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Abstract

The coherent vortex extraction method, a wavelet technique for extracting coherent vortices

out of turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized

plasma (Hasegawa-Wakatani system). The aim is to retain only the essential degrees of freedom,

responsible for the transport. It is shown that the radial density flux is carried by these coherent

modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the polarization-

drift nonlinearity and vorticity strongly dominates strain, in contrast to the quasi-adiabatic regime.

PACS numbers: 52.55.Fa, 52.35.Ra, 52.25.Fi
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I. INTRODUCTION AND GOVERNING EQUATIONS

One important issue in fusion research is the understanding and control of turbulent ra-

dial flux of particles and heat in magnetized plasmas, in order to improve the confinement

properties of fusion devices1. Indeed turbulence enhances the radial diffusion dramatically

compared to neo-classical estimations. A long standing question has been2–6: what is the

role of coherent structures in this radial transport? The answer to this question requires

extracting and characterizing coherent structures. A particularly appropriate framework to

identify coherent structures is the wavelet representation, where wavelets are basis functions

well localized in both physical and Fourier space7. It has already been used to identify

coherent structures in fluid turbulence and to distinguish them from background incoherent

noise8. These methods have recently been applied to experimental signals of ion density

in the tokamak scrape-off layer9, separating coherent bursts from incoherent noise. In the

present work these methods are applied to assess the role of coherent vorticity structures

in anomalous radial transport in two-dimensional numerical simulations of drift-wave tur-

bulence. Drift waves are now generally considered to play a key role in the dynamics and

transport properties of tokamak edge turbulence (e.g. [10] and references therein). At the

edge, the plasma temperature is low and the collision rate relatively large, therefore the

resistivity is potentially important. The Hasegawa-Wakatani model11,12 is a two-field model

which includes the main features of turbulent transport by resistive drift waves.

In the present work the two-dimensional slab geometry-version of this model is chosen as

a paradigm for drift-wave turbulence in the plasma-edge region. In dimensionless form the

Hasegawa-Wakatani model reads13
(
∂

∂t
−D∇2

)
n + κ

∂φ

∂y
+ c(n− φ) = [n, φ] , (1)

(
∂

∂t
− ν∇2

)
∇2φ+ c(n− φ) =

[
∇2φ, φ

]
, (2)

with n the plasma density fluctuation and φ the electrostatic potential fluctuation. D

and ν are the cross-field diffusion of plasma density fluctuations and kinematic viscosity,

respectively. The Poisson brackets are defined as

[a, b] =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (3)

We identify the x-coordinate with the radial direction and the y-coordinate with the poloidal

direction. The equilibrium density n0 is non-uniform, with a density gradient dn0/dx in the
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negative x-direction, such that the equilibrium density scale Ln = n0/(dn0/dx) is constant

and the value of κ is one. The plasma density fluctuations n are normalized by n0, therefore

n/n0 → n, the electrostatic potential is normalized as eφ/Te → φ, the space as x/ρs → x

and the time as ωcit → t, where e is the electron charge, Te the electron temperature, ωci

the ion cyclotron frequency and ρs = (miTe)
1/2/(eB) is the ion integral lengthscale. B is the

strength of the equilibrium magnetic field in the z-direction and mi is the ion mass. The key

parameter in this model is the adiabaticity c, which represents the strength of the parallel

electron resistivity. It is defined as

c =
Tek

2
‖

e2n0ηωci
, (4)

with k‖ the effective parallel wavenumber and η the electron resistivity.

The vorticity ω is related to the electrostatic potential φ by

∇2φ = ω. (5)

Note that for c = 0, equation (1) corresponds to the advection-diffusion of a passive scalar in

the presence of a (unity) mean scalar gradient in the x-direction. Equation (2) corresponds in

this case to the vorticity equation. For c→ ∞ the Hasegawa-Mima14 one field approximation

is approached,15 which ignores all resistive effects. For c→ 0 we recover the hydrodynamic

limit, which is less relevant to describe edge fusion-plasma. Here two cases will be considered:

a quasi-adiabatic case with c = 0.7, and a quasi-hydrodynamic case with c = 0.01. The case

c = 0.7 is generally considered to be the most relevant for tokamak-research and has been

investigated in several other works (e.g. [4,15]). Both cases differ from the fluid-dynamical

case in that the velocity field is forced through the interaction term c(n− φ). The influence

of this term on the density field can however be considered to be negligible in the quasi-

hydrodynamic case6.

The quantity of interest, the radial particle density flux, is the correlation between the

radial velocity ur = −∂φ/∂y and the particle density,

Γr = 〈nur〉 , (6)

where the brackets denote an average over both time and space. The question we address in

this paper is how coherent structures contribute to this flux. To investigate this, direct nu-

merical simulations of the Hasegawa-Wakatani system are performed on a periodic domain
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FIG. 1: One realization of the vorticity field for the quasi-hydrodynamic case (left) and for the

quasi-adiabatic case (right). The abscissa corresponds to the radial position. The ordinate indicates

the poloidal position. Both range from 0 to 64 ρs. The white frames indicate the dipoles we have

selected in both cases.

discretized with N = 5122 gridpoints. The length of the domain is 64 ρs. A finite difference

method is used in which the nonlinear terms are computed using a method developed by

Arakawa16. The time stepping is performed using a predictor-corrector scheme. The plasma

density diffusion D and viscosity ν are set to 0.01 in normalized units. Computations are

performed up to t = 612. At t ≈ 100 the kinetic energy saturates and a statistically station-

ary state is reached, independent of the (random) initial conditions. Typical realizations

of the vorticity field are shown in figure 1, where one observes coherent structures for both

cases. In each case we select a dipolar structure that we indicate by a white frame. The

quasi-hydrodynamic case exhibits coherent vortices of very different sizes and intensities, in

contrast to the quasi-adiabatic case where the coherent structures are more similar in size

and intensity.

II. COHERENT VORTEX EXTRACTION (CVE)

A. Method

Definitions and details on the orthogonal wavelet transform and its extension to higher

dimensions can be found, e.g., in [7,17]. In the following we fix the notation for the orthogonal

wavelet decomposition of a two–dimensional scalar valued field. The wavelet transform

unfolds the field into scales, positions and directions using a set of dilated, translated and
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rotated functions, called wavelets. Each wavelet is well-localized in space, oscillating (i.e.,

it has at least a vanishing mean, or better its first m moments vanish), and smooth (i.e., its

Fourier transform exhibits fast decay for wavenumbers tending to infinity). We here apply

the coherent vortex extraction (CVE) algorithm8,18 using orthogonal wavelets. In dimension

two, orthogonal wavelets span three directions (horizontal, vertical and diagonal), due to

the tensor product construction. To go from one scale to the next, wavelets are dilated

by a factor two and the translation step doubles accordingly. Wavelet coefficients are thus

represented on a dyadic grid7.

We apply the CVE algorithm to the vorticity fields ω of both the quasi-hydrodynamic and

the quasi-adiabatic regime. The extraction is performed from the vorticity since enstrophy

is an inviscid invariant in the hydrodynamic limit. Moreover, vorticity is Galilean invariant

in contrast to velocity and streamfunction. We consider the quasi-stationary state of the

simulations, i.e., when a saturated regime is reached, and we decompose the vorticity field,

given at resolution N = 22J , into an orthogonal wavelet series

ω(x, y) =
∑

λ∈Λ

ω̃λψλ(x, y), (7)

where the multi–index λ = (j, ix, iy, d) denotes the scale j the position i =

(ix, iy) and the three directions d = 1, 2, 3, corresponding to horizontal, verti-

cal and diagonal wavelets respectively. The corresponding index set Λ is Λ =

{λ = (j, ix, iy, d), j = 0, ..., J − 1; ix, iy = 0...2j − 1, d = 1, 2, 3} . Due to orthogonality the

wavelet coefficients are given by ω̃λ = 〈ω, ψλ〉, where 〈·, ·〉 denotes the L2-inner product

defined as 〈f, g〉 =
∫
f(x, y)g(x, y)dxdy. The wavelet coefficients measure fluctuations of

ω at scale 2−j around the position i, in one of the three directions d. Here a Coifman 30

wavelet is used, which is orthogonal and has 10 vanishing moments17 (
∫
xnψ(x)dx = 0 for

n = 0, ...9).

The CVE algorithm can be summarized in the following three step procedure:

• Decomposition: compute the wavelet coefficients ω̃λ using the fast wavelet transform7.

• Thresholding: apply the thresholding function ρε to the wavelet coefficients ω̃λ, thus

discarding the coefficients with absolute values smaller than the threshold ε.

• Reconstruction: reconstruct the coherent vorticity field ωC from the thresholded
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TABLE I: Compression rate (% of coefficients retained), retained energy E = 1
2

〈
φ ∇2φ

〉
,

enstrophy Z = 1
2

〈
ω2

〉
, and radial flux Γr, after applying the CVE filter to the vorticity field of

the quasi-hydrodynamic and quasi-adiabatic 2D drift-wave turbulence simulations.

Compr. (%) E (%) Z (%) Γr (%)

Quasi-hydrodynamic (c=0.01) 1.3 99.9 97 99

Quasi-adiabatic (c=0.7) 1.8 99.0 93 98

wavelet coefficients using the fast inverse wavelet transform.

The incoherent vorticity field is obtained by simple subtraction, i.e., ωI = ω − ωC .

The thresholding function is given by

ρε(a) =
{

a if |a|>ε
0 if |a|≤ε , (8)

where ε denotes the threshold,

ε =
√
4Z lnN, (9)

where Z = 1
2
〈ω, ω〉 is the enstrophy (which corresponds to half of the variance of the vorticity

fluctuations) and N the resolution. This threshold value allows for optimal denoising in a

minmax sense, assuming the noise to be additive, Gaussian and white8.

In summary, this decomposition yields ω = ωC + ωI . Due to orthogonality we have

〈ωC , ωI〉 = 0 and hence it follows that enstrophy is conserved, i.e., Z = ZC + ZI . Let us

mention that the computational cost of the Fast Wavelet Transform (FWT) is of O(N)7.

B. Compression rates

The results of the extraction are displayed in table I. The compression rate is in both

cases very significant: for the quasi-hydrodynamic case, 1.3% of the modes retain more than

99.9% of the energy and 97% of the enstrophy. For the quasi-adiabatic case, 1.8% of the

modes retain 99.0% of the energy and 93% of the enstrophy. The contribution of the coherent

vorticity to the radial flux is also given in table I. The coherent modes, which contain most

of the energy and enstrophy, are responsible for 99% of the radial particle density flux Γr in

the quasi-hydrodynamic case, and for 98% of Γr in the quasi-adiabatic case. In other words,

Γr is almost exclusively carried by the coherent structures.
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FIG. 2: Top: PDF of the vorticity. Bottom: Fourier spectrum of the enstrophy versus wavenumber.

Left: quasi-hydrodynamic case. Right: quasi-adiabatic case. Dashed line: total field, solid line:

coherent part, dotted line: incoherent part. Note that the coherent contribution (solid) superposes

the total field (dashed), which is thus hidden under the solid line in all four figures. The straight

lines indicating power laws are plotted for reference.

C. Wavenumber spectra and probability density functions

Spectra and probability density functions (PDF), averaged over 512 realizations during

the time interval 100 < t ≤ 612, are shown in Figure 2 for the total, coherent and incoherent

vorticity. The PDF of the total and coherent quasi-hydrodynamic vorticity is far from Gaus-

sian and slightly skewed, while the quasi-adiabatic vorticity is much closer to Gaussianity.

In both cases, the variance of the incoherent part is much smaller than the variance of the

coherent part, which has the same PDF as the total. For the quasi-hydrodynamic case, the

coherent part retains 97% of the variance of the vorticity fluctuations and therefore also
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FIG. 3: (Color online) Scatter-plot of vorticity against electrostatic potential for the coherent part

(top) and incoherent part (bottom). Left quasi-hydrodynamic case, right quasi-adiabatic case. The

light grey (red online) dots correspond to the total field, the dark grey (blue online) dots to the

dipoles we have selected in Fig. 1.

97% of the total enstrophy Z, with Z = 1.4. For the quasi-adiabatic case, the coherent part

retains 93% of the variance of the vorticity fluctuations and hence 93% Z, with Z = 3.4. A

similar result is observed in the enstrophy spectrum computed from the Fourier transform of

the vorticity field, averaged over wavenumber shells of radius |k|, the wavenumber. The total

and coherent enstrophy are the same all over the inertial range and at the highest wavenum-

bers, in the dissipation range, the incoherent part contributes to the spectral enstrophy

density. Both coherent and incoherent contributions are spread all over the spectral range,

but they present different spectral slopes in the inertial range and therefore different spatial

correlations. From the integral wavenumber to the dissipation wavenumber, a negative slope

for the coherent contribution, corresponding to long range spatial correlations, is observed.
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The incoherent part shows a positive slope with a power-law dependence close to k3 in the

inertial range. This corresponds to an equipartition of kinetic energy in two dimensions. A

similar result was obtained in three-dimensional isotropic Navier-Stokes turbulence8.

D. Scatter-plots

We show in figure 3 scatter-plots of the vorticity versus the electrostatic potential corre-

sponding to the fields in figure 1. Both the total part and the incoherent part are shown.

Since the coherent part is almost identical to the total part, it has been omitted. Also shown,

superposed on the same figures, is the scatter-plot corresponding to the zoom on the dipo-

lar structures indicated by a white frame in figure 1. In the freely decaying hydrodynamic

case, c = 0, Joyce and Montgomery19 showed that a functional relation φ(ω) = α sinh(βω)

should be expected, corresponding to a final state of decay depleted from nonlinearity. The

parameters α and β are Lagrangian multipliers, necessary for maximizing the entropy under

constraints. The value 1/β can be associated with a (negative) temperature19. Depletion

from nonlinearity corresponds to steady solutions of the Euler equation, [ω, φ] = 0, implied

by the existence of a functional relation φ(ω). Indeed drift-wave turbulence contains an

internal instability which prevents the flow from decaying. This forcing is present in both

cases considered here and a sinh-Poisson relation cannot be expected a priori for the global

flows. Moreover, the two-field model [equations (1) and (2)] contains two nonlinearities, first

the polarization-drift nonlinearity in the vorticity equation, second the E × B nonlinearity

in the density equation. The latter disappears in the adiabatic limit as n and φ are in phase,

which corresponds to a linear functional relationship. In figure 3, a local depletion of the

polarization-drift nonlinearity is seen for the quasi-hydrodynamic case. The scatter-plot of

φ − ω, corresponding to the dipolar structure, that is indicated by a white frame in figure

1 (left), is close to a sinh-Poisson relation (solid black curve) in spite of the presence of

the forcing term. In the quasi-adiabatic case the dipolar structure, that is indicated by a

white frame in figure 1 (right), does not exhibit such a functional relation. In the incoher-

ent parts (Figure 3, bottom) no functional relation can be distinguished, which confirms

that the incoherent part does not contain any structure, for both quasi-hydrodynamic and

quasi-adiabatic cases.
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E. Strain versus vorticity

A question is now how to quantitatively distinguish between the structures in both cases.

Intuitively it can be inferred that different regions of high vorticity in the quasi-adiabatic

case involve strong mutual shearing which strongly limits their lifetime and the chance to

reach a functional relation φ(ω). Koniges et al. 3 determined the lifetime of individual eddies

compared to the eddy-turnover time τover, i.e. the time it takes for a fluid element in an eddy

to make a 2π rotation. They estimated the lifetime of the quasi-hydrodynamic eddies to be

approximately 10 τover, and the lifetime of the adiabatic eddies (for c = 2.0) approximately

τover. As mentioned in their paper, this measure is quite subjective and very time-consuming,

especially if a full PDF of the lifetimes is to be obtained. Here we propose a simpler way to

distinguish the coherent structures for the different regimes.

In fluid turbulence the Weiss criterion Q20 is a local measure of the strain compared to

the vorticity for a 2D velocity field. The Weiss field is defined as:

Q =
1

4

(
σ2 − ω2

)
, (10)

with

σ2 =

(
∂u

∂x
− ∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2

. (11)

u and v are two orthogonal components of the velocity vector. The Weiss criterion was

proposed to identify coherent structures, but it may lead to ambiguous results because

the underlying assumption that the velocity gradient varies slowly with respect to the vor-

ticity gradient is not generally valid21. We here apply the same criterion to drift-wave

turbulence22–24 but not to identify coherent structures (this being done by the CVE method),

but to distinguish between the quasi-hydrodynamic and quasi-adiabatic cases.

The PDF of the Weiss field (Fig.4) reveals that it is its skewness that differentiates best

the two fields. Indeed, it is more skewed towards negative Q for the quasi-hydrodynamic

case than for the quasi-adiabatic case: the skewness is −11 for the former, compared to −2

for the latter. The PDF shows thus that in the quasi-hydrodynamic case the probability to

find rotationally dominated regions is larger, and the rotation exhibits much larger values,

than in the quasi-adiabatic case. The variance of Q is comparable for the two cases (5 and 4

for the quasi-hydrodynamic case and the quasi-adiabatic case, respectively). The skewness

of the Weiss field Q appears to be a good quantitative measure to distinguish between the
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FIG. 4: PDF of the Weiss field Q for the quasi-hydrodynamic and quasi-adiabatic velocity fields.

two cases studied in the present work. In further studies it can be investigated, whether this

measure can be used to identify coherence in different types of turbulent flows.

III. CONCLUSION AND PERSPECTIVES

In conclusion, we have applied the Coherent Vortex Extraction method to dissipative

drift-wave turbulence. The results show that we can identify the essential degrees of freedom

(less than 2%) responsible for the nonlinear dynamics and transport. The coherent modes

contain almost all the energy and enstrophy and contribute to more than 98% of the radial

flux.

Evaluating the scatter-plot of the vorticity versus the electrostatic potential, it is shown

that the coherent structures in the quasi-hydrodynamic case are close to a state of local

depletion of polarization-drift nonlinearity. In contrast, this is not the case for the quasi-

adiabatic regime, where nonlinearity remains active and no sinh-functional relation between

vorticity and electrostatic potential is observed. This depletion of nonlinearity in the quasi-

hydrodynamic regime may explain the failure of the quasi-linear estimate of the radial flux3.

The skewness of the Weiss field yields a quantitative measure for the difference in nonlinear

behavior of the coherent structures between the quasi-hydrodynamic and quasi-adiabatic

cases.

The wavelet transforms, or the proper orthogonal decomposition (POD), may become

very useful to denoise particle-in-cell simulations of plasma turbulence25. A comparison of

the performance of the POD and CVE method is currently undertaken and will be reported
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in a future paper.
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