claim that (e -A -e -2A )u = 0 so

M -f (t) 2 L 2 (0,∞;t -β dt,H) ≥ 1 0 (e -(1-t)A -e -(2-t)A )u 2 dt t β = ∞.
To prove the claim, we argue as follows. Assume it is 0, then e -2A u = e -A u so that an iteration yields e -nA u = e -A u for all integers n ≥ 2. If n → ∞, e -nA u tends to 0 in H because u ∈ R(A). Thus e -A u = 0 and it follows that e -tA u = e -(t-1)A e -A u = 0 for all t > 1. The analytic function z → e -zA u is thus identically 0 for | arg z | < δ. On letting z → 0, we get u = 0 which is a contradiction.

We have seen that M -cannot map L 2 (0, ∞; t -1 dt, H) into itself and that it seems due to the behavior of M -f (t) at t = 0 for some f . We shall make this precise and general: under a further assumption on A which we introduce next, we define M -:

L 2 (0, ∞; t -1 dt, H) → L 2 loc (0, ∞; dt, H) and show that controlled behavior at 0 of M -f guarantees M -f ∈ L 2 (0, ∞; t -1 dt, H).
We begin by writing whenever

f ∈ L 2 c (0, ∞; dt, D(A)) and denoting f -1/2 (s) = s -1/2 f (s), M -f (t) -e -tA ∞ 0 Ae -sA f (s) ds = t 1/2 M -(f -1/2 )(t) + 2t t Ae -(s-t)A (s 1/2 -t 1/2 )s 1/2 f (s) ds s + ∞ 2t A(e -(s-t)A -e -(s+t)A )(s 1/2 -t 1/2 )s 1/2 f (s) ds s - ∞ 2t Ae -(s+t)A t 1/2 s 1/2 f (s) ds s - 2t 0 Ae -(s+t)A sf (s) ds s .
The right hand side is seen to belong to L 2 (0, ∞; t -1 dt, H) with an estimate C|||f (s)||| using Theorem 1.1 for the first term and Schur's lemma for the other four terms. Hence, by density, the right hand side defines a bounded linear operator M -on L 2 (0, ∞; t -1 dt, H). Also, the integral

∞ 0 Ae -sA f (s) ds is defined as a Bochner integral in H whenever f ∈ L 2 c (0, ∞; dt, H). Thus, by density of D(A) in H, one can set for f ∈ L 2 c (0, ∞; dt, H), (1) 
M -f (t) := M -f (t) + e -tA ∞ 0 Ae -sA f (s) ds in L 2 loc (0, ∞; dt, H).
Let E be the space of f ∈ L 2 (0, ∞; t -1 dt, H) such that the integrals R δ Ae -sA f (s) ds converge weakly in H as δ → 0 and R → ∞. Then the above equality extends to f ∈ E. Assuming, in addition, that A * satisfies the quadratic estimate [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF] |||sA * e -sA * h||| ≤ C h H for all h ∈ H,

we have E = L 2 (0, ∞; t -1 dt, H). Indeed, for all f ∈ L 2 (0, ∞; t -1 dt, H) and h ∈ H, (3) 
∞ 0 (sAe -sA f (s), h) ds s ≤ |||f (s)||| |||sA * e -sA * h||| |||f (s)||| h H
and the weak convergence of the truncated integrals follows easily. Thus, the right hand side of (1) makes sense for all f ∈ L 2 (0, ∞; t -1 dt, H) under (2) and this defines M -f . Moreover, it follows from (3) that ( 4) sup

τ >0 1 τ 2τ τ M -f (t) 2 H dt ≤ C|||f (s)||| 2 .
Then remark that (5) lim

τ →0 1 τ 2τ τ M -f (t) dt = ∞ 0
Ae -sA f (s) ds in H, as the corresponding limit for M -f is 0 and e -tA → I strongly when t → 0. All this yields the following result.

Proposition 1.6. Let -A be the generator of a bounded analytic semigroup in H and assume that the quadratic estimate (2) holds for A * . Then (1) defines M -f ∈ L 2 loc (0, ∞; dt, H) with estimates (4) and limit (5) for all f ∈ L 2 (0, ∞; t -1 dt, H). In particular,

M -f ∈ L 2 (0, ∞; t -1 dt, H) if and only if lim τ →0 1 τ 2τ τ M -f (t) dt = 0.
The last condition defines a closed subspace of L 2 (0, ∞; t -1 dt, H) and there is a constant C such that for all f in this subspace

M -f (t) L 2 (0,∞;t -1 dt,H) ≤ C f (t) L 2 (0,∞;t -1 dt,H) .
Note that (2) holds if A has bounded holomorphic functional calculus by McIntosh's theorem [START_REF] Mcintosh | Operators which have an H ∞ functional calculus[END_REF]. Remark 1.7. For M + , the analysis is not that satisfactory (for β = 1). One can show similarly that

M + f (t) -Ae -tA ∞ 0 e -sA f (s) ds L 2 (0,∞;tdt,H) ≤ C f (t) L 2 (0,∞;tdt,H) provided f ∈ L 2 c (0, ∞; dt, D(A)).
If the quadratic estimate (2) holds for A, this allows to extend M + to the space {f ∈ L 2 loc (0, ∞; dt, H);

∞ 0 e -sA f (s) ds converges weakly in H}. However, there is no simple description of this space.

Applications to the abstract Cauchy problem

In this section, we assume throughout that -A generates a bounded analytic semigroup in H.

Let f ∈ L 2 loc (0, ∞; dt, H). We say that u is a weak solution to u(t) +

Au(t) = f (t), t > 0, if u ∈ L 2 loc (0, ∞; dt, H), (6) 
sup 0<τ <1 1 τ 2τ τ u(s) H ds < ∞ and for all φ ∈ C 1 c (0, ∞; H) ∩ C 0 c (0, ∞; D(A * )), ( 7 
) ∞ 0 (u(s), -φ(s) + A * φ(s)) ds = ∞ 0 (f (s), φ(s)) ds.
The notion of weak solution here differs from the one in Amann's book [2, Chapter 5] called weak L p,loc solution (p ∈ [1, ∞]) specialized to p = 2. We assume a uniform control through (6) near t = 0 and assume φ compactly supported in (0, ∞) in ( 7) instead of specifying the initial value at t = 0 and taking φ compactly supported in [0, ∞) in [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF].

Lemma 2.1. Let β ∈ (-∞, 1) and f ∈ L 2 (0, ∞; t β dt, H). Then (8) v(t) = t 0 e -(t-s)A f (s) ds satisfies (1) v ∈ C 0 ([0, ∞); H) and for all t > 0, v(t) 2 ≤ Ct 1-β t 0 s β f (s) 2 ds, (2) v is a weak solution to u(t) + Au(t) = f (t), t > 0, (3) Av(t) = M + f (t) in L 2 loc (0, ∞; dt, H), and v(t) L 2 (0,∞;t β dt,H) + Av(t) L 2 (0,∞;t β dt,H) ≤ C f (t) L 2 (0,∞;t β dt,H) .
Here, by M + we mean the bounded extension to L 2 (0, ∞; t β dt, H).

Proof. The inequality in (1) follows from the uniform boundedness of the semigroup and Cauchy-Schwarz inequality, and this shows that the integral defining v(t) norm converges in H, thus infering continuity on [0, ∞), and also [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]. To check [START_REF] Merdy | The similarity problem for bounded analytic semigroups on Hilbert space[END_REF], it suffices to change order of integration and calculate. The equality M + f = Av is proved by duality against a φ as in [START_REF] Merdy | The similarity problem for bounded analytic semigroups on Hilbert space[END_REF] since such φ form a dense subspace in L 2 c (0, ∞; dt, H). Finally, the inequalities in (3) are consequences of Theorem 1.3.

We now state that all weak solutions have an explicit representation and a trace at [START_REF] Merdy | Similarities of ω-accretive operators[END_REF]. In particular, t → u(t) can be redefined on a null set to be C 0 ([0, ∞); H) with trace h at t = 0. This immediately implies the following existence and uniqueness results.

t = 0. Proposition 2.2. Let β ∈ (-∞, 1) and f ∈ L 2 (0, ∞; t β dt, H). Let u be a weak solution to u(t) + Au(t) = f (t), t > 0. Then, there exists h ∈ H such that (9) u(t) = e -tA h + v(t) in L 2 loc (0, ∞; dt, H), with v defined by
Corollary 2.3. Let u 0 ∈ H. The initial value problem u(t) + Au(t) = 0, t > 0, with lim τ →0 1 τ 2τ τ u(t) dt = u 0 in H, has a unique weak solution given by u(t) = e -tA u 0 for almost every t > 0. In particular, up to redefining t → u(t) on a null set, u ∈ C ∞ (0, ∞; D(A)) and is a strong solution.

Corollary 2.4. Let β ∈ (-∞, 1) and f ∈ L 2 (0, ∞; t β dt, H). The initial value problem u(t) + Au(t) = f (t), t > 0, with lim τ →0 1 τ 2τ τ u(t) dt = 0 in H, has a unique weak solution given by v defined by (8), up to redefining t → u(t) on a null set.

Proof of Lemma 2.2. Define η(s) to be the piecewise linear continuous function with support [1, ∞), which equals 1 on (2, ∞) and is linear on (1, 2). Let t > 0. For 0 < ǫ < t/4 and s > 0, let η ǫ (t, s) := η(s/ǫ)η((t -s)/ǫ). For the first term, using e -(t-s)A -e -tA ≤ Cs/t from analyticity and ( 6), one sees that ( 

(t) = e -(t-τ )A h ǫ (τ ) for all t ≥ τ . Thus, h ǫ (t)-h ǫ ′ (t) H ≤ 1 b -a b a e -(t-τ )A (h ǫ (τ )-h ǫ ′ (τ )) H dτ ≤ C b a h ǫ (τ ) -h ǫ ′ (τ ) 2 H dτ 1/2
, when t > b. Hence, since (a, b) is arbitrary, h ǫ (t) converges in H to h(t) for each t > 0. Thus, for any φ 0 ∈ H and t > 0, we have

(h ǫ , e -tA * φ 0 ) = (h ǫ (t), φ 0 ) → (h(t), φ 0 ).
Since (h ǫ ) ǫ<1 is a bounded sequence in H by ( 6) and the elements e -tA * φ 0 , t > 0, φ 0 ∈ H, form a dense set of H, we infer that h ǫ has a weak limit in H. Calling h this weak limit we have (h, e -tA * φ 0 ) = (h(t), φ 0 ), hence h(t) = e -tA h as desired. Summarizing, we have obtained -e -tA h + u(t) = v(t) in L 2 (a, b; H) for all 0 < a < b < ∞. Thus, u agrees almost everywhere with the continuous function t → v(t) + e -tA h which has limit h at t = 0.

Remark 2.5. The only time analyticity is used in this proof is in [START_REF] Mcintosh | Operators of type ω without a bounded H ∞ functional calculus[END_REF]. If we had incorporated the existence of an initial value as in [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF] in our definition of a weak solution then analogous proposition and corollaries would hold for all generators of bounded C 0semigroups.

A proof of maximal regularity via Kato's inequality for fractional powers

There are many proofs of the de Simon's theorem, via Fourier transform or operational calculus, and various extensions to Banach spaces. We refer to [6, Section 1].

Here, we wish to provide a proof using "almost orthogonality arguments" (Cotlar's lemma), and Kato's inequality for fractional powers [5, Theorem 1.1] which we recall for the reader's convenience. uA * 2 e -(s-t+u)A * vA 2 e -(s-τ +v)A ds.

This time we use the bound A * α A -α ≤ C(α) for α ∈ (0, 1/2) to obtain, if τ ≤ t, As Kato's inequality holds for all α ∈ (-1/2, 1/2), the argument above can be used to prove that M + is bounded on L 2 (0, ∞; t β dt, H) but for β ∈ (-1, 1). We leave details to the reader.

K(u,v) (t, τ ) ≤ C(u/v) α v 1+α (τ -t + v) 2+α and if t ≤ τ , K(u,v) (t, τ ) ≤ C(u/v) α u 1-α (t -τ + u) 2-α . So,

Let φ 0 e

 0 ∈ H be any boundary function, and choose φ(s) := η ǫ (t, s)e -(t-s)A * φ 0 ∈ Lip c (0, ∞; D(A * )) as test function (by approximating η ǫ (t, s) by a smooth function, this can be done). A calculation yields-1 ǫ 2ǫ ǫ e -(t-s)A u(s), φ 0 ds + 1 ǫ 2ǫ ǫ e -sA u(t -s), φ 0 ds = ∞ 0 η ǫ (t, s)e -(t-s)A f (s), φ 0 dsand since this is true for arbitrary φ 0 ∈ H and η ǫ has compact support, we deduce thatu(t -s) ds = ∞ 0 η ǫ (t, s)e -(t-s)A f (s) ds.Now, we let ǫ → 0 as follows. First, η ǫ (t, s) tends to the indicator function of (0, t) so that the right hand side is easily seen to converge to v(t) in H for any fixed t > 0 by dominated convergence. Fix now 0 < a < b < ∞ and integrate in t ∈ (a, b) the left hand side. Remark that 1 sA u(t) dsdt converges to b a u(t) dt in H. Substracting this quantity from the second term in the right hand side and using u ∈ L 2 loc (0, ∞; H), Lebesgue's theorem yields -sA (u(t -s) -u(t)) ds -s) -u(t)2 H dsdt → 0.

( 0 K

 0 If τ ≤ t, bound a(s) by a(τ ) and getK (u,v) (t, τ ) ≤ Ca(τ )v -α = C(u/v) α u 1-α (t -τ + u) 2-α . K (u,v) (t, τ ) + K (u,v) (τ, t) ) dt ≤ C(u/v) α .By Schur's lemma we obtain T u T * v ≤ C(u/v) α when u ≤ v. We now turn to estimate T * u T v . By symmetry under taking adjoints again, it is enough to assume u ≤ v. We obtain(T * u T v )(g)(t) = ∞ (u,v) (t, τ )g(τ ) dτ where K(u,v) (t, τ ) = ∞ max(t,τ )

  u,v) (t, τ ) + K(u,v) (τ, t) ) dt ≤ C(u/v) αand by Schur's lemma, T u T * v ≤ C(u/v) α when u ≤ v.

We thank Alan McIntosh for discussions on the topic of this short note.

Theorem 3.1. Let A be closed and maximal accretive. For any 0 ≤ α < 1/2, the operators A α and A * α have same domains and satisfy [START_REF] Simard | Counterexamples concerning powers of sectorial operators on a Hilbert space[END_REF] A * α f ≤ tan π(1 + 2α) 4 A α f .

If, moreover, A is injective then A α A * -α extends to a bounded operator on H for -1/2 < α < 1/2.

Maximal accretive means that Re(Au, u) ≥ 0 for every u ∈ D(A) and (λ -A) -1 is bounded whenever Reλ < 0. Note that [START_REF] Simard | Counterexamples concerning powers of sectorial operators on a Hilbert space[END_REF] holds true with different constants for operators which are similar to a closed and maximal accretive operator. Assume A is sectorial of type w(A) < π/2 and injective. Le Merdy showed in [START_REF] Merdy | The similarity problem for bounded analytic semigroups on Hilbert space[END_REF] that A is similar to a maximal accretive operator if and only if A has bounded imaginary powers (i.e. A it is bounded for all t ∈ R). (See also [START_REF] Merdy | Similarities of ω-accretive operators[END_REF] for a more general result and [START_REF] Simard | Counterexamples concerning powers of sectorial operators on a Hilbert space[END_REF] for explicit examples.) But, following earlier works of Yagi [START_REF] Yagi | Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs[END_REF], McIntosh showed in his seminal paper [START_REF] Mcintosh | Operators which have an H ∞ functional calculus[END_REF] that A has bounded imaginary powers if and only if A has a bounded holomorphic functional calculus. (See [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Section 11] for extensive discussions with historical notes.) So proving maximal regularity (i.e. Theorem 1.1) assuming maximal accretivity is the same as proving maximal regularity assuming bounded holomorphic functional calculus. Nevertheless, this direct argument below could be of interest.

Proof of Theorem 1.1 under further assumption of maximal accretivity. Since Ae -(t-s)A annihilates N(A), the null space of A, we may assume g(s) ∈ R(A) for all s > 0. Alternately, we may factor out the null space of A and assume that A is injective, which we do (A is sectorial, so H splits topologically as N(A) ⊕ R(A)).

Then one can write g(s) = ∞ 0 uAe -uA g(s) du u and so we have the representation of M + as

By Cotlar's lemma (see [12, Chapter VII]) it is enough to show in operator norm on

x < ∞ to conclude that M + is bounded on L 2 (0, ∞; H) with norm less than or equal to C. We show that for all α ∈ (0, 1/2) one can take h(x) = C α min (x α , x -α ) .

We begin with

where

uA 2 e -(t-s+u)A vA * 2 e -(τ -s+v)A * ds.

We turn to estimate the operator norm on H of K (u,v) (t, τ ) for fixed (t, τ ). (Recall we fixed (u, v) with u ≤ v.) Since A is maximal accretive and injective, we have A α A * -α ≤ C(α) for α ∈ (0, 1/2). So we write