
HAL Id: hal-00442624
https://hal.science/hal-00442624

Submitted on 21 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electrophoretic mobility of silica particles in a mixture
of toluene and ethanol at different particle

concentrations
M. Medrano, A.T. Perez, Laurent Lobry, Francois Peters

To cite this version:
M. Medrano, A.T. Perez, Laurent Lobry, Francois Peters. Electrophoretic mobility of silica particles
in a mixture of toluene and ethanol at different particle concentrations. Langmuir, 2009, 25 (20),
pp.12034-12039. �10.1021/la900686a�. �hal-00442624�

https://hal.science/hal-00442624
https://hal.archives-ouvertes.fr


Electrophoretic mobility of silica particles in a

mixture of

toluene and ethanol at different particle

concentrations

M. Medrano,† A. T. Pérez,∗,† L. Lobry,‡ and F. Peters‡

Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla (Spain), and

Laboratoire de Physique de la Matière Condensé, CNRS-Université de Nice (France)

E-mail: alberto@us.es

Abstract

In this paper we present measurements of the electrophoretic mobility of colloidal particles

by using heterodyne detection of light scattering. The measurements have been done up to

concentrations of 5.4 % of silica nanoparticles, with a diameter of the order of 80 nm, in a

mixture of 70 % toluene and 30 % ethanol. In order to make possible the measurements at

these concentrations the liquid mixture is chosen as to match the index of refraction of the

particles, thus resulting in a transparent suspension.
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Introduction

Particles of various sorts often acquire charge when are immersed in low conducting liquids. The

electric repulsion between the particles contributes to stabilize the suspension. Although this sta-

bilization is in general weaker than for aqueous media, it isof importance in some industrial areas,

such as printing and xerography, and from a fundamental point of view.

The charge on the particle surface induces the accumulationof ions of opposite sign around

the particle. This gives rise to a structure known as the double layer. When an electric field is

applied to a suspension of charged particles, a force appears on both parts of the double layer. This

force moves the particles with respect to the liquid with a velocity proportional to the applied field.

The coefficient of proportionality is referred to as the electrophoretic mobility. This phenomenon

was observed for the first time by Reuss in 1809. Smoluchowskideveloped the first theory of

electrophoresis for one insulated particle when the zeta potential is small and the particle radius is

much larger than the Debye length,κa≫ 1 (a is the particle radius andκ−1 is the Debye length).

His well known solution for the electrophoretic mobility is

µE =
εrε0ζ

η
, (1)

where µE is the electrophoretic mobility,εr is the relative permittivity of the liquid,ε0 is the

dielectric permittivity of the vacuum,ζ is the zeta potential andη is the viscosity of the liquid.

On the other hand, Hückel obtained the expression of the mobility for particles with a thick double

layer (κa≪ 1)

µE =
2
3

εrε0ζ
η

. (2)

Later, Henry joined both electrophoresis relationswithin an analytical expressionthat is valid

for a single sphere with small zeta potentials and arbitrarydouble layer width. He included the

function f (κa) in the Smoluchowski expressionµHenry = µSmolf (κa). Function f (κa) is known

as the Henry function, this function is 1 whenκa → ∞ (Smoluchowski approximation) and it is
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2/3 whenκa→ 0 (Hückel approximation). For thick double layers (κa < 5), the Henry function

is1

f (κa) =
2
3

+
(κa)2

24
− 5(κa)3

72
− (κa)4

144
+

(κa)5

144

+

[

(κa)4

12
− (κa)6

144

]

eκa
∫ κa

∞

e−x

x
dx... (3)

Both Smoluchowski and Henry solutions did not include hydrodynamic interactionsbetween

neighboring particles.

For a finite volume fraction, even without taking into account hydrodynamic interactions or

double layer overlap, the electrophoretic mobility depends on the volume fraction for the following

reason: when the particle moves in one direction, the same volume of liquid has to movein

the opposite direction. This back flow results in a dependence of the mobility on the particle

concentration as5–8

µE(ϕ) = µE(0) [1−ϕ] , (4)

whereϕ is the particle solid fraction.

Additionally, when the suspension is composedof insulating particles, they alter the distribu-

tion of the applied electric field.8 This fact contributes a−ϕ/2 to the expression ofµE

µE(ϕ) = µE(0)

[

1− 3
2

ϕ +O(ϕ2)

]

(5)

where O(ϕ2) denotes terms of orderϕ2 and smaller.

Reed and Morrison3 studied the hydrodynamic interactions for pairs of particles with a thin

double layer as function of the interparticle distance. They showed that hydrodynamic and elec-

tric interactions cancel each other when the particles havethe same zeta potential. In that case,

equation (5) is expected to describe the electrophoretic mobility.

However, when the particles have a thick double layer, the interaction between them becomes

more complex. As a consequence of the interactions, the electrophoretic mobility decreases asϕ
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increases more quickly than predicted by equation (5). In this case, the mobility is4,9

µE(ϕ) = µE(0)
[

1+Sϕ +O(ϕ2)
]

, (6)

where the coefficientSdepends on the parameterκa. Whenκa is smaller than 20, this coefficient

decreases quickly. The case ofκa as low as 1 has been numerically addressed in Shugai’s work.4

For κa = 1, S is much less than -3/2.

For the case of the aqueous media there are some experimentalelectrophoretic studies, where

the effect of the particle concentration on the mobility is measured.6,10 In our work, we focus on

non aqueous systems.

For concentrate suspensions the use of the electrokinetic sonic amplitude (ESA) effect

is a suitable technique of measurement.11 However, ESA works in the MHz range and the

results rely on some theoretical assumptions concerning the generation of the sonic wave.

Optical techniques are still of application for concentrate suspensions if the liquid is chose as

to match the index of refraction of the particles, renderingthe suspension transparent.

We study suspensions of silica in a mixture of ethanol and toluene with a technique of

photon correlation spectroscopy (PCS). In spite of the factthat there are some commercial

apparatuses available, we have used our own system for two reasons. First, we can apply

higher electric voltages. Second, we have a better control of the data analysis.

We will first recall the theoretical background concerning the PCS technique. Then we present

the materials and the experimental set-up, followed by the experimental results. In the last section,

we discuss them in the light of existing theoretical model and numerical computing based on

hydrodynamic interactions and double layer overlap.

Theoretical Background

The photon correlation spectroscopy (PCS) is a useful method to characterize colloidal suspen-

sions, micellar systems or biologicalmaterials. In PCS, alight beam is directedtowards the
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sample and the scattered light is detected with an appropriate device,usually a photomultiplier .

There are two different PCS methods: homodyne and heterodyne. In the homodyne

method only the scattered light impinges on the photocathode. In the heterodyne method,

a portion of the unscattered light is mixed with the scattered light on the photomultiplier

cathode.

For a set of uncorrelated particles, the autocorrelation function of the light intensity mea-

sured by the photomultiplier in heterodyne detection is (see the Appendix for details):

C2(τ) = 1+α2e−Γτ cos(ωDτ). (7)

where α2 is a constant that depends on some experimental parameters,the constantΓ is the

product Dq2, and the Doppler frequencyωD is defined as

ωD =~q·~v = vqcosα, (8)

where α is the angle between the scattering vector~q and the particle velocity~v.

Figure 1: Geometry for an electrophoretic light scattering experiment.

When particle move by electrophoresis their velocity is~v = µE~E. If the applied electric

field is perpendicular tothe incoming beam, the angleα is θ/2 (see Figure 1). Then the Doppler
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frequency is

ωD =
2πn
λ0

µEEsinθ , (9)

whereE is the module of the electric field andθ is the angle between the incoming and scat-

tered beams. Here, we have supposed that|~ki | ≈ |~ks|, then the scattering vector module is|~q| =

(4πn/λ0)sin(θ/2), whereλ0 is the wave length in the vacuum of the incoming beam, andn is the

refraction index of the scattering medium.

In order to obtain Γ and ωD, we study the real part of the Fourier transform G2(ω) of the

correlation function C2(τ)−1:

Re[G2(ω)] = α2

(

Γ
Γ2+(ω −ωD)2

+
Γ

Γ2+(ω +ωD)2

)

. (10)

This function is a Lorentzian with the peak placed onωD.

If we define the width at mid-height ω(2)
1/2 as the frequency at which the value ofRe[G2(ω)]

is half the maximum value, equation (10) implies thatω(2)
1/2 = Γ.

Figure 2:The normalized Fourier transform of the heterodyne correlation function,C2(t)−1. It shows a peak at the
Doppler frequency.
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Experiment

Materials

It is often assumed that optical methods are only useful for dilute suspensions, when the sample

is transparent. However, it is possible to have a concentrated, yet transparent suspension. The

requirement is that the refraction index of the liquid matches that of the particle.12

We have synthesized spherical and monodispersed silica nanoparticles by the Stöber method,13

which consist in hydrolyse tetraethyl-ortosilicate (TEOS) in ethanol, by using ammonia as catalyst.

The final product is a suspension of silica particles in asolution of ethanol, water, and ammonia.

This suspension is called alcosol. The proportion ofreactants that we usedwas 0.5 M of TEOS

(supplied by Fluka), 0.1 M of distilled water, and 0.2 M of NH3 (30 %) in absolute ethanol.

Ammonia and ethanol were supplied by Panreac.

For preparing the alcosol, we made two different solutions.The first contained 539 ml of

ethanol, 22 ml of NH3, and 31 ml of water. The secondhad 461 ml of ethanol and 130 ml of

TEOS. The second solution was added to the firstonewhile this was being stirred with a magnetic

stirrer. The final mixture was stirred for 3.5 h. The reactionyields 0.31 g of silicafrom 10 ml of

alcosol. In a second step, the particle surface was modified with phenyl groups in order to improve

the suspension stability and to increase the hydrophobity of the particle surface.14 Specifically, we

added 2.75 ml of phenyltriethoxysilane supplied by Fluka. Under stirring, we left the reaction for

one day. The polymer forms a layer on the particle surface providing steric stabilization.

In order to increase the particle concentration, the suspension is centrifuged at 2000 rpm and

the supernatant is removed. After each centrifugation, thesuspension was redispersed by applying

sonication for several minutes. It is importantto prevent the particles from forming a compact

layer at the bottom of the centrifuge tube, because the redispersionwould be almost impossible

to achieve. The next step is to change the remanent liquid by absolute ethanol.To this end, we

centrifuged the suspension and replaced the supernatant byethanol. The solid fraction of silica in

the absolute ethanol was measured by evaporating a known volume of suspension and by weighing
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the driedresidue. With this procedure the particle concentration obtained was of 18 % in volume,

where we have taken a silica density of 2.0 g/cm3.15

Figure 3: SEM micrograph of the particles.

The particle size was determined by analyzinga set ofScanning Electron Microscopy (SEM)

photographs.Figure 3 shows one of this photographs.The diameter obtained was (88± 8) nm.

Therefractive index of the particles is 1.46 and its density is 2.0 g/cm3.

The suspension of silica in ethanol is completely opaque. This is due to the difference between

the particle and the liquidrefractive indexes, 1.46 and 1.36 respectively.15 In order to match the

refractive indexes, the suspending liquid was chosen as a mixture of toluene (70 %) and ethanol

(30 %).16 For such a liquid,we did not observe multiple scattering, and the scattered intensity

was sufficiently high formeasurementsto be performed. The conductivity of this mixture was

measured to be 6.7± 0.3µS/m and the relative permittivity was 6.8± 0.5. Both parameters were

measured with a device designed and built by the authors.17,18

Experimental set-up

Figure 4 shows a diagram of the experimental set-up. The mainlaser beam is divided into two

beamsby means ofa beam splitter. The first beam comes to the measurement cell,and a lens

focusses it at mid-distance between the cell electrodes. The second beamis led directly to the
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Figure 4:Diagram of the experimental set-up used for the heterodyne detection.

photomultiplier with the help of two mirrors. On the photomultiplier, the second beam and the light

scattered by the sample are mixed together.The electric signal produced by the photomultiplier

is sent to the correlator boardinside the computer.The correlator counts the number of pulses

and computes the autocorrelation function.

A set of diaphragms and lens are used to focus the scattered light onto the photomultiplier

window and to choose the scattering volume of the cell.

The light intensity is regulated with two filters: one is in front of the laser and the other is placed

on thesecondarybeam path. These filters allow to choose the intensity ratio between the scattered

light and thesecondarylight beam. In heterodyne detection, the intensity of the scattered beam

must be at least ten times lower than thesecondarybeam. Thus, the filters have to be changed for

each sample, because the scattered light intensity varieswith particle concentration.

The measurement cell is a dip cell suitable for organic liquids supplied by Malvern. It has a

square section of 1 cmsideand an electrode gap of 2 mm. In order to minimize the refraction of

the light, the cell is placed into the center of a cylindricalethanol bath. The best would have been to

use a bath with the same solution toluene-ethanol, but we came up against serious difficulties with

the toluene vapor, because it dissolves some plastic piecesthat supports the measurement cell. We

control the angle of the scattered light withthe help ofgoniometer, in our case we use an angle of

25◦. For the calculations it is necessary to correct the scattering angle due to the refraction between

the sample (n = 1.46) and the ethanol bath (n = 1.36).The corrected scattering angle is 23.18◦.
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We applied for 50 s a symmetric square signal with a frequencyof 1 Hz. The temperature

is measured andmonitored for each measurement, always this has been between 18 and 20◦C.

Results and Discussion

Doppler frequency measurement
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Figure 5:Example of some heterodyne correlation functions when the particles are undergoing electrophoresis. In
this case the suspension has a concentration of particles of4.5 % in volume. The electrical signal is a symmetric
square one with a frequency of 1 Hz and an amplitude of 20.0, 27.5 and 35.0 KV/m.

Figure 5 shows several heterodyne correlation functions computed by the correlator, when the

particles are undergoing electrophoresis. In order to obtain the Doppler frequency from the data set,

wecomputethe Fourier transform of the heterodyne correlation function. According to equation

(10), we identify the frequency of the maximum with the Doppler frequency. Figure 6 shows

the spectrum of the correlation function for a voltage of 50 Vbetween the electrodes (25 KV/m).

Mobility measurement

In order to determine the electrophoretic mobility, we measure the Doppler frequency for several

electric fields. Figure 7 plots the Doppler frequencies versus the applied electric field for a suspen-
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Figure 6: The functionG(ω) is the Fourier transform ofC2(τ)−1. This figure corresponds to the data obtained for
an applied electric field of 25 KV/m to our suspension. The particle concentration is 4.5 % in volume. It shows a peak
at the Doppler frequency.

sion with a particle concentration 4.5 % in volume. Thefrequency values have a linear relation

with the applied voltage,as relation (9) predicts. The electrophoretic mobility is obtained from

the slope of this straight line.

By using this method, we have obtained the electrophoretic mobility for several particle con-

centrations. Specifically, the particle concentrations was varied from 0.32 % to 5.4 % in volume.

The values of the mobility measurements with their error bars, are shownin Figure 8. For

certain values of the electric field, we have also measured the mobility of the samples using a

nano zetasizer of Malvern. The results are compatible with values obtained by PCS method. The

zetasizer allows to determine the sign of the particle charge, which is negative.

Figure 8 shows how the electrophoretic mobility decreases with the particle concentration.

Since we worked with semi-dilute suspensions (ϕ < 0.06), the values of the electrophoretic mo-

bility can be fitted to relation (6) discarding the termO(ϕ2):

|µE(0)| = (2.7±0.2)10−9 m2/Vs

S= −8±2

This shows thatµE decreases with particle concentration faster than predicted by relation (5),
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Figure 7: Doppler frequency versus applied electric field between theelectrodes. The particle concentration is 4.5
% in volume. The straight line is theleast square fitto the data. We have taken several measurements ofωD for each
value of the electric field.
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Figure 8: Electrophoretic mobility versus solid fraction. Each point in the plot corresponds to a different sample.
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which corresponds toκa≫ 1.

Mobility polydispersity

When the applied electric field increases the Doppler frequency also increases. At first sight, and

since the factore−Γτ in equation (27) does not depend on the electric field, the heterodyne autocor-

relation functionshould have morevisible oscillations as the electric field increases. Therefore,

for higher electric field, we expect that the spectrum peaks will lie farther from the originand

be better resolved. But Figure 5 shows that the number of visible oscillations in the correlation

function does not increase with the electric field. In fact this figure shows that the amplitude of the

correlation function decreases faster for larger fields. Moreover, what it is observed experimentally

is a broadening of the peaks in the Fourier transform of the correlation function as the electric field

increases (see Figure 9). Besides, a decrease in the value of the maximumvalue is found.

 0
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 25

 0  0.5  1  1.5  2

R
e[
G

(ω
)]
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25 kV/m
30 kV/m
35 kV/m

Figure 9:Fourier transform of the heterodyne correlation function for three values of the electric field. The Doppler
frequencyincreaseswith the electric field,and the peaks become smaller and wider.

This effect wasnoticed in other works,10,20where it is attributed to a diffusion coefficient de-

pendence on the electric field. Effectively, accordingly toequation (10), the coefficientΓ increases

apparently with the applied voltages. Furthermore, the equation (10) implies that the broadening

of the peaks is due to increase ofΓ. However, thisis not physically sound, since the diffusion
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coefficient is directly related to the particle size.

On the other hand, Wu21 suggests that a broadening of the peaks in heterodyne spectra is

due to a mobility polydispersity. In fact, the expression (26) is valid only if the particles have

all the same electrophoretic velocity. But, if there is a electrophoretic velocity distribution or,

in other words, a Doppler frequency distribution, the effect of this polydispersitywill affect the

correlation functions.

To analyze the effect let us assume a Gaussian distribution of Doppler frequencies

P(ωD) =
1√

2πσω
e
− (ωD−ωD0)2

2σ2ω , (11)

whereωD0 is the average Doppler frequency andσω is its dispersion. The new correlation function

of the electric field is

g(t) =

∫ +∞

−∞

1√
2πσω

e
− (ωD−ωD0)2

2σ2ω e(−Γ+iωD)tdωD

= e−Γte−σ2
ω t2

eiωD0t . (12)

With this new expression of the correlation function of the light electric fieldand equation

(23), the expression of the correlation function for heterodyne detection is

C2(t) = 1+α2Re[g(t)] = 1+α2e−Γt−σ2
ω t2

cos(ωD0t). (13)

This expression showsthat the relaxation time of the correlation functions depends on the

Doppler frequency dispersion.

The Fourier transform of correlation function (13) has not an analytical expression. But we

can calculate the limits whenσω ≪ Γ andσω ≫ Γ. For the first case, we can takeσω → 0, then

the Fourier transform will be relation (10). In the second case, where the frequency dispersion
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dominates, we can take the limitΓ → 0, then the Fourier transform of equation (13) is

Re[G2(ω)] =
1
2

√
2π

σω

[

exp

(

−(ω −ωD0)
2

2σ2
ω

)

+

exp

(

−(ω +ωD0)
2

2σ2
ω

)]

. (14)

For high electric fields, where we can neglect the diffusion term in the autocorrelation func-

tions,the frequencyω(2)
1/2 is determinedby the frequency dispersion

ω(2)
1/2 = σω

√
2ln2. (15)

The interesting point is thatσω depends on the electric field, since

ωD =
2πn
λ

sin(θ)µEE

σω =
2πn
λ

sin(θ)σµE, (16)

whereµE is the electrophoretic mobility andσµ is its dispersion. Therefore,ω(2)
1/2 increaseslin-

early withE.

Relation (16) explainsthe peak broadening in the heterodyne autocorrelation function (see

Figure 9). In short, for small electric fields, the relaxation time of the correlation functions is

dominated by the diffusion coefficient, whereas for high electric fields the frequency dispersion

dominates. Another important conclusion is that mobility polydispersity only affects the width of

the peaks, whereas the average Doppler frequency does not vary.

On the other hand, due to mobility polydispersity the autocorrelation function decays in a time

of orderσ−1
ω . The period of the oscillations of the same function isω−1

D . Both quantities depend

on the electric field, as equation (16) shows, but their ratiois independent of it.However, we can
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not measureσω directly,but only the value ofω(2)
1/2. In fact

1/ω(2)
1/2

1/ωD
=

µE

σµ
√

2ln2
, (17)

that can be used to calculate the value ofσµ .

Although we have assumed a Gaussian distribution of Dopplerfrequencies, this will not be so

in general. However, the main conclusion that thevalue ω(2)
1/2 increaseswith the electric field due

to the mobility polydispersity, will remain true. Even more, equation

(17) can be used, at least, as an estimation of the mobility polydispersityσµ .

Table 1: Ratio between the Doppler frequency,ωD, andω(2)
1/2. It tends to a constant value close to 0.6. The

concentration of particles is 4.5 % in volume.

E (KV/m) ωD (rad/s) ω(2)
1/2 (rad/s)

ω(2)
1/2

ωD

25.0 320 63 0.20
27.5 352 214 0.61
30.0 364 238 0.66
32.5 434 251 0.58
35.0 439 283 0.64

Table Table 1 shows how the ratio betweenthe Doppler frequencyand ω(2)
1/2 does not change

with the electric field when this is high enough. From the dataof table Table 1, we can estimate

experimentally the mobility dispersionσµ if we takeω(2)
1/2/ωD ≈ σµ/µE. The mobility dispersion

resultsof the order of 0.6µE.

Discussion

First, it is worth evaluating the double layer thickness. Wedid not add electrolyte to the suspension,

therefore, the double layer is formed from solvent molecules and impurities. In order to estimate
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the Debye length, we use the expression:

κ−1 =

√

Dεrε0

σ
, (18)

whereε0 is the dielectric permittivity of thevacuum,εr is the relative permittivity of the toluene-

ethanol mixture,D is the diffusion coefficient of ions andσ the electrical conductivity of the

liquid.

Considering a typical value for the diffusion coefficient oforder of 10−9 m2/s andthe mea-

sured value for the conductivity, we obtainκ−1 ≈ 90 nm andκa≈ 0.44. Under these conditions

particle-particle forces cannot be neglected. In fact, thetypical distance between particles varies

from 500 nm, for a concentration of 0.36 %, to less than 200 nm for concentrations higher than

4.5 %; this leads to overlap of the double layers.

In Shugai’s work,4 the mobility of suspensions with thick double layer is numerically studied.

In addition toκ−1, another characteristic length enters the pair correlations functionsg(r). This is

the Bjerrum length

λB =
e2

4πε0εrkBT
. (19)

In our case,aλ−1
B ≈ 5. Shugaiet al,4 for κa = 1 and aλ−1

B = 10, obtained for the parameter of

equation (6)S≈−6. The experimental measurement that we have performed is thus in quite good

agreement with this numerical result.

Another important point discussed by Ennis9 and Shugai4 is the following: due to hydrody-

namic interactions between pair of particles, the mobilityin a direction parallel to the line oftheir

centers is different from the mobility in the transverse direction. As a consequence, in suspension,

the particle velocity has fluctuating components, leading to mobility dispersion. Foraλ−1
B = 10

andκa = 1, Shungaiet alcomputes the fluctuation in particle mobility
σµ
µE

≈ 7 ·10−2.

For smaller values ofaλ−1
B andκa, Shugaiet alshow that a larger value ofσµ µ−1

E is expected.

Therefore, our measurements are in qualitative agreement with the numerical computation.

Other sources of mobility dispersion should be taken in account. First, the 10 % size poly-
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dispersity could have implications in the mobility dispersion. Unfortunately, this has not been

numerically explored in the work by Shugaiet al. Another factor is the surface charge polydis-

persity. Whenϕ → 0, the electrophoretic mobility must agree with Henry equation. In our case,

whereκa≈ 0.44, Hückel equation (2) is precise enough to give the zeta potential from the mobility

at ϕ = 0:

ζ = (47±3)mV.

Assuming that the zeta potential is the potential at the particle surface, the total charge over each

particle can be estimated from the expression

Q = 4πε0εraζ . (20)

We estimatethat the number of elementary chargesis approximately 10. This small quantity

implies that any variation of the electrical charge produces large dispersion of the zeta potential,

and, hence, of the mobility.

Conclusion

In conclusion, the technique of index of refraction matching has allowed us to study the elec-

trophoretic mobility of concentrated suspension by PCS. Ithas been found that the mobility of the

particles decreases with the concentration faster than 1−1.5ϕ, which indicates that the interac-

tions between the particles are important.The measured mean mobility is in good agreement with

the numerical computing by Shugaiet al. This experimental technique enabled us to measure the

mobility polydispersity as well. This polydispersity has been seldom measured in the past. We

think that this is a useful method to get insight in the velocity fluctuations in electrophoresis.
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Appendix

The autocorrelation function is defined as

C(τ) =
〈I(t)I(t + τ)〉

〈I(t)〉2 , (21)

whereI(t) is the light intensity at the initial timet andτ is the time lag. The symbols〈〉 denote

temporal average.

The correlation function (21) may be expressed in terms of the correlation function of the

electric field of the scattered lightg(τ).

For homodyne detection, the correlation function is19

C1(τ) = 1+α1|g(τ)|2 (22)
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and for heterodyne detection

C2(τ) = 1+α2Re[g(τ)] (23)

whereα1 andα2 are constants depending on experimental parameters, such as the coherence area,

and the ratio between the scattered light and the direct beamintensity, for the heterodyne case. The

symbol Re denotes the real part of the complex functiong(τ).

The correlation function of the electric field of the scattered light is

g(τ) =
〈~E(t) ·~E∗(t + τ)〉
〈~E(t) ·~E∗(t)〉

(24)

where~E is the electric field of the light scattered by the scatteringvolume and~E∗ denotes its

complex conjugate.

For uncorrelated particles, the equation (24) becomes19

g(~q,τ) = e−ΓτeiωDτ , (25)

whereΓ is the productDq2,~q the scattering vector (~q=~ki −~ks), D the diffusion coefficient andωD

is the Doppler frequency.

Using equation (25), the correlation functions (22) and (23) take the form

C1(τ) = 1+α1e−2Γτ (26)

and

C2(τ) = 1+α2e−Γτ cos(ωDτ). (27)
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