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Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains
show the rapid generation of angular momentum in non-axisymmetric geometries. It is found that
magnetic fluctuations enhance this mechanism. On a larger timescale, the generation of a magnetic
angular momentum, or angular field, is observed. For axi-symmetric geometries, the generation
of angular momentum is absent, nevertheless a weak angular field can be observed. The derived
evolution equations for both angular momentum and angular field yield possible explanations for
the observed behaviour.
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The generation of large coherent structures of the size
of the flow domain is a generic feature of two-dimensional
(2D) turbulence. Indeed, due to the inverse energy cas-
cade, 2D flows show a tendency to create space filling
structures. The nature of these structures and the way
they are produced vary from flow to flow. In the context
of Navier-Stokes turbulence the generation of a large-
scale domain-filling structure was predicted by Kraich-
nan [1] and observed in the case of forced turbulence in a
periodic domain in which energy condenses at the small-
est possible wave number modes [2, 3]. In forced wall-
bounded flows this was reproduced numerically [4] and
experimentally [5], and it was shown that a large scale
rotating structure emerges, which dramatically reduces
the level of the turbulent fluctuations [6].

A similar observation can be made in fusion plasmas,
in which the dynamics share many features with 2D
flows due to the imposed magnetic field. It is often as-
sumed that in these plasmas large scale poloidal struc-
tures, called zonal flows, are beneficial for the confine-
ment as they suppress turbulence and shear apart radi-
ally extended structures, which are largely responsible for
anomalous transport [7–9]. The hereby created transport
barriers might play a key role in the transition to an im-
proved confinement state (H-mode) [10]. In the case of
MHD turbulence the role of rotation was shown to have
a similar effect on the flow, reducing the velocity fluc-
tuations and hereby stabilizing the magnetic field [11].
In the present work we will continue the investigation
of wall bounded non-ideal MHD. The generation of zonal
flows through the absence of charge neutrality will not be
addressed (charge neutrality being implied by the one-
field MHD approximation). However, MHD allows for
an affordable global description of non-uniform magne-
toplasmas [12]. The present work could be related to the
L-H transition through the beneficial effects of large scale
poloidal rotation (which is observed in the present work)
on the confinement of the plasma. The present study is
also motivated by the observation that MHD-equilibria
in toroidal geometry imply finite flow-fields due to the
finite viscosity and resistivity [12–14]. In these works
non-ideal MHD steady states were investigated in both

the limit of small and large viscosity. In each case it was
shown that the steady state contains non-vanishing ve-
locity fields, at odds with classical static equilibria, on
which decades of confinement research are based. In the
present work we will not consider steady states but we
will investigate the full nonlinear relaxation of non-ideal
MHD with non-trivial boundary conditions in two space
dimensions. The resistivity and viscosity are non-zero
but small, allowing for a turbulent flow. This approach
can not take into account toroidal velocities and non-
uniform toroidal magnetic fields and the extension of the
present approach to three dimensions constitutes there-
fore an important direction for further research.

In the case of decaying Navier-Stokes turbulence it is
shown that the self-organization in a periodic domain will
lead to a final state, consisting of two, non-interacting,
counter-rotating vortices [15]. This picture changes how-
ever in the presence of no-slip walls. In this case the flow
relaxes to a state with or without angular momentum,
depending on the shape of the domain [16–18]. Indeed
in circular domains without initial angular momentum
the flow generally relaxes to a state free from angular
momentum [19], whereas as soon as the axi-symmetry is
broken the flow relaxes to a state containing a domain
filling structure, containing significant angular momen-
tum [20]. Theoretical progress has been made to explain
the phenomenon in the inviscid case, based on a model
of interacting vortices [21–23].

In the case of bounded two-dimensional MHD it is not
known, up to now, to which kind of state the flow relaxes
and this will be addressed in the present letter. We inves-
tigate the case in which both the magnetic field and the
velocity field can not penetrate into the walls. The veloc-
ity field obeys the no-slip condition at the wall, whereas
the tangential component of the magnetic field can freely
evolve, allowing a net current through the domain. We
will focus however in the present study on the case in
which no net current is initially present.

We start by writing the governing equations. In the
present case we define two angular momenta: a kinetic
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FIG. 1: (Color Online) Visualizations of the stream-function ψ and the vector-potential a for both geometries. Figures for
ψ are normalized by the maximum of |ψ| (and max(|a|) for a). The values of max(|ψ|) are from left to right 0.1, 0.05, 0.03;
0.06, 0.03, 0.01; and for max(|a|) 0.08, 0.06, 0.04; 0.04, 0.03, 0.01. Right: time-evolution of the kinetic and magnetic energy in
both geometries. In the inset, the evolution of the absolute value of the relative cross-helicity 〈| cos(θ)|〉, illustrates the global
alignment of the velocity and magnetic field in both geometries. Red solid line: square geometry; green dashed line: circular
geometry.

and a magnetic one,

Lu =

∫

Ω

ez · (r × u)dA, LB =

∫

Ω

ez · (r ×B)dA (1)

in which Ω is the flow domain, r the position vec-
tor with respect to the center of the domain and u

and B the velocity and magnetic field vector, respec-
tively. Through integration by parts these quantities
can also be expressed as a function of the streamfunc-
tion ψ = ∇−2ω and vector potential a = ∇−2j, respec-
tively, with j = jez = ∇ × B the current density and
ω = ωez = ∇× u, the vorticity:

Lu = 2

∫

Ω

ψ dA, LB = 2

∫

Ω

a dA, (2)

in which a and ψ are chosen to be zero at the wall.
A large value of the angular momentum can generally

be associated with the presence of a large-scale vortical
structure. By analogy we can anticipate that a large
value of LB corresponds to a large-scale current density
structure, and we baptize the quantity LB angular field.
The evolution equations for Lu and LB can be derived fol-
lowing the procedure described in Maassen [24], by time
deriving equations (1) and using the MHD equations:

∂u

∂t
+ (u · ∇)u = −∇p+ j ×B + ν∇2u (3)

∂B

∂t
= ∇× (u×B) + η∇2B (4)

together with ∇ · u = 0 and ∇ ·B = 0. The pressure is
denoted by p, and ν and η are the kinematic viscosity and
magnetic diffusivity, respectively. If we write the Lorentz
force in the form:

j ×B = −1

2
∇B2 + (B · ∇)B, (5)

we can absorb the first term into the pressure term of
the Navier-Stokes equations by introducing the modified

pressure p∗ = p + B2/2. The (B · ∇)B term does not
induce new terms in the equation for Lu. It vanishes in
a similar way as the nonlinear term (u · ∇)u does, using
∇·B = 0 and B ·n|∂Ω = 0. The equation for Lu becomes

dLu

dt
= ν

∮

∂Ω

ω(r · n)ds+
∮

∂Ω

p∗r · ds. (6)

The only difference with respect to the hydrodynamic
case [18] is the pressure which is now replaced by the
modified pressure p∗. In most fusion plasmas, the quan-
tity β = p/B2 ≪ 1 to insure confinement, which means
that the magnetic part of the pressure dominates. It
is important to note that the pressure term in equation
(6) vanishes in axi-symmetric domains. In this work we
therefore consider both a circular and a square domain
to analyze the influence of this term.
The derivation of the equation for LB is analogous to

the derivation for Lu. The resulting equation is:

dLB

dt
= η

∮

∂Ω

j(r · n)ds− 2ηI. (7)

We observe that there is a term involving the net current
I through the domain defined by I =

∫

Ω
jez dA. This

term is the equivalent of the circulation in the hydrody-
namic case, which is zero due to the no-slip walls. The net
current is however not imperatively zero as the tangential
magnetic field does not vanish at the wall. Nevertheless,
a net current will not be generated if it is initially zero,
which is the case in the present work.
We performed computations in two different geome-

tries: a square of size D = 2 and a circular geometry
with a diameter D = 2.24. A description of the genera-
tion of the initial conditions and the numerical scheme,
a spectral method with volume penalization, are given
in [25]. The initial velocity and magnetic field consist of
correlated Gaussian noise with vanishing cross-helicity
∫

Ω
u ·B dA. The magnetic Prandtl number, ν/η is equal

to one. The initial Reynolds number, based on the do-
main size is

√
2EuD/ν and yields 1960. The ratio of



3

the magnetic and kinetic energy EB/Eu = 2.3, with
Eu = 1

2

∫

Ω
|u|2 dA and EB = 1

2

∫

Ω
|B|2 dA. The reso-

lution of the simulations is 5122 Fourier modes. In each
geometry 10 runs were performed starting from different
statistical realizations with the same initial parameters.
The numerical value of a and ψ is not automatically zero
at the domain boundary. This is accomplished a posteri-
ori by substracting a constant value at each point in the
domain.

In figure 1 snapshots of the streamfunction and vec-
tor potential are shown at t∗ = 0.75, 3, 12 with t∗ =
t
√

2Eu(t = 0)/D. It can be inferred from (2) that these
quantities should give a good visual interpretation of the
presence of angular momentum and field. At time-instant
t∗ = 0.75, in which inertial effects are dominant over
viscous effects, it is well visible that the velocity field
self-organizes into a large domain-filling structure in the
square geometry, whereas in the circular geometry sev-
eral structures are observed. At t∗ = 3 a large structure
appears also in the magnetic field in the square geom-
etry. At t∗ = 12 the large-scale velocity and magnetic
structures in the square domain are (anti-)aligned. In
the circular domain the tendency to create domain filling
structures is weaker, even though the magnetic field in
the circular domain shows some evidence of the formation
of a large current-structure at t∗ = 12. To characterize
the relaxation of the flows in both geometries, we also
show in figure 1 the decay of the kinetic and magnetic
energy in both domains, as well as the absolute value
of the cosine of the alignment angle. A continuous de-
crease of kinetic and magnetic energy is observed and a
continuous increase of global alignment.

At this moderate Reynolds number, spin-up, i.e., spon-
taneous generation of angular momentum, does not oc-
cur in every flow realization. Also the criterion what is
strong or weak spin-up is rather arbitrary. We there-
fore focus first on mean quantities to illustrate the gen-
eral tendency to spin-up. In figure 2 we show the abso-
lute value of the angular momentum, averaged over 10
runs. We take the absolute value because there is no
preferential direction of the spin-up so that an average of
the angular momentum would yield values close to zero
for all cases. The time-evolution of 〈|Lu|〉 and 〈|LB|〉
is shown for both the square and the circular geometry.
〈·〉 denotes the average over 10 realizations. The quanti-

ties are normalized by Lu(0) = ‖r‖2
√

2〈Eu(t = 0)〉 and

LB(0) = ‖r‖2
√

〈2EB(t = 0)〉, with ‖r‖2 the Euclidean
norm of r. The quantity Lu(t) corresponds to the value
of the angular momentum of a flow in solid-body rotation
with kinetic energy 〈Eu(t)〉, which is the flow which opti-
mizes the value of the angular momentum for a given ki-
netic energy. By analogy, LB(t) is used to normalize the
angular field. The following is observed: at short times
Lu rapidly increases in the square, but does not increase
in the circular geometry. The value of LB also increases
in the square, but delayed with respect to Lu. In the
circular geometry an increase of LB is also observed. In
the inset the values of 〈|Lu|〉 and 〈|LB|〉 are plotted nor-
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FIG. 2: (Color online) Top: Time evolution of the absolute
value of the angular momentum and angular field, averaged
over all realizations, normalized by Lu(0) and LB(0), respec-
tively. In the insert the same quantities are given, normalized
by Lu(t) and LB(t) (defined in the text). Bottom: time-
dependence of the angular momentum Lu in the square and
circular geometry, normalized by Lu(0). The influence of the
magnetic pressure on the spin-up in the square container is
illustrated by changing the ratio EB/Eu, while keeping Eu

fixed.

malized by Lu(t) and LB(t). This normalization has the
advantage to correct for the decay of the kinetic and mag-
netic energy but has the disadvantage that it is sensitive
to selective decay [26] so that at long times we observe
generation of angular momentum in each case even if its
absolute value might be small. In the following we will
give, where possible, an explanation for the 4 curves in
figure 2.
First, in the square geometry a strong spin-up of the

velocity field is observed. In the hydrodynamic case, it
was argued in [18, 20] that the pressure term triggers
the spin-up in the square geometry. The magnetic field
enhances the pressure term through the magnetic pres-
sure (p∗ = p+B2/2). If in the present case it is also the
pressure term in (6) which triggers the spin-up, the effect
could be enhanced by increasing the magnetic fluctuation
strength B2. This is illustrated in figure 2 (bottom). For
one run in which spin-up was observed, the initial mag-
netic fluctuations are increased from EB/Eu = 2.3 up to
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EB/Eu = 10 and 16.7, while keeping the initial Eu fixed.
The resulting spin-up is significantly stronger.
Second, for Lu in the circular geometry, like in the

hydrodynamic case [19], no spontaneous spin-up is ob-
served. Increasing the magnetic-field strength does only
weakly influence this result (figure 2, bottom).
Third, the interpretation of the generation of the an-

gular field in the square geometry is less straightforward,
as equation (7) does not contain a pressure term. The
tendency to create large-scale magnetic structures can
be attributed to the selective decay mecanism [27], which
was recently shown to persist in bounded geometries [25].
This does however not explain the symmetry breaking or
angular momentum generation, which is the main issue
of the present work. A possible trigger for the spin-up
could be alignment. It is well known that the magnetic
field and the velocity field tend to align so that the non-
linear term in the equation for j (or B) vanishes. Hence,
the magnetic field tends to an alignment with the ve-
locity field which acquired angular momentum through
the modified pressure term. It is therefore expected that
the magnetic spin-up follows the hydrodynamic spin-up
after a time-scale corresponding to the alignment. In-
deed, LB spins-up shortly after Lu. The cosine of the
angle between u and B, measuring the global alignment,
is plotted in the inset of figure 1 (right). A tendency
towards global alignment is observed for long times.
Fourth, in the circular geometry, the weak spin-up of

the magnetic field is surprising. Higher resolution simula-
tions are needed to clarify whether this is a viscous effect
and/or a statistically more probable (maximum entropy)

state? In this context we can refer to [23], where, based
on point-vortices, it was shown that two types of most
probable states exist in a circular domain: a double vor-
tex, free from angular momentum and an axi-symmetric
flow, with finite angular momentum. This work neglected
the influence of viscosity so that it is not clear how the
angular momentum is acquired in the circular geometry.

We now resume our findings. Rapid generation of an-
gular momentum takes place in bounded MHD turbu-
lence, as long as the geometry is non-axisymmetric. The
effect is enhanced by the magnetic pressure. On a slower
time-scale also magnetic spin-up is observed in both ge-
ometries. It is not clear how this angular field is created.
Both alignment and selective decay could be possible ex-
planations.

We want to stress the implications of the present
study for confinement research. Fusion plasmas are wall
bounded and not axi-symmetric, so that even in the
case of charge neutrality the plasma might have a ten-
dency to create zonal flows and zonal fields, depending
on the geometry of the cross-section of the plasma and
the strength of the magnetic fluctuations. The present
work opens several perspectives for future research, such
as the influence of Prm, Re, and in particular the exten-
sion to three dimensions in which the effects of imposed
magnetic fields, currents and toroidal velocities can be
taken into account.
We acknowledge valuable discussions with Herman
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