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In this paper we study the Stokes problem with some non standard boundary conditions. The variational formulation decouples into a system velocity and a Poisson equation for the pressure. The continuous and corresponding discrete system do not need an inf-sup condition. Hence, the velocity is approximated with curl conforming finite elements and the pressure with standard continuous elements. Next, we establish optimal a priori and a posteriori estimates and we finish this paper with numerical tests.

Introduction.

This paper is devoted to the numerical solution of the Stokes equations for an incompressible fluid

-𝜈Δu + ∇𝑝 = f in Ω, (1.1) 
with the incompressibility condition div u = 0 in Ω, (

with boundary conditions u × n = 0, 𝑝 = 0 on ∂Ω, (

or u.n = 0, curl u × n = 0 on ∂Ω. (1.4) where Ω is a bounded, simply connected domain of IR 3 with a polyhedral connected boundary Γ = ∂Ω and n the exterior unit normal to Γ, u the velocity and 𝑝 the pressure.

These sets of boundary conditions lend themselves readily to a variational formulation where the Laplacian operator is expressed by a (curl, curl) term and the incompressibility condition by an equation of the form (∇𝑞, v). Usually, for the Stokes problem, we use the inf-sup condition to establish the existence and the uniqueness of the theoretical solution; and for the discretization of the pressure and the velocity, we use a set of finite elements which also verifies a discrete inf-sup condition. In our work, by decoupling the variational system in a Poisson equation for the pressure and an other system for the velocity, we prove the existence and the uniqueness of the theoretical solution without the inf-sup condition. Hence, the finite elements used for the discretized system do not need to verify a discrete inf-sup condition and lead to matrix systems with an optimal dimension and optimal time of resolution. We use the non-conforming finite elements method where just the curl of the velocity is continuous at interface boundaries whereas the pressure is globally continuous.

The convexity assumption on Ω is a well-known theoretical consequence of the fact that Γ is not smooth.

There is no practical evidence that it is necessary and his assumption is disregarded in practice: instead, we can assume that Ω is simply-connected and Γ is connected. A domain with "holes" or a multiplyconnected domain can be handled with the techniques of Bendali, Dominguez and Gallic [START_REF] Bendali | A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains[END_REF]. We refer September 15, 2010. † Faculté des Sciences II, Université Libanaise, Département de mathématiques, B.P. 90656, Fanar-Maten, Liban. ‡ Faculté des Sciences, Université Saint-Joseph, B.P 11-514 Riad El Solh, Beyrouth 1107 2050, Liban.

to Dubois [START_REF] Dubois | Discrete vector potential representation of a -free vector field in three dimensional domains: numerical analysis of a model problem[END_REF] for a good treatment of the potential problem on a domain with a curved and multiplyconnected boundary. As far as the theory is concerned, the reader will find in Bègue, Conca, Murat and Pironneau [START_REF] Bègue | Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression[END_REF] a very comprehensive study of the Stokes and the Navier-Stokes equations with nonstandard (and non-homogeneous) boundary conditions on a variety of domains. These author include a conforming approximation of the Taylor-Hood type for the velocity (the corresponding theoretical analysis is done by Franca and Hugues [START_REF] Franca | A new finite element formulation for computational fluid dynamics: VII. The Stokes Problem with various well-posed boundary conditions : symmetric formulations that converge for all velocity/pressure spaces[END_REF]). We refer also to Girault's work [START_REF] Girault | Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ℝ 3[END_REF] for a vector potential-vorticity approximation of similar Navier-Stokes type problems and to [START_REF] Girault | Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℝ 3[END_REF] for the steady-state incompressible Navier-Stokes equations with non standard boundary conditions. For the Vorticity-velocity-pressure formulation for the Stokes problem, we refer to [START_REF] Dubois | Vorticity-velocity-pressure formulation for the Stokes problem[END_REF], [START_REF] Dubois | Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem[END_REF] and [START_REF] Salmon | Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes[END_REF]. We also refer to [START_REF] Repin | A posteriori error estimates for approximate solutions of variational problems[END_REF] where Repin establishes a posteriori estimates for the velocity, stress and pressure fields for the stationary Stokes problem and where his approach is based on duality theory of the calculus of variations. A posteriori estimates for the Stokes problem and for some viscous flow problems were studied by a number of authors, [START_REF] Bank | A posteriori eror estimates for the Stokes problem[END_REF], [START_REF]Verfürth A posteriori eror estimators for the Stokes equations[END_REF], [START_REF] Oden | Ainthworth An a posteriori eror estimate for finite element approximations of the Navier-Stokes equations[END_REF] and [START_REF] Padra | A posteriori error estimators for nonconforming approximation of some quasi-newtonian flows[END_REF]. Typically, they have been obtained in the frame of the so-called "residual method" originally proposed in [START_REF] Babuska | A posteriori eror estimates for the finite element method[END_REF] and [START_REF] Babuska | Error estimates for adaptive finite element computations[END_REF] for the finite element approximations. This type estimates are crucially based on the Galerkin orthogonality condition. Therefore, they are only valid for exact solutions of the corresponding finite dimensional problem which form a very special subset in the natural set of admissible functions. For the a posteriori estimations of the Stokes problems, we can cite the works of S. Repin [START_REF] Repin | A posteriori estimates for the Stokes problem[END_REF], [START_REF] Repin | Local a posteriori estimates for the Stokes problem[END_REF] and [START_REF] Repin | Stenberg A posteriori error estimates for the generalized Stokes problem[END_REF].

The remainder of this article is organized as follows: In Section 2, we introduce the problem and we establish a decoupled variational formulation into a system of velocity and a Poisson equation for the pressure. In section 3, we introduce the finite elements and a discrete system using the curl conforming finite elements for the velocity and the standard continuous elements for the pressure. In the section 4, we establish an optimal corresponding a priori estimates. In the section 4, we begin by establish an optimal a posteriori estimates for the pressure. Next, by writing the error u -u h with specific decomposition, we establish an optimal a posteriori estimate for the velocity. In the last section, we show numerical results.

Description and analysis of the model

We denote by (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚1) the system of equations (1.1), (1.2) and (1.3), and by (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚2) the system of equations (1.1), (1.2) and (1.4). In all the paper, we suppose that f ∈ 𝐿 2 (Ω) 3 and we denote by 𝐶 a generic positive constant.

In order to write the variational formulation of the previous problems, we introduce some spaces:

𝑊 𝑚,𝑝 (Ω) = {𝑣 ∈ 𝐿 𝑝 (Ω), ∂ 𝛼 𝑣 ∈ 𝐿 𝑝 (Ω), ∀ | 𝛼 |≤ 𝑚}, 𝐻 𝑚 (Ω) = 𝑊 𝑚,2 (Ω),
equipped with the following semi-norm and norm :

| 𝑣 | 𝑚,𝑝,Ω = ⎧ ⎨ ⎩ ∑ |𝛼|=𝑚 ∫ Ω | ∂ 𝛼 𝑣(𝑥) | 𝑝 𝑑𝑥 ⎫ ⎬ ⎭ 1/𝑝 and ∥ 𝑣 ∥ 𝑚,𝑝,Ω = ⎧ ⎨ ⎩ ∑ 𝑘≤𝑚 | 𝑣 | 𝑝 𝑘,𝑝,Ω ⎫ ⎬ ⎭ 1/𝑝 .
As usual, we shall omit 𝑝 when 𝑝 = 2 and denote by (⋅, ⋅) the scalar product of 𝐿 2 (Ω). Also, recall the familiar notation :

𝐻 1 0 (Ω) = {𝑣 ∈ 𝐻 1 (Ω); 𝑣 = 0 on Γ}, with the Poincaré inequality ∀𝑣 ∈ 𝐻 1 0 (Ω); ||𝑣|| 0,Ω ≤ 𝐶|𝑣| 1,Ω .
(2.1) Finally, we introduce the spaces :

𝐻(div, Ω) = {v ∈ 𝐿 2 (Ω) 3 , div v ∈ 𝐿 2 (Ω)}; 𝐻 0 (div, Ω) = {v ∈ 𝐻(div, Ω), v ⋅ n = 0 on Γ}; 𝐻(curl, Ω) = {v ∈ 𝐿 2 (Ω) 3 , curl v ∈ 𝐿 2 (Ω) 3 }; 𝐻 0 (curl, Ω) = {v ∈ 𝐻(curl, Ω), v × n = 0 on Γ};
normed respectively by :

∥ v ∥ 𝐻(div,Ω) = { ∥ v ∥ 2 0,Ω + ∥ div v ∥ 2 0,Ω } 1/2 ,
and

∥ v ∥ 𝐻(curl,Ω) = { ∥ v ∥ 2 0,Ω + ∥ curl v ∥ 2 0,Ω } 1/2 .
For the following regularity theorems, we refer to Bernardi [START_REF] Bernardi | Méthodes d'éléments finis mixtes pour les équations de Navier-Stokes[END_REF], Dauge [START_REF] Dauge | Problème de Neumann et de Dirichlet sur un polyèdre dans IR 3 : régularité dans des espaces de Sobolev 𝐿 𝑝[END_REF], Girault & Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF], Grisvard [START_REF] Grisvard | Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain[END_REF] and Nedelec [START_REF]Nedelec Eléments finis mixtes incompressibles pour l'équation de Stokes dans IR 3[END_REF].

Lemma 2.1. There exists a unique solution 𝑞 in 𝐻 1 (Ω)/IR (resp. 𝐻 1 0 (Ω)) such that : (∇𝑞, ∇𝜉 = (𝑓, ∇𝜉) ∀ 𝜉 ∈ 𝐻 1 (Ω)/IR (resp 𝐻 1 0 (Ω)), and there exists a positive constant 𝐶 such that :

||𝑞|| 1,Ω ≤ 𝐶||𝑓 || 0,Ω . Theorem 2.2. Let Ω be convex. All functions v ∈ 𝐿 2 (Ω) 3 satisfying : div v = 0, curl v ∈ 𝐿 2 (Ω) 3 , v.n = 0 or v × n = 0 on Γ, belong to 𝐻 1 (Ω) 3 and we have ||v|| 1,Ω ≤ 𝐶||curl v|| 0,Ω .
In view of the relation :

-Δu = curl curl u (as we have div u = 0), we can establish the next theorem.

Theorem 2.3. (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚1) has the following weak variational formulation :

Find u ∈ 𝐻 0 (curl, Ω) and 𝑝 ∈ 𝐻 1 0 (Ω) such that: 𝜈 (curl u, curl v) + (∇𝑝, v) = (f , v) ∀ v ∈ 𝐻 0 (curl, Ω), (2.2) 
(∇𝑞, u) = 0 ∀ 𝑞 ∈ 𝐻 1 0 (Ω), (2.3) 
and (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚2) has the following weak variational formulation:

Find u ∈ 𝐻(curl, Ω) and 𝑝 ∈ 𝐻 1 (Ω)/IR such that:

𝜈 (curl u, curl v) + (∇𝑝, v) = (f , v) ∀ v ∈ 𝐻(curl, Ω), (2.4) (∇𝑞, u) = 0 ∀ 𝑞 ∈ 𝐻 1 (Ω). (2.5) 
Proof: First, let (u, 𝑝) is the solution of the problem (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚1). The density of 𝒟(Ω) 3 in 𝐻 0 (curl, Ω) (see [START_REF] Girault | Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℝ 3[END_REF] Chap. 1 or [START_REF] Temam | Theory and Numerical Analysis of the Navier-Stokes Equations[END_REF] Chap. 1) and the density of 𝒟(Ω) in 𝐻 1 0 (Ω) give that (u, 𝑝) is also solution of the problem (2.2) and (2.3). Conversely, let (u, 𝑝) be the solution of (2.2) and (2.3), the equations (1.1) and (1.2) are satisfied in the distribution sense, and the third equation (1.3) becomes from the definition of the spaces 𝐻 0 (curl, Ω) and 𝐻 1 0 (Ω). For the second problem, we proceed in the same way. In fact, let (u, 𝑝) a solution of (2.4) and (2.5), the equations (1.1) and (1.2) are satisfied in the distribution sense. The first boundary condition of (1.4) is then derived by integrating by parts the equation:

∫ Ω div u 𝑞 = 0 ∀𝑞 ∈ 𝐻 1 (Ω),
(note that it is satisfied in the dual space of 𝐻 1 2 (∂Ω)). The second boundary condition of (1.4) can be obtaining as follow: The equation (1.1) and (2.4) give

(curl curl u, v) = (curl u, curl v) ∀v ∈ 𝐻(curl, Ω), which leads to curl u × n = 0 on ∂Ω. □
Each variational formulation is split into a system for the velocity and a Poisson equation for the pressure.

Let us introduce the spaces:

𝑉 0 = {v ∈ 𝐻 0 (curl, Ω); (∇𝑞, v) = 0 ∀𝑞 ∈ 𝐻 1 0 (Ω)}, and 𝑈 = {v ∈ 𝐻(curl, Ω); (∇𝑞, v) = 0 ∀𝑞 ∈ 𝐻 1 (Ω)}.
For every v ∈ 𝐻 0 (curl, Ω) (rep. 𝐻(curl, Ω)), the lemma (2.1) with f = v gives that, there exists a unique q such that: (v -∇𝑞, ∇𝜉) = 0 ∀𝜉 ∈ 𝐻 1 0 (Ω) (resp. 𝐻 1 (Ω)/IR) We deduce that every v ∈ 𝐻 0 (curl, Ω) (rep. 𝐻(𝑐𝑢𝑟𝑙, Ω)) can be decomposed as v = w + ∇𝑞 where w ∈ 𝑉 0 (res. 𝑈 ) and 𝑞 ∈ 𝐻 1 0 (Ω) (rep. 𝐻 1 (Ω)/IR). This fact and the theorems 2.2 and 2.3 (which allow us to use (curl., curl.) as scalar product in 𝑉 0 and 𝑈 ) allow us to establish the following theorem:

Theorem 2.4. The problem (2.2)-(2.3) is equivalent to the problem: Find u ∈ 𝑉 0 such that: 𝜈(curl u, curl v) = (f , v) ∀ v ∈ 𝑉 0 .
(2.6)

Find 𝑝 ∈ 𝐻 1 0 (Ω) such that: (∇𝑝, ∇𝑞) = (f , ∇𝑞) ∀ 𝑞 ∈ 𝐻 1 0 (Ω). (2.7)
The problem (2.4)-(2.5) is equivalent to the problem :

Find u ∈ 𝑈 such that 𝜈(curl u, curl v) = (f , v) ∀ v ∈ 𝑈. (2.8) Find 𝑝 ∈ 𝐻 1 (Ω)/IR such that (∇𝑝, ∇𝑞) = (f , ∇𝑞) ∀ 𝑞 ∈ 𝐻 1 (Ω).
(2.9)

In both cases, if Ω is convex, we using the Lax-Milgram theorem to proove that there exists a unique solution and we have the following bounds :

|𝑝| 1,Ω ≤ ||f || 0,Ω ; ||curl u|| 0,Ω ≤ 𝐶 1 𝜈 ||f || 0,Ω and ||u|| 1,Ω ≤ 𝐶 2 𝜈 ||f || 0,Ω .
Consequently, the pressure in the problem (2.9) verify the Neumann boundary condition ∂𝑝 ∂n = 𝑓.n on ∂Ω

Finite element discretization

We introduce a regular family of triangulations (𝜏 ℎ ) ℎ in the sens that :

• for each ℎ, Ω is the union of all elements of 𝜏 ℎ ;

• for each ℎ, the intersection of two different elements of 𝜏 ℎ , if not empty, is a node, a whole edge or a whole face of both of them; • the ratio of the diameter ℎ 𝜅 of an element 𝜅 in 𝜏 ℎ to the diameter of its inscribed sphere is bounded by a constant independent of 𝜅 and ℎ;

As usual, ℎ denotes the maximum of the diameters of the elements of 𝜏 ℎ .

Next, for each 𝜅 in 𝜏 ℎ , we introduce the spaces IP 0 (𝜅) of the restrictions to 𝜅 of constant functions on IR 3 , IP 1 (𝜅) of the restrictions to 𝜅 of affine function on IR and the space IP 𝐾 (𝜅) of the restrictions to 𝜅 of polynomials v of the form :

v(𝑥) = a + b × x, a ∈ IR 3 , b ∈ IR 3 .
The space IP 𝐾 (𝜅) and the corresponding finite elements are studied in [START_REF] Nedelec | Mixed finite element in IR 3[END_REF].

Their degrees of freedom are the average flux along the edges ∫ 𝑙 (v.t)𝑑𝑙, for the six edges 𝑙 of 𝜅, t is the direction vector of 𝑙. Hence, we associate the operator 𝑟 𝜅 where 𝑟 𝜅 (u) is the unique polynomial of IP 𝐾 that has the same flux along the edges as u. We define also the operator 𝐼 𝜅 where 𝐼 𝜅 (𝑞) is the unique polynomial of IP 1 (𝜅) that has the same values on the vertex of 𝜅 as 𝑞.

Next, let us introduce the discrete spaces :

𝑀 ℎ = {u ℎ ∈ 𝐻(curl, Ω); u ℎ | 𝜅 ∈ IP 𝐾 (𝜅), ∀ 𝜅 ∈ 𝜏 ℎ }, (3.1) 𝑀 0ℎ = 𝑀 ℎ ∩ 𝐻 0 (curl, Ω), (3.2 
)

𝑄 ℎ = {𝑞 ℎ ∈ 𝐶 0 (Ω); 𝑞 ℎ | 𝜅 ∈ IP 1 (𝜅), ∀ 𝜅 ∈ 𝜏 ℎ }, ( 3.3 
)

𝑄 0ℎ = 𝑄 ℎ ∩ 𝐻 1 0 (Ω). (3.4) 
With these spaces, the finite dimensional analogues of 𝑉 0 and 𝑈 are :

𝑉 0ℎ = {v ℎ ∈ 𝑀 0ℎ ; (∇𝑞 ℎ , v ℎ ) = 0, ∀ 𝑞 ℎ ∈ 𝑄 0ℎ },
and

𝑈 ℎ = {v ℎ ∈ 𝑀 ℎ ; (∇𝑞 ℎ , v ℎ ) = 0 ∀ 𝑞 ℎ ∈ 𝑄 ℎ }.
We define the interpolation operators 𝑟 ℎ from 𝐻 1 (Ω) 3 onto 𝑀 ℎ , 𝐼 ℎ from 𝐻 2 (Ω) onto 𝑄 ℎ by 𝑟 ℎ 𝑢 = 𝑟 𝜅 (𝑢) on 𝜅, ∀𝜅 ∈ 𝜏 ℎ (similarly for 𝐼 ℎ ).

Theorem 3.1. Assume that the triangulation 𝜏 ℎ is regular. For all 𝑘 ≥ 1 we have :

∥ u -𝑟 ℎ u ∥ 0,Ω +ℎ ∥ curl(u -𝑟 ℎ u) ∥ 0,Ω ≤ 𝐶ℎ | u | 1,𝑡,Ω , ∀ u ∈ 𝑊 1,𝑡 (Ω) 3 , for some 𝑡 > 2.
Moreover, when u ∈ (𝐻 𝑘 (Ω)) 3 we have :

∥ u -𝑟 ℎ u ∥ 0,Ω ≤ 𝐶ℎ 𝑘 | u | 𝑘,Ω ,
and, when u ∈ (𝐻 𝑘+1 (Ω)) 3 we have :

∥ curl(u -𝑟 ℎ u) ∥ 0,Ω ≤ 𝐶ℎ 𝑘 | u | 𝑘+1,Ω .
There is also an important result given by V. Girault [START_REF] Girault | Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℝ 3[END_REF] for the imbedding between the spaces 𝑉 0ℎ or 𝑈 ℎ and 𝐿 4 (Ω) 3 (or 𝐿 2 (Ω)):

Theorem 3.2.
Let Ω be a convex polyhedron and 𝜏 ℎ a uniformly regular family of triangulations of Ω.

For each space 𝑉 0ℎ and 𝑈 ℎ , there exists constants 𝐶 and 𝐶 ′ , independent of ℎ, such that

||u ℎ || 0,Ω ≤ 𝐶||u ℎ || 0,4,Ω ≤ 𝐶 ′ ||curl u ℎ || 0,Ω ∀u ℎ ∈ 𝑉 0ℎ or 𝑈 ℎ . ( 3.5) 
We discretize (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚1) by :

Find u ℎ ∈ 𝑉 0ℎ and 𝑝 ℎ ∈ 𝑄 0ℎ such that 𝜈(curl u ℎ , curl v ℎ ) + (∇𝑝 ℎ , v ℎ ) = (f , v ℎ ) ∀ v ℎ ∈ 𝑀 0ℎ . (3.6)
Similarly, we discretize (𝑃 𝑟𝑜𝑏𝑙𝑒𝑚2) by :

Find u ℎ ∈ 𝑈 ℎ and 𝑝 ℎ ∈ 𝑄 ℎ /IR such that 𝜈(curl u ℎ , curl v ℎ ) + (∇𝑝 ℎ , v ℎ ) = (f , v ℎ ) ∀ v ℎ ∈ 𝑀 ℎ . (3.7)
As in the continuous way, the problem (3.6) can be split into

Find u ℎ ∈ 𝑉 0ℎ such that 𝜈(curl u ℎ , curl v ℎ ) = (f , v ℎ ) ∀ v ℎ ∈ 𝑉 0ℎ , (3.8) Find 𝑝 ℎ ∈ 𝑄 0ℎ such that (∇𝑝 ℎ , ∇𝑞 ℎ ) = (f , ∇𝑞 ℎ ), ∀ 𝑞 ℎ ∈ 𝑄 0ℎ . (3.9)
And the problem (3.7) can be splited to

Find u ℎ ∈ 𝑈 ℎ such that 𝜈(curl u ℎ , curl v ℎ ) = (f , v ℎ ), ∀ v ℎ ∈ 𝑈 ℎ , (3.10) Find 𝑝 ℎ ∈ 𝑄 ℎ /IR such that (∇𝑝 ℎ , ∇𝑞 ℎ ) = (f , ∇𝑞 ℎ ), ∀ 𝑞 ℎ ∈ 𝑄 ℎ . (3.11)
It is easy to show, using theorem (3.2), that these two last discrete problems have a unique solution.

The pressure is entirely dissociated from the velocity, i.e. can be computed without knowing the velocity.

We have also for both discrete problems :

||curl u ℎ || 0,Ω ≤ 𝐶 𝜈 ||f || 0,Ω ,
and

|𝑝 ℎ | 1,Ω ≤ ||f || 0,Ω .

A priori error analysis

In this section, we will establish the error estimates for the pressure and the velocity. 

|𝑝 -𝑝 ℎ | 1,Ω = inf 𝑞 ℎ ∈𝑄 0,ℎ |𝑝 -𝑞 ℎ | 1,Ω (resp. 𝑄 ℎ ) , ( 4.1 
)

||curl(u -u ℎ )|| 0,Ω ≤ 𝐶 ( inf v ℎ ∈𝑀 0ℎ ||curl(u -v ℎ )|| 0,Ω + inf 𝑞 ℎ ∈𝑄 0ℎ |𝑝 -𝑝 ℎ | 1,Ω
) (resp. 𝑀 ℎ and 𝑄 ℎ ). (4.2)

Proof:

For the pressure, let us choose 𝑞 = 𝑞 ℎ . The difference between (2.7) and (3.9) (resp. (2.9) and (3.11)) gives:

(∇(𝑝 -𝑝 ℎ ), ∇𝑞 ℎ ) = 0, ∀𝑞 ℎ ∈ 𝑄 0ℎ (resp. 𝑄 ℎ ), (4.3) then |𝑝 -𝑝 ℎ | 2 1,Ω = (∇(𝑝 -𝑝 ℎ ), ∇𝑝) = (∇(𝑝 -𝑝 ℎ ), ∇(𝑝 -𝑞 ℎ )) ≤ |𝑝 -𝑝 ℎ | 1,Ω |𝑝 -𝑞 ℎ | 1
,Ω , and we obtain (4.1).

For the velocity, by taking v = v ℎ , the difference between (2.6) and (3.8) (resp. (2.8) and (3.10)) gives:

𝜈(curl(u -u ℎ ), curlv ℎ ) + (∇(𝑝 -𝑝 ℎ ), v ℎ ) = 0 ∀v ℎ ∈ 𝑀 0ℎ (resp. 𝑀 ℎ ) .
Then for all w ℎ in 𝑉 0ℎ (resp. 𝑈 ℎ ) we have

𝜈(curl(u -w ℎ ), curlv ℎ ) + 𝜈(curl(w ℎ -u ℎ ), curlv ℎ ) + (∇(𝑝 -𝑝 ℎ ), v ℎ ) = 0.
By choosing v ℎ = u ℎ -w ℎ ∈ 𝑉 0ℎ and using the relation (3.5), we obtain

||curl(u ℎ -w ℎ )|| 0,Ω ≤ ||curl(u -w ℎ )|| 0,Ω + 𝐶|𝑝 -𝑝 ℎ | 1,Ω .
Now we extend this last inequality to all functions v ℎ of 𝑀 0ℎ (resp 𝑀 ℎ ): Define 𝑞 ℎ in 𝑄 0ℎ (resp. 𝑄 ℎ ) by

(∇𝑞 ℎ , ∇𝜇 ℎ ) = (v ℎ , ∇𝜇 ℎ ) ∀𝜇 ℎ ∈ 𝑄 0ℎ (resp. 𝑄 ℎ ) ,
and set w ℎ = v ℎ -∇𝑞 ℎ . Then w ℎ belongs to 𝑉 0ℎ (resp. 𝑈 ℎ ) and curlw ℎ = curlv ℎ and we obtain [START_REF] Dubois | Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem[END_REF]. In all the rest of the paper, we suppose that f ∈ 𝐻 1 (Ω) 3 .

||curl(u ℎ -v ℎ )|| 0,Ω = ||curl(u ℎ -w ℎ )|| 0,Ω . Moreover ||curl(u -u ℎ )|| 0,Ω ≤ ||curl(u -v ℎ )|| 0,Ω + ||curl(u ℎ -v ℎ )|| 0,Ω ≤ ||curl(u -v ℎ )|| 0,Ω + ||curl(u ℎ -w ℎ )|| 0,Ω ≤ 2||curl(u -v ℎ )|| 0,Ω + 𝐶|𝑝 -𝑝 ℎ | 1,
We first introduce the space

𝑍 ℎ = {g ℎ ∈ 𝐿 2 (Ω) 3 ; ∀𝜅 ∈ 𝜏 ℎ , g ℎ | 𝜅 ∈ IP 0 (𝜅)},
and we fix an approximation f ℎ of the data f in 𝑍 ℎ .

Next, we denote by 𝜀 ℎ the set of all faces of the elements of 𝜏 ℎ that are not contained in ∂Ω. For every element 𝜅 in 𝜏 ℎ , we denote by 𝜀 𝜅 the set of faces of 𝜅 that are not contained in Γ, Δ 𝜅 the set of union of elements of 𝜏 ℎ that intersect 𝜅, Δ 𝑒 the union of elements of 𝜏 ℎ that intersect the face 𝑒, ℎ 𝜅 the diameter of 𝜅 and ℎ 𝑒 the diameter of the face 𝑒. Also, n 𝜅 stands for the unit outward normal vector to 𝜅 on ∂𝜅 and [⋅] 𝑒 the jump through the face 𝑒 of 𝜅.

For the proof of the next theorems, we introduce for an element 𝜅 of 𝜏 ℎ , the bubble l function 𝜓 𝜅 (resp. 𝜓 𝑒 of the face 𝑒) which is equal to the product of the 𝑑 + 1 barycentric coordinates associated with the vertices of 𝜅 (resp. of 𝑒) and ℒ 𝑒 the lifting operator from polynomials defined on 𝑒 into polynomials defined on the elements 𝜅 and 𝜅 ′ contained 𝑒, which is constructed by affine transformations from a fixed operator on the reference element.

Property 5.1. Denoting by 𝑃 𝑟 (𝑒) the polynomial of degrees 𝑟 on 𝑒, we have

∀ 𝑣 polynomial of 𝑃 𝑟 (𝑒) 𝑐 ∥ 𝑣 ∥ 𝐿 2 (𝑒) ≤∥ 𝑣𝜓 1/2 𝑒 ∥ 𝐿 2 (𝑒) ≤ 𝑐 ′ ∥ 𝑣 ∥ 𝐿 2 (𝑒) ,
and ∀ 𝑣 polynomial of 𝑃 𝑟 (𝑒) which vannishes on ∂𝑒, we have

∥ ℒ 𝑒 𝑣 ∥ 𝐿 2 (𝜅) +ℎ 𝑒 | ℒ 𝑒 𝑣 | 𝐻 1 (𝜅) ≤ 𝑐ℎ 1/2 𝑒 ∥ 𝑣 ∥ 𝐿 2 (𝑒) .
We denote by 𝑅 ℎ the Clément operator [START_REF] Clément | Approximation by finite element functions using local regularisation[END_REF]. We have for all function 𝑞 ∈ 𝐻 1 0 (Ω), 𝑅 ℎ 𝑞 ∈ 𝑄 0ℎ verifies

∥ 𝑞 -𝑅 ℎ 𝑞 ∥ 𝐿 2 (𝜅) ≤ 𝑐ℎ 𝜅 ∥ 𝑞 ∥ 𝐻 1 (Δ𝜅) , ∥ 𝑞 -𝑅 ℎ 𝑞 ∥ 𝐿 2 (𝑒) ≤ 𝑐ℎ 1/2 𝑒 ∥ 𝑞 ∥ 𝐻 1 (Δ𝑒) , (5.1)
and ℛ ℎ the Raviart-Thomas operator: for any smooth enough vectorial function v which is divergencefree in Ω, ℛ ℎ v belongs to 𝑀 0ℎ and satisfies

∀𝑒 ∈ 𝜀 ℎ , ∫ 𝑒 (v -ℛ h v).n𝑑𝜏 = 0.
Moreover, this operator satisfies, see [START_REF] Raviart | A mixed finite element method for second order elliptic problems,Mathematical Aspects of Finite Element Methods[END_REF]: ∀v in 𝐻 1 (Ω) 3 and ∀𝜅 in 𝜏 ℎ ,

∥ v -ℛ ℎ v ∥ 𝐿 2 (𝜅) 3 ≤ 𝑐ℎ 𝜅 ∥ v ∥ 𝐻 1 (𝜅) 3 ∥ v -ℛ ℎ v ∥ 𝐿 2 (𝑒) 3 ≤ 𝑐ℎ 1/2 𝑒 ∥ v ∥ 𝐻 1 (Δ𝑒) 3 (5.2) 
Let us begin with a posteriori error for the pressure. The error function 𝑝 -𝑝 ℎ belongs to 𝐻 1 0 (Ω) and satisfies:

(∇(𝑝 -𝑝 ℎ ), ∇𝑞) = ⟨𝐹, 𝑞⟩, ∀𝑞 ∈ 𝐻 1 0 (Ω), where the "residual" 𝐹 belongs to the dual space 𝐻 -1 (Ω) and is defined by:

∀𝑣 ∈ 𝐻 1 0 (Ω), ⟨𝐹, 𝑞⟩ = ∫ Ω f ∇𝑞 - ∫ Ω ∇𝑝 ℎ ∇𝑞. ( 5.3) 
We deduce that

|𝑝 -𝑝 ℎ | 1,Ω ≤ ||𝐹 || 𝐻 -1 (Ω)
. We define the error indicator by

𝜂 𝜅 = ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [(f ℎ -∇𝑝 ℎ ).n] ∥ 𝐿 2 (𝑒) .
Lemma 5.2. The following estimate hold

||𝐹 || 𝐻 -1 (Ω) ≤ 𝐶 { ∑ 𝜅∈𝜏 ℎ ( 𝜂 2 𝜅 + ℎ 2 𝜅 ∥ div f ∥ 2 𝐿 2 (𝜅) + ( ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [(f -f ℎ ).n] ∥ 𝐿 2 (𝑒) ) 2 ) } 1/2
.

Proof: For any 𝑞 ℎ ∈ 𝑀 0ℎ , we have

⟨𝐹, 𝑞⟩ = ∫ Ω f ∇(𝑞 -𝑞 ℎ ) - ∫ Ω ∇𝑝 ℎ ∇(𝑞 -𝑞 ℎ ) = ∑ 𝜅∈𝜏 ℎ ( ∫ 𝜅 (f -f ℎ )∇(𝑞 -𝑞 ℎ ) + ∫ 𝜅 (f ℎ -∇𝑝 ℎ )∇(𝑞 -𝑞 ℎ )
) .

(

By integrating by part, we obtain

⟨𝐹, 𝑞⟩ = ∑ 𝜅∈𝜏 ℎ { - ∫ 𝜅 div f (𝑞 -𝑞 ℎ ) + 1 2 ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 ( [(f -f ℎ ).n](𝑞 -𝑞 ℎ ) + [(f ℎ -∇𝑝 ℎ ).n](𝑞 -𝑞 ℎ ) ) } , ( 5.5 
) and by taking 𝑞 ℎ = 𝑅 ℎ 𝑞, the image of 𝑞 by the Clément type regularisation operator, we obtain the result. □ Corollary 5.3. The following a posteriori estimate holds between the solution 𝑝 of (2.7) and the solution 𝑝 ℎ of (3.9):

|𝑝 -𝑝 ℎ | 1,Ω ≤ 𝐶 { ∑ 𝜅∈𝜏 ℎ ( 𝜂 2 𝜅 + ℎ 2 𝜅 ∥ div f ∥ 2 𝐿 2 (𝜅) + ( ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [(f -f ℎ ).n] ∥ 𝐿 2 (𝑒) ) 2 ) } 1/2 .

Proposition 5.4. The error indicators verify the following optimality conditions

𝜂 𝜅 ≤ 𝐶 ( | 𝑝 -𝑝 ℎ | 𝐻 1 (Δ𝜅) +ℎ 𝑒 ∥ div f ∥ 𝐿 2 (Δ𝜅) + ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [(f -f ℎ ).n] ∥ 𝐿 2 (𝑒)
) .

(5.6)

Proof: We consider the equation (5.5) with 𝑞 ℎ = 0 and we take

𝑞 = 𝑞 𝑒 = ℒ 𝑒 ([(f ℎ -∇𝑝 ℎ ).n]𝜓 𝑒 ): ∫ 𝜅∪𝜅 ′ ∇(𝑝 -𝑝 ℎ )∇𝑞 𝑒 = - ∫ 𝜅∪𝜅 ′ div f 𝑞 𝑒 + 1 2 ∫ 𝑒 ( [(f -f ℎ ).n]𝑞 𝑒 + 𝑞 2 𝑒 ) ,
then by using the property (5.1)

∥ [(f ℎ -∇𝑝 ℎ ).n] ∥ 0,𝑒 ≤ 𝐶 ( ℎ -1/2 𝑒 |𝑝 -𝑝 ℎ | 1,𝜅∪𝜅 ′ + ℎ 1/2 𝑒 ∥ div f ∥ 𝜅∪𝜅 ′ + ∥ [(f -f ℎ ).n] ∥ 𝐿 2 (𝑒)
) , multiplying by ℎ 1/2 𝑒 and summing over 𝜀 𝜅 , we obtain the result. □ Now, let us establish a posteriori error for the velocity. The error function u -u ℎ belongs to 𝐻 0 (curl, Ω), there exists a function 𝜆 ∈ 𝐻 1 0 (Ω) solution of the problem:

∀𝜇 ∈ 𝐻 1 0 (Ω), ∫ Ω ∇𝜆∇𝜇 = ∫ Ω (u -u ℎ )∇𝜇 = - ∫ Ω u ℎ ∇𝜇.
(5.7)

Then the function w = (u -u ℎ ) -∇𝜆 belongs to 𝑉 0 and we have curl w = curl (u -u ℎ ). We obtain

∥ u -u ℎ ∥ 2 𝐻(curl,Ω) =∥ ∇𝜆 ∥ 2 0,Ω + ∥ w ∥ 2 𝐻(curl,Ω) (5.8)
In order to find the upper and lower bounds of ∥ u -u ℎ ∥ 2 𝐻(curl,Ω) , we start by finding the upper and lower bounds of the two terms of the left hand side of the last equation.

For the first term of the left hand side of (5.8), we have ∀𝜇 ∈ 𝐻 1 0 (Ω),

∫ Ω ∇𝜆∇𝜇 = ∫ Ω (w + ∇𝜆)∇𝜇 = ∫ Ω (u -u ℎ )∇𝜇 = - ∫ Ω u ℎ ∇𝜇 = - ∫ Ω u ℎ ∇(𝜇 -𝜇 ℎ ) ∀𝜇 ℎ ∈ 𝑄 0ℎ .
The associate "residual" 𝐺 of the problem (5.7) belongs to 𝐻 -1 (Ω) and satisfies

∫ Ω ∇𝜆∇𝜇 = ⟨𝐺, 𝜇⟩ ∀𝜇 ∈ 𝐻 1 0 (Ω),
then, using the fact that div u ℎ = 0 on every element 𝜅 ∈ 𝜏 ℎ , 𝐺 satisfies

⟨𝐺, 𝜇⟩ = - ∫ Ω u ℎ ∇𝜇 = - ∫ Ω u ℎ ∇(𝜇 -𝜇 ℎ ) = - 1 2 ∑ 𝜅∈𝜏 ℎ ( ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 [u ℎ .n](𝜇 -𝜇 ℎ )
) .

(5.9)

We introduce the indicators

𝜉 𝜅 = ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [u ℎ .n] ∥ 0,𝑒 .
(5.10)

Theorem 5.5. The following bounds hold

|𝜆| 1,Ω ≤ 𝐶 ( ∑ 𝜅∈𝜏 ℎ 𝜉 2 𝜅 ) 1/2 ,
and 𝜉 𝜅 ≤ 𝐶|𝜆| 1,Δ𝜅 .

(5.11)

Proof:

We treat this problem exactly as we did the problem (2.7) and we obtain

|𝜆| 1,Ω ≤∥ 𝐺 ∥ -1,Ω ≤ 𝐶 ( ∑ 𝜅∈𝜏 ℎ 𝜉 2 𝜅 ) 1/2 .
(5.12)

In order to find the lower bound, we take in the equation

∫ Ω ∇𝜆∇𝜇 = - 1 2 ∑ 𝜅∈𝜏 ℎ ( ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 [u ℎ .n]𝜇 ) , 𝜇 = ℒ 𝑒 ([u ℎ .n]𝜓 𝑒 ) and we obtain ∥ [u ℎ .n] ∥ 0,𝑒 ≤ 𝐶 ( ℎ -1/2 𝑒 |𝜆| 1,𝜅∪𝜅 ′ ) ,
which leads to

𝜉 𝜅 ≤ 4𝐶 ( |𝜆| 1,Δ𝜅
) .

(5.13) □ Now, we take the second term of the left hand side of (5.8). We begin by ∀v ∈ 𝐻 0 (curl, Ω)

𝜈 ∫ Ω curl(u -u ℎ )curl v + ∫ Ω ∇(𝑝 -𝑝 ℎ )v = ∫ Ω fv -𝜈 ∫ Ω curl u ℎ curlv - ∫ Ω ∇𝑝 ℎ v.
By replacing u -u ℎ = w + ∇𝜆 and taking v ∈ 𝑉 0 we obtain

𝜈 ∫ Ω curl w curl v = ∫ Ω fv -𝜈 ∫ Ω curl u ℎ curl v.
The associate "residual" 𝐿 belongs to 𝑉 ′ 0 and satisfies

𝜈 ∫ Ω curl(u -u ℎ )curl v = ⟨𝐿, v⟩ ∀v ∈ 𝑉 0 ,
where, ∀v ∈ 𝑉 0 , 𝐿 verifies

⟨𝐿, v⟩ = 𝜈 ∫ Ω curl(u -u ℎ )curl v + ∫ Ω ∇(𝑝 -𝑝 ℎ )v = 𝜈 ∫ Ω curl(u -u ℎ )curl(v -v ℎ ) + ∫ Ω ∇(𝑝 -𝑝 ℎ )(v -v ℎ ) ∀v ℎ ∈ 𝑀 0ℎ = ∫ Ω f (v -v ℎ ) -𝜈 ∫ Ω curl u ℎ curl(v -v ℎ ) - ∫ Ω ∇𝑝 ℎ (v -v ℎ ) ∀v ℎ ∈ 𝑀 0ℎ = ∑ 𝜅∈𝜏 ℎ ( ∫ 𝜅 (f -f ℎ )(v -v ℎ ) + ∫ 𝜅 (f ℎ -∇𝑝 ℎ )(v -v ℎ ) - 1 2 ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 ([curlu ℎ × n])(v -v ℎ ) ) (5.14) We introduce the indicators 𝛾 𝜅 = ℎ 𝜅 ∥ f ℎ -∇𝑝 ℎ ∥ 0,𝜅 + 1 2 ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [curl u ℎ × n] ∥ 0,𝑒 .
Theorem 5.6. Let Ω be convex. The following bounds hold

∥ w ∥ 𝐻(curl,Ω) ≤ 𝐶 ( ∑ 𝜅∈𝜏 ℎ ( ℎ 2 𝜅 ∥ f -f ℎ ∥ 2 0,𝑇 +𝛾 2 𝜅 )) 1/2 , ( 5.15) 
and

𝛾 𝜅 ≤ 𝐺 ( ∥ curl w ∥ 0,Δ𝜅 +(ℎ 𝜅 + ℎ 𝑒 ) ( ∥ f -f ℎ ∥ 0,Δ𝜅 +|𝑝 -𝑝 ℎ | 0,Δ𝜅 )) . ( 5 

.16)

Proof: In the equation (5.14), we take v ℎ = ℛ ℎ v and use the properties of ℛ ℎ and the theorem 2.2 we obtain

∥ ℒ ∥ 𝑉 ′ 0 ≤ 𝐶 ( ∑ 𝜅∈𝜏 ℎ ( ℎ 2 𝜅 ∥ f -f ℎ ∥ 2 0,𝑇 +𝛾 2 𝜅 )) 1/2 ,
which leads to (5.15). In the other hand, we consider the equation: ∀v ∈ 𝐻 0 (curl, Ω)

𝜈 ∫ Ω curl(u -u ℎ )curl v + ∫ Ω ∇(𝑝 -𝑝 ℎ )v = ∑ 𝜅∈𝜏 ℎ ( ∫ 𝜅 (f -f ℎ )v + ∫ 𝜅 (f ℎ -∇𝑝 ℎ )v - 1 2 ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 ([curl u ℎ × n])v
) .

First, we take v = (f ℎ -∇𝑝 ℎ )𝜓 𝜅 to obtain the relation :

∥ f ℎ -∇𝑝 ℎ ∥ 0,𝜅 ≤ 𝐶 ( ℎ -1 𝜅 ∥ curl w ∥ 0,𝜅 +|𝑝 -𝑝 ℎ | 1,𝜅 + ∥ f -f ℎ ∥ 0,𝜅
) .

Second, we take

v = ℒ 𝑒 (([curl u ℎ × n])𝜓 𝑒 ) to obtain ∥ [curl u ℎ × n] ∥ 0,𝑒 ≤ 𝐶 { ℎ -1/2 𝑒 ∥ curl w ∥ 0,𝜅∪𝜅 ′ +ℎ 1/2 𝑒 ( |𝑝 -𝑝 ℎ | 1,𝜅∪𝜅 ′ + ∥ f -f ℎ ∥ 0,𝜅∪𝜅 ′ + ∥ f ℎ -∇𝑝 ℎ ∥ 0,𝜅∪𝜅 ′ )} .
Using the definition of 𝛾 𝜅 we obtain the relation (5.16). □ Corollary 5.7. Let Ω be convex. The optimal a posteriori estimates hold

||u -u ℎ || 𝐻0(curl,Ω ) + |𝑝 -𝑝 ℎ | 1,Ω ≤ { ∑ 𝜅∈𝜏 ℎ ( 𝛾 2 𝜅 + 𝜉 2 𝜅 + 𝜂 2 𝜅 + ℎ 2 𝜅 (∥ f -f ℎ ∥ 2 0,𝜅 )+ ∥ div f ∥ 2 𝐿 2 (𝜅) ) + ( ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [(f -f ℎ ).n] ∥ 𝐿 2 (𝑒) ) 2 } 1/2 ,
(5.17)

where 𝛾 𝜅 , 𝜉 𝜅 and 𝜂 𝜅 are given by the formulas (5.6), (5.11) and (5.16).

Conclusion:

We observe that estimate (5.17) is optimal: up to the terms involving the data, the full error is bounded by a constant times the sum of all indicators. Estimates (5.6), (5.16) and (5.11) are local, i.e., only involve the error in a neighborhood of K or e. The indicators 𝜂 𝜅 , 𝜉 𝜅 and 𝛾 𝜅 can be viewed as a measure for the error of the space discretization and can be used to adapt the mesh-size in space.

Numerical results

In order to confirm these results numerically, we did several experiments by using the FreeFem ++ software (see [START_REF] Hecht | FreeFem++[END_REF]). On the cubic domain ]0, 1[×]0, 1[×]0, 1[, the numerical velocity and the pressure are taken as (𝑢, 𝑝) = (curl 𝜓, 𝑝), where: 𝜓 = (𝜙, 𝜙, 𝜙) with 𝜙(𝑥, 𝑦, 𝑧) = 𝑥 2 𝑦 2 𝑧 2 (𝑥 -1) 2 (𝑦 -1) 2 (𝑧 -1) 2 and 𝑝(𝑥, 𝑦, 𝑧) = 𝑥(𝑥 -1)𝑦(𝑦 -1)𝑧(𝑧 -1).

We take 𝜈 = 1 and we denote by Nc the number of the points on edge of the geometry. We take a mesh with 6000 elements. First, we use the equation (3.9) to compute the pressure and second, knowing the pressure, we use the equation (3.8) to compute the velocity. We obtain the following color comparison between the exact and numerical solutions of the velocity and the pressure: We can see that the pressure slope is 1.0454 and velocity slope is 1.965, results that are similar to the theoretical ones.

Theorem 4 . 1 .

 41 The exact solution (u, 𝑝) of the problem (2.6)-(2.7) (resp. (2.8)-(2.9)) and the numerical solution (u ℎ , 𝑝 ℎ ) of the problem (3.8)-(3.9) (resp. (3.10)-(3.11)) verify the error estimes :

Figure 1 .Figure 2 .Figure 3 .

 123 Figure 1. The right and left figures represent respectively the numerical and the theoretical velocity

Remark: FreeFem++ is under development for the three dimensional problems and we cannot yet experiment the adapted mesh with the showed indicators. In fact, it cannot make a local refinement of the mesh in three dimensions.