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The directional effect of a magnetic field on the onset of oscillatory convection is studied

numerically in a confined three-dimensional cavity of relative dimensions 4:2:1

slength:width:heightd filled with mercury and subject to a horizontal temperature gradient. The
magnetic field suppresses the oscillations most effectively when it is applied in the vertical direction,

and is the least efficient when applied in the longitudinal direction sparallel to the temperature
gradientd. In all cases, however, exponential growths of the critical Grashof number, Grc sGr, ratio
of buoyancy to viscous dissipation forcesd with the Hartmann number sHa, ratio of magnetic to
viscous dissipation forcesd are obtained. Insight into the damping mechanism is gained from the

fluctuating kinetic energy budget associated with the time-periodic disturbances at threshold. The

kinetic energy produced by the vertical shear of the longitudinal basic flow dominates the oscillatory

transition, and when a magnetic field is applied, it increases in order to balance the stabilizing

magnetic energy. Moreover, subtle changes in the spatial distribution of this shear energy are at the

origin of the exponential growth of Grc. The destabilizing effect of the velocity fluctuations strongly

decreases when Ha is increased sdue to the decay of the velocity fluctuations in the bulk
accompanied by the appearance of steep gradients localized in the Hartmann layersd, so that an
increase of the shear of the basic flow at Grc is required in order to sustain the instability. This yields

an increase in Grc, which is reinforced by the fact that the shear of the basic flow naturally decreases

at constant Gr with the increase of Ha, particularly when the magnetic field is applied in the vertical

direction. For transverse and longitudinal fields, the decay of the velocity fluctuations is combined

with an increase of the shear energy term due to a sustained growth in stabilizing magnetic energy

with Ha. © 2008 American Institute of Physics. fDOI: 10.1063/1.2856125g

I. INTRODUCTION

Directional solidification is used in the processing of

semiconducting and optoelectronic materials, whose perfor-

mance relies on the homogeneity of the crystalline material.
1

In the horizontal Bridgman technique, the molten crystal is

contained in a crucible which is withdrawn horizontally from

a furnace. Thus, the melt is subject to a horizontal tempera-

ture gradient, which drives endwall convection. In practice,

instabilities in the melt-phase adversely affect the quality of

the crystal, as they impose temperature-fluctuations at the

solidification front and lead to striations in the crystalline

product.
2
The application of a magnetic field is common in

modern crystal growing facilities because of its overall

damping effect on the convective flow. In particular, stria-

tions may be eliminated by choosing a suitable magnetic

field, as shown independently by Utech and Fleming
3
and

Hurle.
4

Thus, there is considerable interest in understanding the

damping action of the magnetic field on time-dependent end-

wall convection in molten metals. The melts are typically

excellent thermal conductors so that the Prandtl number sra-

tio of viscous to thermal diffusivityd is of the order of 10−2.
The other parameters governing the magnetohydrodynamic

convective flow are the Grashof number sratio of buoyancy
to viscous diffusion forcesd and the Hartmann number sratio
of Lorentz to viscous diffusion forcesd.

The influence of a magnetic field on oscillatory convec-

tion in a horizontal Bridgman geometry was first addressed

experimentally by Hurle et al.5 They considered a transverse
magnetic field sperpendicular to both gravity and the applied
temperature gradientd and found that the critical Grashof
number for the onset of time-periodic convection, Grc, fol-

lowed a Ha2 dependence, which indicates the damping of

oscillations with increasing magnetic field. A later study with

the same experimental apparatus
6
revealed chaotic dynamics

for supercritical values of Ha. In strongly time-dependent

convective flows in a vertical slot, temperature fluctuations

were enhanced under weak, horizontal magnetic fields due to

the formation of large scale convective structures. These

were in turn suppressed with the increase of Ha. Recent ex-

periments by Hof et al.7 focused on the directional effect of
the magnetic field in a rectangular enclosure of relative di-
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mensions 5.0:1.3:1.0 slength:width:heightd. They found that
the critical Grashof number scales exponentially with Ha for

the three principal orientations of the magnetic field. The

magnetic field suppresses the oscillation most effectively

when it is applied in the vertical direction fGrc /GrcsHa=0d
~exps5.5310−3Ha3dg, compared with the transverse

and longitudinal directions fGrc /GrcsHa=0d~exps1.1
310−2Ha2d and Grc /GrcsHa=0d~exps2.0310−3Ha2d, re-

spectivelyg. The dependence of the frequency of the oscilla-
tions on Gr was found to be approximately similar to that

measured in the absence of a magnetic field.

The exponential growth of Grc with Ha demonstrates the

considerable effect of the magnetic field on the time-

dependent flow even for small values of Ha, for which the

modifications of the underlying bulk flow are usually consid-

ered as minimal compared to the strong modifications ob-

served at large Ha.
8–12

In this paper, we provide insight into

the damping mechanisms at play through the direct compu-

tation of Hopf bifurcation points and the analysis of the as-

sociated three-dimensional flow solutions. Similar continua-

tion calculations have been performed in the absence of a

magnetic field in a rectangular parallepiped enclosure, re-

vealing multiple flow structures depending on the values of

the aspect ratios and Prandtl number.
13
Here, we choose an

enclosure of dimensions 4:2:1 and a Prandtl number of Pr

=0.026, for which the time-periodic flow at Ha=0 is well

understood and characterized.
14
Coincidentally, the enclosure

dimensions chosen by Hof et al.7 have been found to yield

significant resolution issues.
15

Most previous theoretical work on the magnetohydrody-

namic damping of oscillatory convection has been focused

on the linear stability analysis of convective flows in infi-

nitely extended layers subject to a horizontal temperature

gradient.
16–19

When the horizontal confining plates are

rigid,
16
the vertical field is most effective at stabilizing the

flow, suppressing both two-dimensional steady instability

modes fGrc /GrcsHa=0d,expsHa2dg and three-dimensional

oscillatory modes fGrc /GrcsHa=0d−1,Ha2g. The strong

stabilization of the two-dimensional modes correlates with a

similar reduction in the shear energy normalized by Grc. The

horizontal directions of the field are significantly less effec-

tive at damping instabilities, with the transverse and longitu-

dinal field each acting only on three-dimensional and two-

dimensional modes, respectively. Qualitatively similar

results are found in the case of a free upper surface,
17
while

the effect of vertical and horizontal magnetic fields on the

stability of thermocapillary convective flows has been ad-

dressed numerically by Priede and Gerbeth.
20,21

The stability of endwall convection in a two-dimensional

channel with an aspect ratio slength/heightd of 4 has been

established by means of Galerkin simulations.
22
The vertical

orientation of the magnetic field was most efficient at post-

poning the onset of oscillations to higher values of Grc,

whereas the longitudinal field was the least efficient, consis-

tently with the experimental findings of Hof et al.7 The fact
that several different oscillatory modes were encountered at

onset, however, and that the critical Grashof number was

found to depend nonmonotonically on Ha, giving rise to hys-

teresis phenomena, indicates significant deviations from the

experimental results. This is not surprising given the three-

dimensional nature of the bulk convective flow in enclosures

of moderate lateral extent.
12,23

By performing three-

dimensional continuation calculations of magnetohydrody-

namic convection for the three principal directions of the

magnetic field, we find monotonic Hopf bifurcation curves,

where Grc depends exponentially on Ha as in the experi-

ments of Hof et al.7 We shed light on the damping mecha-

nisms involved with the analysis at marginal stability of the

fluctuating kinetic energy budget associated with time-

periodic disturbances.

II. MATHEMATICAL FORMULATION
AND NUMERICAL METHOD

The mathematical model consists of a differentially

heated, rectangular parallelepiped cavity filled with an elec-

trically conducting low-Pr fluid and placed in a constant

magnetic field. The cavity has aspect ratios Ax=L /h and Ay

= l /h, where L is the length of the cavity salong xd, h its

height salong zd and l its width salong yd, as shown schemati-
cally in Fig. 1. The vertical endwalls are isothermal and held

at different temperatures, T̄h at the right hot endwall and T̄c at

the left cold endwall, resulting in a horizontal applied tem-

perature gradient. The sidewalls are adiabatic and all the

walls are electrically insulating. The fluid is assumed to be

Newtonian with constant physical properties skinematic vis-
cosity n, thermal diffusivity k, density rd, except for the
density in the buoyancy term, which in the Boussinesq ap-

proximation, depends linearly on temperature, r=rmf1

−bsT̄− T̄mdg, where b is the thermal expansion coefficient,

T̄m is the mean temperature, T̄m= sT̄h+ T̄cd /2, and rm is the

value of the density at T̄m. Moreau
24

has shown that in

most laboratory experiments using molten metals, the in-

duced magnetic field is negligible, so that the applied mag-

netic field, B= uB ueB, can be considered as the effective

magnetic field. Thus, the convective motion is governed

by the Navier–Stokes equations coupled to an energy equa-

tion. Using h, h2 /n, n /h, rmn2 /h2, g= sT̄h− T̄cd /Ax, n uBu and
sen uB u /h sse is the electric conductivityd as scales for the
length, time, velocity, pressure, temperature, induced electric

potential and induced current respectively, these equations

take the following form:

= · u = 0, s1d

gVl plane

Vt plane Hl plane

T̄hT̄c

x

z

y
O

L

l

h

FIG. 1. Schematic diagram of the geometry of the differentially heated

cavity.
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]u

]t
+ su · =du = − =p + =

2u + GrTez + Ha
2j 3 eB, s2d

]T

]t
+ su · =dT =

1

Pr
=
2T . s3d

The dimensionless variables are the velocity vector u

= su ,v ,wd, the pressure p, the temperature T= sT̄− T̄md /g, and
the induced electric current density j. The nondimensional

parameters arising from the scaling of the equations are the

Grashof number, Gr=bggh3 /n2, the Prandtl number, Pr

=n /k and the Hartmann number Ha= uB uhÎse /nrm. ez and

eB are unit vectors in the vertical direction and in the direc-

tion of B, respectively. In the equation of motion s2d, the
body force Ha2j3eB is the Lorentz force, which results from

the interaction between the induced electric current density j

and the applied magnetic field B. The dimensionless electric

current density j is given by Ohm’s law for a moving fluid,

j = − =f + u 3 eB, s4d

where f is the dimensionless electric potential. Combining

the continuity equation for j, = · j=0, and Ohm’s law s4d, we
obtain the dimensionless equation governing the electric

potential,

=
2f = eB · s= 3 ud . s5d

The boundary conditions are given by ]T /]z=0 on z
=61 /2 and ]T /]y=0 on y=6Ay /2, T=−Ax /2 on

x=−Ax /2 and T=Ax /2 on x=Ax /2, and u=0 and ]f /]n=0
on all boundaries.

In the Boussinesq approximation, the steady convective

flow in this geometry exhibits two distinct symmetries for

moderate Gr,
14
a reflection symmetry Sl with respect to the

longitudinal Vl plane sleft-right symmetryd and a p-rotational

symmetry Sr about the transverse y-axis. These symmetries
are defined, respectively, as

Sl: sx,y,z,td → sx,− y,z,td, su,v,w,Td → su,− v,w,Td,

Sr: sx,y,z,td → s− x,y,− z,td, su,v,w,Td → s− u,v,− w,− Td .

The combination of these two symmetries yields a symmetry

Sc with respect to the center point of the cavity sSc=Sl ·Srd.
When increasing Gr, bifurcations to new flow states ssteady
or oscillatoryd will occur, at which some of these symmetries
will usually be broken.

Equations s1d–s5d coupled to the boundary conditions

were solved in a three-dimensional domain using a spectral

element method described by Karniadakis et al.25 The time
discretization was carried out using a semi-implicit splitting

scheme where the nonlinear terms were first integrated ex-

plicitly, the pressure was then solved through a pressure

equation enforcing the incompressibility constraint swith a

consistent pressure boundary condition derived from the

equations of motiond, and the linear terms were finally inte-
grated implicitly. This time-integration scheme was used for

transient computations with the third-order accurate formu-

lation described in Karniadakis et al.25

The same refined mesh comprising 47349327 points

sin the x, y, and z directions, respectivelyd was chosen for all
our calculations of convective flow in a cavity of aspect ra-

tios Ax=4 and Ay=2, subject to a magnetic field of varying

direction and magnitude. As shown by the convergence tests

given in Table I, this mesh yields excellent resolution of the

threshold, Grc, in the absence of a magnetic field. The preci-

sion slightly decreases when the intensity of the applied

magnetic field is increased, but it remains satisfactory even

for the largest values of Ha sTable Id. The least accurate

results are obtained for a vertical magnetic field at Ha=8.3

sthe highest value of Ha used for this field directiond. In this
case, the variation of Grc with Ha is very steep, but the value

of Grc changes by less than 0.25% when the mesh is further

resolved.

We focused on following steady flow solutions by incre-

menting Gr, and locating bifurcation points at a critical value

of the Grashof number, Grc. The Newton method described

by Henry and Ben Hadid
13
was used to calculate each steady

state solution. Leading eigenvalues and their corresponding

eigenvectors were then determined using Arnoldi’s method

sARPACK library
26d by time-stepping the linearized equa-

tions, as described by Mamun and Tuckerman.
27

The real

parts of the leading eigenvalues were monitored in order to

locate the bifurcation point approximately si.e., the largest

value of Gr for which the real part of the leading eigenvalue

remained negatived. The steady solution and the leading

eigenvectors corresponding to this estimated threshold were

in turn used as initial guesses in the direct calculation of the

bifurcation point, which was performed using the Newton

method described by Petrone et al.28 and Henry and Ben

Hadid.
13
In the Newton methods used for both steady state

solving and threshold calculations, the main idea was to

solve the linear systems appearing at each Newton step with

an iterative solver, and to compute right-hand sides and

matrix-vector products corresponding to these linear systems

by performing adapted first order time steps of the basic or

linearized problem. The advantage of this method was that

the Jacobian matrix did not need to be constructed or stored.

The GMRES algorithm from the NSPCG sRef. 29d software
library was used as the iterative solver.

Important information concerning the physical mecha-

nisms involved in the transition to the oscillatory state and

in the stabilization by the applied magnetic field can be

TABLE I. Mesh refinement tests of numerical accuracy of the critical

Grashof number Grc for the onset of time-periodic convection in a laterally

heated three-dimensional cavity sAx=4, Ay=2, and Pr=0.026d: sad without
magnetic field sHa=0d, sbd with a vertical magnetic field sHa=8.3d, scd with
a transverse magnetic field sHa=21d, sdd with a longitudinal magnetic field
sHa=43.5d. In cases sbd–sdd, the value of Ha is the highest value used in the
calculations for the given direction of the magnetic field.

Mesh 43345323 47349327 51353331

sad 32728.8 32726.9 32726.6

sbd 213794 213273 212746

scd 217367 217301 217395

sdd 233615 233618 233646
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obtained from the calculation at threshold of the fluctuating

kinetic energy budget associated with time-periodic

disturbances. The basic steady solution at threshold

fu ,v ,w ,Tgsx ,y ,zd hor fui ,Tgsxidj and the complex critical ei-
genvector fu8 ,v8 ,w8 ,T8gsx ,y ,zd hor fui8 ,T8gsxidj both enter
the equation of energy budget given by

]k

]t
= eshear + evisc + ebuoy + emagn + epres, s6d

where ]k / ]t is the rate of change of the fluctuating kinetic
energy defined as k=Resui8ui8* /2d sRe and the superscript *
denoting the real part and the complex conjugate, respec-

tivelyd, and

eshear =ReS− u j8
]ui

]x j
ui8
*D,

evisc =ReS− ]ui8

]x j

]ui8
*

]x j
D,

ebuoy =ResGrT8ui8
*di3d,

emagn =RefHa2sj8 3 eBdu8*g,

epres =ReS− ]p8

]xi
ui8
*D .

eshear represents the production of fluctuating kinetic energy

by shear of the basic flow, evisc the viscous dissipation of

fluctuating kinetic energy, ebuoy the production of fluctuating
kinetic energy by buoyancy, emagn the dissipation of fluctuat-
ing kinetic energy by the magnetic forces, and epres the re-
distribution of fluctuating kinetic energy by the pressure fluc-

tuations. We can also define the total sor volume integrald
fluctuating kinetic energy as K=eVkdV. The rate of change

of K is given by an equation similar to Eq. s6d, which in-

volves the volume integral energy terms sdenoted by Ed,

]K

]t
= Eshear + Evisc + Ebuoy + Emagn. s7d

Note that the volume integral pressure term is zero and has

therefore not been included in Eq. s7d. At threshold, the criti-
cal eigenvector is associated with an eigenvalue of zero real

part. This implies that ]k /]t and ]K /]t are both equal to zero
at marginal stability. The calculation of all the individual

energy contributions enables us to determine which term

plays a dominant role in triggering the instability through

production of fluctuating kinetic energy. The corresponding

spatial fields esx ,y ,zd can in turn be analyzed to locate the

production regions. Note that, as shown by Kaddeche

et al.,16 Evisc and Emagn are stabilizing by nature and thus

negative terms.

Finally, if we normalize Eq. s7d by −Evisc= uEviscu, which
is always positive, we can get another equation involving

normalized energy terms E8=E / uEviscu at threshold,

Eshear8 + Ebuoy8 + Emagn8 = 1. s8d

Positive snegatived energy terms are destabilizing sstabiliz-
ingd, respectively. In the remainder of the paper, we simplify
the discussion of the damping mechanism by referring to the

growth or decay of the absolute values of each energy term.

III. RESULTS

We focus on the transition to oscillatory flow in our

model and explore the directional effect of a magnetic field

on this transition, by applying the magnetic field in the three

principal directions svertical, i.e., parallel to gravity; trans-

verse, i.e., perpendicular to gravity and to the imposed tem-

perature gradient; and longitudinal, i.e., perpendicular to

gravity and parallel to the imposed temperature gradientd. We

choose a cavity of aspect ratios Ax=4 and Ay=2, as the onset

of time-dependent flow in this geometry has already been

thoroughly studied by Henry and Buffat
14
in the absence of a

magnetic field. They characterize the flow transitions for sev-

eral values of the Prandtl number, including Pr=0.026 which

corresponds to mercury. For Pr=0.026, the increase of Gr

leads to the concentration of the main convective circulation

into a large roll in the core of the cavity. The oscillatory

transition, which occurs through a Hopf bifurcation at a criti-

cal value of the Grashof number, Grc, is accompanied by the

breaking of the Sr and Sl symmetries, and results in a peri-

odic flow, where the roll oscillates around the central point of

the cavity. The analysis of the fluctuating kinetic energy bud-

get close to threshold has shown that the main destabilizing

contribution comes from shear, and more precisely from the

term connected to the vertical gradient of the longitudinal

velocity of the mean flow. Here, we choose to examine the

influence of the magnetic field on this specific flow transi-

tion. Also, the shear term mentioned above has recently been

shown to be responsible for the destabilization of convective

flows in end-heated cavities over a wide range of aspect ra-

tios and Prandtl number values,
13
suggesting that the findings

of our case study may extend to a broad range of parameters.

In Sec. III A, we discuss the dependence of Grc on the Hart-

mann number, and calculate the global energy budgets in the

three-dimensional cavity. In order to facilitate the under-

standing of the damping effect of the magnetic field in the

three-dimensional cavity, we choose in Sec. III B to extend

the analysis of the more academic case of a fluid layer of

infinite lateral extent, confined between horizontal plates and

subject to a horizontal temperature gradient, which is

strongly stabilized in the presence of a vertical magnetic

field.
16
The spatial distribution of the fluctuating kinetic en-

ergy budget is subsequently analyzed for the magnetic-field-

delayed transition in the three-dimensional cavity in Sec.

III C, based on the methods introduced in Sec. III B.

A. Stability curves and energy budgets
for the three-dimensional cavity

Stability curves representing the dependence of Grc on

Ha, are shown in Fig. 2sad for the three principal directions
of the magnetic field svertical along z, transverse along y,
and longitudinal along xd. The Hopf bifurcation at Ha=0 was

034104-4 Henry et al. Phys. Fluids 20, 034104 ~2008!

Downloaded 14 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



located first, using the method discussed in Sec. II. The

threshold, Grc, was computed directly by Newton’s method,

using previously calculated initial guesses for the bulk flow

and the leading eigenvector. This direct method was subse-

quently employed to gradually obtain the Hopf bifurcation

points for increasing values of Ha for each direction of the

magnetic field. For each incremental value of Ha, the steady

solution and leading eigenvector determined at the previous

step were used as initial guesses.

The steep monotonic growth of Grc with Ha shown in

Fig. 2sad demonstrates that all three directions of the mag-
netic field have a strong stabilizing influence. The dotted

lines represent fits to the data for each direction of the mag-

netic field of the form Grc /GrcsHa=0d~expsaHabd. Expo-
nential fits were found to represent the numerical data most

accurately over the entire range of Ha studied, compared

with low order polynomial fits of the form 1+aHab, which

diverged from the data as Ha increased. Thus, in all three

cases, the critical Grashof number exhibits an exponential

dependence on powers of Ha, so that values of Ha of a few

units are sufficient to double the threshold values. There are,

however, significant differences in efficiency between the

three directions of the magnetic field. The vertical magnetic

field suppresses the oscillation most effectively with a
v
=12

310−3 and b
v
=2.4. Both the transverse and longitudinal

fields are less effective than the vertical magnetic field at

postponing the Hopf bifurcation, since the fits to the onset

curves yield lower but approximately similar powers of Ha

of bt=1.7 and bl=1.6. The action of a transverse field, how-

ever, results in significantly enhanced stabilization compared

to that of the longitudinal field as at=11310−3 is approxi-

mately 2.3 times larger than al=4.75310−3. These findings

are in qualitative agreement with the experimental results of

Hof et al.,7 who also measured exponential dependencies of
Grc on powers of Ha, and observed the strongest damping for

the vertical magnetic field followed by the transverse and

finally the longitudinal fields. The stabilization in our three-

dimensional model, however, is slightly weaker than in the

experiment, with smaller exponents for the Ha dependence

of the exponential, for each direction of the magnetic field.

Note that the fits to the data are not expected to hold for any

value of Ha, due to the complete reorganization of the basic

flow at high Hartmann numbers.

The dependence on Ha of the critical frequency of oscil-

lation, vc, is shown in Fig. 2sbd. svc is the imaginary part of

the leading eigenvalue at the Hopf bifurcation point.d The
continuous nature of the curves indicates that the same mode

of instability is retained over the range of Ha investigated for

all three directions of the magnetic field, consistently with

the experimental observations of Hof et al.7 This also points
to important differences with the two-dimensional model of

Gelfgat and Bar-Yoseph,
22
who encountered multiple modes

of oscillations. The functional dependence of the frequency

on Ha is similar to that of the thresholds, thus yielding a

stronger increase for the vertical magnetic field compared to

the two other directions. Furthermore, when the critical fre-

quency is plotted against Grc fsee Fig. 2scdg, the curves cor-
responding to the different directions of magnetic field col-

lapse, indicating that the growth of the critical frequency can

be directly correlated to that of the threshold of the instabil-

ity independently of the magnetic field. This result is closely

linked to the observation by Hof et al.7 that the Grashof

number dependence of the frequency of oscillation above

onset is virtually independent of the magnetic field.

The four energy terms contributing to the rate of change

of the total fluctuating kinetic energy at threshold fshear of
the basic flow, buoyancy, viscous and magnetic dissipation,

listed in Eq. s7dg were calculated from the basic flow solution

and critical eigenvector. The shear term was decomposed

into its nine individual contributions, corresponding to the

gradients in each of the three directions of the three compo-
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FIG. 2. Variation of the oscillatory threshold Grc sad and of the correspond-
ing angular frequency vc sbd as a function of Ha for a laterally heated

three-dimensional cavity and three orientations of the magnetic field s+ for

the vertical magnetic field, 3 for the transverse field, s for the longitudinal

fieldd. The dotted lines in sad are the fits given in the text. The plot of the

angular frequency as a function of Grc is shown in scd. Other parameters are
Ax=4, Ay=2, and Pr=0.026.
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nents of the basic velocity, in order to identify the dominant

ones. In addition, all the energy terms were normalized by

uEviscu as expressed in Eq. s8d.
The main individual energy contributions at threshold

are shown as a function of Ha in Fig. 3 for the three orien-

tations of the magnetic field. In all three cases, the dominant

production of fluctuating kinetic energy is due to the shear of

the basic flow. This destabilizing contribution is close to 1

for Ha=0 as it acts to balance the viscous dissipation term,

while the contribution of buoyancy is insignificant. As Ha is

increased, the contribution of the destabilizing shear in-

creases approximately proportionally to that of the stabiliz-

ing magnetic dissipation, while the buoyancy contribution

remains negligibly small. These changes with increasing Ha

are more pronounced for the transverse magnetic field than

for the longitudinal field. Interestingly, they are weakest in

the case of the vertical field, where the total shear and mag-

netic energy contributions exhibit only small growths before

levelling off for values of Ha between 7.5 and 8, and then

decreasing for larger values of Ha. Moreover, the decompo-

sition of the shear term indicates that the production of fluc-

tuating kinetic energy is essentially due to the strongly de-

stabilizing term connected to ]u /]z, whereas the term
connected to ]u /]x is clearly stabilizing and all other terms
are small in comparison, and thus negligible.

The above results demonstrate that the oscillatory tran-

sition is dominated by the shear of the basic flow, and more

specifically by the vertical shear of the longitudinal velocity.

This is the case both in the absence and in the presence of a

magnetic field. When Ha.0, the stabilizing magnetic con-

tribution leads to the increase of both the total and dominant

shear contributions. In the case of the vertical magnetic field,

however, the stabilizing magnetic contribution rapidly levels

off as Ha increases, despite the continued growth of the in-

stability threshold. This suggests that the magnetic contribu-

tion is not the dominant source of stabilization in our flow

configuration.

B. Energy analysis of the transitions in a laterally

heated layer subject to a vertical magnetic field

We have seen in Sec. III A that the mechanisms respon-

sible for the stabilization of the oscillatory flow in the pres-

ence of a magnetic field cannot simply be inferred from the

analysis of the global energy budget. Thus, a detailed exami-

nation of the spatial distribution of the shear energy is nec-

essary to gain insight into the damping action of the mag-

netic field. Our first approach is to consider the simpler

problem of magnetohydrodynamic damping in an extended

fluid layer confined between rigid, horizontal walls and sub-

ject to a horizontal temperature gradient,
16
which presents

important similarities with our three-dimensional problem

and offers the advantage of an analytical basic flow solution.

Indeed, the linear stability analysis of this basic flow yields a

strong increase of the threshold for the two-dimensional

steady instability, scaling as Grc /GrcsHa=0d,expsHa2d. In
addition, the analysis at threshold of the kinetic energy bud-

get associated with the two-dimensional disturbances has

shown that the dominant destabilizing contribution comes

from the shear of the basic flow, and specifically the term

connected to s]u /]zd, which incidentally is the only shear
term in this simplified geometry.

An advantage of the analysis performed by Kaddeche

et al.16 is that the basic flow usGr,Had is directly propor-
tional to Gr, usGr,Had=Gr uGsHad. Thus, Gr can be factored
out of the shear energy term, so that Eshear8 =GrEshear9 . A simi-

lar transformation applies to the energy due to buoyancy,

which can be written as Ebuoy8 =GrEbuoy9 . Equation s8d at mar-
ginal stability can then be rewritten as
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FIG. 3. Fluctuating kinetic energy budget associated with the oscillatory

disturbances at threshold in a laterally heated three-dimensional cavity for

the three orientations of the magnetic field: vertical sad, transverse sbd, and
longitudinal scd. The contributions, normalized by uEviscu, are given as a
function of Ha. Solid lines represent the total production by shear sincreas-
ing above 1d, the magnetic dissipation sdecreasing below 0d, and the buoy-
ancy contribution saround 0d. Nonsolid lines represent the individual shear
contributions, but only those larger than 0.1 in absolute value are given.

Other parameters are Ax=4, Ay=2, and Pr=0.026.
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GrcsEshear9 + Ebuoy9 d = 1 − Emagn8 , s9d

which leads to

Grc

Grc0

= SEshear0
9 + Ebuoy0

9

Eshear9 + Ebuoy9
D

R1

s1 − Emagn8 d

R2

, s10d

where the values with the subscript 0 refer to the case where

Ha=0. Kaddeche et al.16 find that the strong increase of Grc
with Ha is caused by the growth of the first factor R1 ssee
Table II, where the results for Pr=0.001 are reproducedd. In
this case, buoyancy is very weak, so that the growth of Grc is

the consequence of the strong reduction in energy generated

by shear through Eshear9 , when the vertical magnetic field is

applied.

In order to deepen the analysis of the shear term Eshear9 ,

we have recomputed the case corresponding to Pr=0.001.

The kinetic energy budget associated with two-dimensional

disturbances is shown in Fig. 4 for Ha=0 and Ha=14, by

plotting the individual energy contributions corresponding to

those expressed in Eq. s6d. Each energy term is normalized

by uEviscu, which yields e8 terms. For Ha=0 fFig. 4sadg, the
shear term is destabilizing in the central half of the layer. The

viscous dissipation occurs in the regions adjacent to the

walls, each of which extends to approximately a quarter of

the depth of the layer, while the buoyancy term is very small

everywhere. Thus, the pressure redistributes the energy of

the disturbances from the center toward the walls. Significant

changes occur when the magnetic field is applied fHa=14,
Fig. 4sbdg. The influence of the destabilizing shear extends
over a broader region, while the viscous and small magnetic

dissipations are concentrated in thin boundary layers sHart-
mann layersd, which develop along the walls.

The Eshear9 term is given by the integral across the layer

of eshear9 szd, which can itself be written as the product of two
terms: s−]uG /]zd, a quantity related to the analytical basic

flow, which is independent of Grc and only dependent on Ha,

and fResw8u8*d / uEvisc u g, a quantity related to the velocity

disturbances at the threshold Grc. Note that the quantities

Resw8u8*d and uEviscu both depend on the normalization cho-
sen for the critical eigenvector, due to the definition of the

disturbances to within a multiplicative constant. Their ratio,

fResw8u8*d / uEvisc u g, however, is independent of this normal-
ization, and thus, this quantity is intrinsic to the flow pertur-

bations. The z-profiles of these three quantities are plotted in
Fig. 5 for increasing values of Ha. The most striking feature

of these plots is the exponential decrease of eshear9 as Ha is

increased up to Ha=14 fFig. 5sadg, which drives the strong

increase of the instability threshold. Note that the term

s−]uG /]zd fFig. 5sbdg determines the sign of eshear9 , since

fResw8u8*d / uEvisc u g fFig. 5scdg is positive across the entire

layer. Thus, the positive values of s−]uG /]zd found in the

central part of the layer delimit the region of destabilization

by shear. The maximum positive value of eshear9 scorrespond-
ing to the most effective destabilizationd is located at z=0,
which also corresponds to the position of the inflection point

of the basic velocity profile. Near the boundaries, however,

eshear9 takes small negative values, indicating a region of weak

stabilization. As mentioned by Kaddeche et al.,16 the strong
decrease of eshear9 is connected to a decrease of s−]uG /]zd in
the central region, due to the flattening of the basic velocity

profile around the inflection point induced by the vertical

magnetic field fFig. 5sbdg. The decrease of eshear9 , however, is

dominated by the rapid decay of the velocity disturbances

fResw8u8*d / uEvisc u g shown in Fig. 5scd. Hence, the strong

stabilization of the flow with increasing Ha results primarily

from the efficient reduction of the scaled velocity distur-

bance product, rather than the modification of the basic ve-

locity profile by the magnetic field.

TABLE II. Characterization of the stabilization by a vertical magnetic field

for the two-dimensional steady disturbances developing in a laterally heated

layer at Pr=0.001 sGrc0=7943d.

Ha R1 R2 Grc /Grc0

3 1.36 1.11 1.51

5 2.25 1.28 2.88

7 4.81 1.48 7.10

9 14.79 1.55 22.88

10 28.47 1.52 43.27

11 56.54 1.48 83.48

12 115.89 1.42 164.51

13 239.76 1.36 325.99

14 491.09 1.30 640.60
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FIG. 4. Spatial distribution of the kinetic energy budget associated with the

two-dimensional steady disturbances at threshold in a laterally heated layer

at Pr=0.001, without magnetic field sHa=0d sad and with a vertical magnetic
field sHa=14d sbd. The buoyancy contribution which is small everywhere is
not plotted.
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The scaled norms of the velocity disturbances contribut-

ing to the disturbance term discussed above, uu8 u /ÎuEviscu and
uw8 u /ÎuEviscu, are in turn plotted individually in Fig. 6. Both
velocity components decrease strongly in the center of the

layer where destabilization by shear occurs, whereas

uu8 u /ÎuEviscu exhibit a weaker decrease along the walls, lead-
ing to the development of sharp gradients in the boundary

layers of the form s]u8 /]zd. Moreover, these gradients in-
creasingly dominate viscous dissipation as Ha increases,

with contributions of 77.8%, 84.6%, 97.6%, and 99.6% for

Ha=0, 5, 10, and 14, respectively. Thus, it is the develop-

ment of these gradients as Ha is increased, which is respon-

sible for the strong viscous dissipation in the Hartmann lay-

ers shown in Fig. 4sbd for Ha=14.
Overall, the increasing contrast between the strong ve-

locity gradients near the boundaries sdriving the viscous dis-
sipation energy uEviscud, and the weak velocities in the center
of the layer fcontained in Resw8u8*d and responsible for the
destabilizationg, seems to be at the origin of the strong de-
crease of fResw8u8*d / uEvisc u g observed when Ha is

increased.

In the three-dimensional cavity, however, the bulk flow

is not simply proportional to Gr. Thus, we cannot extract Gr

from the fluctuating kinetic energy equation and have to keep

Eshear8 in Eq. s8d. In order to make a parallel between the
simpler case of the extended layer and the three-dimensional

model, the z-profiles of eshear8 and s−]u /]zd at Grc are pre-

sented in Fig. 7 for the extended layer. fIn the following, the
shear s−]u /]zd at Grc will be denoted as s−]u /]zdc.g When

Ha increases, the destabilization region indicated by the posi-

tive values of eshear8 broadens and the maximum value of eshear8

undergoes a small increase fFig. 7sadg. The term s−]u /]zdc

increases strongly with Ha, but this is due to the sharp rise in

Grc fFig. 7sbdg. We will comment further on these profiles

when discussing the three-dimensional case in Sec. III C.

C. Shear energy analysis at threshold
in the three-dimensional cavity

A shear energy analysis analogous to that presented in

Sec. III B is performed at the onset of time-dependence in

the three-dimensional cavity. We focus on the dominant de-

stabilizing shear term connected to s]u /]zd and analyze its

evolution with increasing magnetic field. As in Sec. III B,

this shear energy term is the volume integral of the product

of two terms evaluated at threshold, the derivative of the

basic flow, s−]u /]zdc, and the product of the velocity fluc-

tuations divided by the viscous dissipation term,

fResw8u8*d / uEvisc u g.
Isolines of these two fields and their product are plotted

in the Hl and Vt planes ssee Fig. 1 for the definition of the

planesd in Fig. 8 for Ha=0. The symmetries of the bulk flow
sSr and Sld are both broken at the Hopf bifurcation point, but
the flow retains its symmetry about the center of the cavity,

Sc ssee Sec. IId. Because of the Sl symmetry breaking, the

velocity fluctuations u8 and w8 have opposite signs at points
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FIG. 5. Variation with Ha of the z-profiles of shear eshear9 sad and of its

decomposition terms s−]uG /]zd sbd and fResw8u8*d / uEvisc u g scd associated
with the basic flow and the two-dimensional steady disturbances at thresh-

old, when a laterally heated layer at Pr=0.001 is stabilized by a vertical

magnetic field. For Ha varying from 0 to 14, the maximum values of the

profiles are, respectively, 4.1383310−4, 1.6285310−4, 0.1078310−4, and

0.0076310−4 for sad, 0.0417, 0.0235, 0.0093, and 0.0050 for sbd, 9.932
310−3, 6.938310−3, 1.156310−3, and 0.151310−3 for scd.
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reflected about the Vl plane and are zero in this plane. The

breaking of the Sr symmetry results in u8 and w8 retaining

the same sign at points separated by a p-rotation about the

transverse y-axis. Thus, the product of u8 and w8 retains the

same sign at all these points, and is zero in the Vl plane. In

Fig. 8sbd, fResw8u8*d / uEvisc u g takes significant positive val-
ues in two regions at midheight and midlength in the cavity

on either side of the Vl plane. s−]u /]zdc remains positive and

approximately constant in these regions fsee Fig. 8sadg.
Hence, it is the velocity disturbance field which primarily

determines the domain where s−]u /]zdcfResw8u8*d / uEvisc u g
has non-negligible positive values fFig. 8scdg.

The same scalar fields as in Fig. 8 were examined at

threshold when vertical, transverse and longitudinal mag-

netic fields were applied. The regions where the contribution

of the shear energy is not negligible are similar to those

observed in the case of Ha=0. Similar general trends were

also found in all three cases, with an increase of s−]u /]zdc

and a decrease of fResw8u8*d / uEvisc u g, as Ha is raised. These
findings are analogous to the results in the extended layer

fsee Figs. 7sbd and 5scdg.
A quantitative measure of the effect of the magnetic field

on the local components of the shear energy at threshold is

obtained by plotting profiles of s−]u /]zdc and

fResw8u8*d / uEvisc u g along the y axis sz=0 and x=0d. The
profiles are shown in Figs. 9–11 for the vertical, transverse,

and longitudinal directions of the magnetic field, respec-

tively. A reduction in fResw8u8*d / uEvisc u g occurs as Ha is
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FIG. 7. Variation with Ha of the z-profiles of shear eshear8 sad and of one of its
decomposition terms s−]u /]zdc sbd hthe other term fResw8u8*d / uEvisc u g is

already given in Fig. 5scdj associated with the basic flow and the two-

dimensional steady disturbances at threshold, when a laterally heated layer

at Pr=0.001 is stabilized by a vertical magnetic field. For clarity, the plot of

s−]u /]zdc is focused on the positive values. For Ha varying from 0 to 14, the

maximum values of the profiles are, respectively, 3.287, 3.731, 3.705, and

3.873 for sad, 331, 538, 3205, and 25629 for sbd.
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FIG. 8. Isolines of s−]u /]zdc sad, fResw8u8*d / uEvisc u g sbd, and

s−]u /]zdcfResw8u8*d / uEvisc u g scd associated with the basic flow and the os-

cillatory disturbances at Grc in a laterally heated three-dimensional cavity

without magnetic field sHa=0d: views in the Hl plane sleft picturesd and in
the Vt plane sright picturesd. For s−]u /]zdc, nine isolines are plotted from 0

to 800 sstep 100; 0 is on the vertical boundaries and on the isolines inter-

secting these boundaries; for clarity, the negative isolines in the Vt plane are

not givend; for fResw8u8*d / uEvisc u g, 14 isolines from −0.6310−3 to 3.3

310−3 sstep 0.3310−3; 0 is on the boundaries and on the isolines intersect-

ing the boundariesd; for s−]u /]zdcfResw8u8*d / uEvisc u g, nine isolines from 0

to 2.4 sstep 0.3; 0 is on the boundaries and on the isolines intersecting the

boundariesd. Other parameters are Ax=4, Ay=2, and Pr=0.026.
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FIG. 9. Variation with Ha of the y-profiles of s−]u /]zdc sad and

fResw8u8*d / uEvisc u g sbd associated with the basic flow and the oscillatory

disturbances at Grc in a laterally heated three-dimensional cavity submitted

to a vertical magnetic field sHa=0, 5, and 8 labelled by +, 3, h, respec-

tivelyd. Other parameters are Ax=4, Ay=2, and Pr=0.026.
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increased in all three cases, which is similar to, albeit weaker

than, that observed in the case of the extended layer fsee Fig.
5scdg. This decrease is accompanied by an expansion of the
profiles in the longitudinal direction, and in the case of the

vertical magnetic field, by a narrowing of the profiles in the

transverse direction, which further contributes to the de-

crease of the fResw8u8*d / uEvisc u g contribution to the shear
energy term. In order to retain the energy balance necessary

to trigger the onset of time-dependence, the reduction in

fResw8u8*d / uEvisc u g induces a strong increase of s−]u /]zdc

in all three cases, but this is most pronounced in the case of

the vertical field, where it occurs for small values of Ha.

fThe appearance of peaks in the y-profile of s−]u /]zdc in the

presence of a vertical magnetic field is linked to the prefer-

ential development of the longitudinal basic velocity in the

parallel layers as Ha is increased.
9g Moreover, the increase of

s−]u /]zdc in the presence of transverse and longitudinal

fields is additionally linked to the global increase of the shear

energy term connected to s−]u /]zdfResw8u8*d / uEvisc u g,
which occurs in order to compensate for the stabilizing effect

of the magnetic energy, as discussed in Sec. III A. Note that

this stabilizing effect becomes significant at lower values of

Ha for the transverse magnetic field than for the longitudinal

field ssee Fig. 3d.
It is the growth with Ha of the term s−]u /]zdc that ex-

plains the rise in critical Grashof number. A similar, albeit

stronger, increase of s−]u /]zdc was also identified in the ex-

tended layer fsee Fig. 7sbdg. In that configuration, however,

the situation was simpler to analyze because of the propor-

tionality of the basic velocity field with Gr, which allowed us

to define s−]uG /]zd independent of Grc and depending only
on Ha fsee Fig. 5sbdg. The strong increase of Grc with Ha sby
a factor of 640.6 when Ha was varied from 0 to 14 in Table

IId might be justified by the combined effects of the strong

increase of s−]u /]zdc hmaximum value multiplied by 77.43

fFig. 7sbdgj and the decrease of s−]uG /]zd hmaximum value

divided by 8.34 fFig. 5sbdgj. In the case of the three-

dimensional cavity, a similar exact analysis cannot be per-

formed because the influences of Gr and Ha on the basic

velocity field cannot be isolated. The effect of Ha on the

basic velocity field, however, can be studied at a fixed value

of Gr. For Gr=Grc0
sthe threshold value for Ha=0d, the

maximum values of s−]u /]zd are shown to decrease with

increasing Ha in Fig. 12 for the three directions of the mag-

netic field. This evidence suggests that the increase of Grc
with Ha must be particularly strong to induce the observed

increase of s−]u /]zdc at Grc, when at constant Gr=Grc0
, this

term would decay with increasing Ha. The reduction is par-

ticularly steep in the case of the vertical magnetic field, con-

sistently with the observation of the strongest increase of

Grc, whereas the decay of s−]u /]zd at constant Gr for the

transverse and longitudinal fields is weaker and postponed to

larger values of Ha sa slight increase is even observed for the
transverse field for Ha between 5 and 10d.

The results presented in this section demonstrate that for
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FIG. 10. Variation with Ha of the y-profiles of s−]u /]zdc sad and

fResw8u8*d / uEvisc u g sbd associated with the basic flow and the oscillatory

disturbances at Grc in a laterally heated three-dimensional cavity submitted

to a transverse magnetic field sHa=0, 5, 10, 15, and 20 labelled by +, 3, h,

j, s, respectivelyd. Other parameters are Ax=4, Ay=2, and Pr=0.026.
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FIG. 11. Variation with Ha of the y-profiles of s−]u /]zdc sad and

fResw8u8*d / uEvisc u g sbd associated with the basic flow and the oscillatory

disturbances at Grc in a laterally heated three-dimensional cavity submitted

to a longitudinal magnetic field sHa=0, 5, 10, 20, 30, and 40 labelled by +,
3, h, j, s, P, respectivelyd. Other parameters are Ax=4, Ay=2, and Pr

=0.026.
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a vertical magnetic field, both the strong decrease of

fResw8u8*d / uEvisc u g sdecrease of its intensity and narrowing
of the productive zoned and the strong decrease of

s−]u /]zd at constant Gr with increasing Ha, are responsible
for the sharp rise in the thresholds, while the influence of the

magnetic dissipation is found to be weak. For the transverse

and longitudinal magnetic fields, however, the magnetic dis-

sipation is significant as it induces an increase of the domi-

nant shear term. It is nevertheless the decrease of

fResw8u8*d / uEvisc u g, although less efficient than for the ver-
tical field, but more efficient for the transverse field than for

the longitudinal field, which dominates the increase of the

thresholds with Ha.

Finally, the analysis performed on the extended layer

model suggests that the decrease of fResw8u8*d / uEvisc u g as
Ha is increased may be linked to the combined effects of

strong gradients in the velocity fluctuations developing in the

Hartmann boundary layers along the walls sthese gradients

induce stronger viscous dissipationd, and comparatively

weak velocity fluctuations in the bulk where the destabiliza-

tion process by shear is effective.

IV. CONCLUSION

The directional effect of a magnetic field on the onset of

time-periodic convection has been studied numerically in a

confined three-dimensional cavity. The critical Grashof num-

ber and frequency at the Hopf bifurcation point exhibit simi-

lar exponential dependencies on the Hartmann number, Ha.

The vertical field is the most efficient at postponing the onset

of oscillations to larger values of Gr, followed by the trans-

verse and longitudinal fields, in accordance with the experi-

mental findings of Hof et al.7

The variation of the global energy budget with Ha, cal-

culated at threshold for each of the three principal directions

of the magnetic field, indicates that the oscillatory transition

is dominated by the vertical shear of the longitudinal flow,

and that the magnetic energy is not the dominant source of

stabilization, particularly in the presence of a vertical mag-

netic field. The examination of the spatial distribution of the

dominant shear energy term is required to gain insight into

the magnetohydrodynamic damping mechanism. This quan-

tity is given by the product of the shear of the basic flow

s−]u /]zdc at Grc and the velocity fluctuations

hfResw8u8*d / uEvisc u gj. The strong decrease of

sResw8u8*d / uEvisc u d that results from the formation of steep

gradients of the velocity fluctuations in the Hartmann layers

and the weakening of these velocity fluctuations in the bulk,

couples to the decrease of s−]u /]zd at constant Gr with in-

creasing Ha to induce the exponential growth in critical pa-

rameters. This mechanism alone is at the origin of the damp-

ing in the case of a vertical magnetic field, whereas for

transverse and longitudinal fields, it acts in combination with

the growth in stabilizing magnetic energy.
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