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Abstract. The aim of this Note is to prove by a perturbation method the existence of solutions of the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state and with the electromagnetic coupling constant `e m ´2 < 1. We show that the nondegenerate solution of Choquard's equation generates a branch of solutions of the Einstein-Dirac-Maxwell equations.

Une méthode de perturbation pour les solutions localisées des équations d'Einstein-Dirac-Maxwell.

Résumé. Le but de cette Note est de démontrer par une méthode de perturbation l'existence de solutions des équations d'Einstein-Dirac-Maxwell pour un système statique, à symétrie sphérique de deux fermions dans un état de singulet et avec une constante de couplage électromagnétique `e m ´2 < 1. On montre que la solution non dégénérée de l'équation de Choquard génère une branche de solutions des équations d'Einstein-Dirac-Maxwell.

Version franc ¸aise abrégée

Dans un papier récent [START_REF] Nodari | Perturbation Method for Particle-like Solutions of the Einstein-Dirac Equations[END_REF], par une méthode de perturbation, on a montré de manière rigoureuse l'existence de solutions des équations d'Einstein-Dirac pour un système statique, à symétrie sphérique de deux fermions dans un état de singulet. Dans cette Note, on généralise ce résultat aux équations d'Einstein-Dirac-Maxwell et on montre, dans le cas particulier d'un couplage électromagnétique faible, l'existence des solutions obtenues numériquement par F. Finster, J. Smoller et ST. Yau dans [START_REF] Finster | Particle-like solutions of the Einstein-Dirac-Maxwell equations[END_REF].

Plus précisément, en utilisant l'idée introduite par Ounaies pour une classe d'équations de Dirac non linéaires (voir [START_REF] Ounaies | Perturbation method for a class of non linear Dirac equations[END_REF]) et adaptée dans [START_REF] Nodari | Perturbation Method for Particle-like Solutions of the Einstein-Dirac Equations[END_REF] aux équations d'Einstein-Dirac, on obtient le théorème suivant. Théorème 0.1. Soient e, m, ω tels que e 2m 2 < 0, 0 < ω < m et supposons mω assez petit ; alors il existe une solution non triviale de [START_REF] Ounaies | Perturbation method for a class of non linear Dirac equations[END_REF][START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF][START_REF] Lieb | Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation[END_REF][START_REF] Lions | The Choquard equation and related questions[END_REF][START_REF] Nodari | Perturbation Method for Particle-like Solutions of the Einstein-Dirac Equations[END_REF].

Dans cette Note, on décrit la méthode utilisée pour démontrer ce théorème. Premièrement, par un changement d'échelle, on transforme les équations d'Einstein-Dirac-Maxwell (6-9) en un système perturbé qui s'écrit sous la forme (11). On choisit ε = mω comme paramètre de perturbation.

Deuxièment, on remarque que, pour ε = 0 et noyau de la linéarisation de l'équation contient seulement la fonction identiquement nulle. On appelle φ 0 la solution du système (12). Ensuite, on observe que le système perturbé s'écrit sous la forme D(ε, ϕ, χ, τ, ζ) = 0 avec D un opérateur non linéaire de classe C 1 , pour un bon choix d'espaces fonctionnels. On prouve que cet opérateur satisfait les hypothèses du théorème des fonctions implicites. En particulier, on montre que la linéarisation de l'opérateur D par rapport à (ϕ, χ, τ, ζ) en (0, φ 0 ), D ϕ,χ,τ,ζ (0, φ 0 ), est une injection, grâce à la non-dégénérescence de la solution de l'équation de Choquard, et s'écrit comme somme d'un isomorphisme et d'un opérateur compact ; donc D ϕ,χ,τ,ζ (0, φ 0 ) est un isomorphisme. En appliquant le théorème des fonctions implicites, on déduit que, pour ε assez petit et e 2m 2 < 0, le système (11) a une solution.

En conclusion, pour e 2m 2 < 0, 0 < ω < m et mω assez petit, les équations d'Einstein-Dirac-Maxwell possèdent une solution non triviale.

Introduction

In a recent paper [START_REF] Nodari | Perturbation Method for Particle-like Solutions of the Einstein-Dirac Equations[END_REF], using a perturbation method, we proved rigorously the existence of solutions of the coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state. In this Note, we extend our result to the Einstein-Dirac-Maxwell equations and we prove, in the particular case of a weak electromagnetic coupling, the existence of the solutions obtained numerically by F. Finster, J. Smoller and ST. Yau in [START_REF] Finster | Particle-like solutions of the Einstein-Dirac-Maxwell equations[END_REF].

The general Einstein-Dirac-Maxwell equations for a system of n Dirac particles take the form

(G -m)ψ a = 0, R i j -1 2 Rδ i j = -8πT i j , ∇ k F jk = 4πe n a=1 ψ a G j ψ a
where G j are the Dirac matrices, G denote the Dirac operator, ψ a are the wave functions of fermions of mass m and charge e, F jk is the electromagnetic field tensor and, finally, T i j is the sum of the energy-momentum tensor of the Dirac particle and the Maxwell stress-energy tensor.

In [START_REF] Finster | Particle-like solutions of the Einstein-Dirac-Maxwell equations[END_REF], the metric, in polar coordinates (t, r, ϑ, ϕ), is given by

ds 2 = 1 T 2 dt 2 - 1 A dr 2 -r 2 dϑ 2 -r 2 sin 2 ϑ dϕ 2
with A = A(r), T = T (r) positive functions; moreover, using the ansatz from [START_REF] Finster | Particlelike solutions of the Einstein-Dirac equations[END_REF],

Finster, Smoller and Yau describe the Dirac spinors with two real radial functions Φ 1 (r), Φ 2 (r) and they assume that the electromagnetic potential has the form A = (-V, 0), with V the Coulomb potential.

In this case the Einstein-Dirac-Maxwell equations can be written as

√ AΦ ′ 1 = 1 r Φ 1 -((ω -eV )T + m)Φ 2 (1) √ AΦ ′ 2 = ((ω -eV )T -m)Φ 1 - 1 r Φ 2 (2) 
rA ′ = 1 -A -16π(ω -eV )T 2 Φ 2 1 + Φ 2 2 -r 2 AT 2 (V ′ ) 2 (3) 
2rA

T ′ T = A -1 -16π(ω -eV )T 2 Φ 2 1 + Φ 2 2 + 32π 1 r T Φ 1 Φ 2 +16πmT Φ 2 1 -Φ 2 2 + r 2 AT 2 (V ′ ) 2 (4) 
r 2 AV ′′ = -8πe Φ 2 1 + Φ 2 2 -2rA + r 2 A T ′ T + r 2 2 A ′ V ′ (5) 
with the normalization condition

∞ 0 |Φ| 2 T √ A dr = 1 4π
. In order that the metric be asymptotically Minkowskian and the solutions have finite (ADM) mass, Finster, Smoller and Yau assume

lim r→∞ T (r) = 1 and lim r→∞ r 2 (1 -A(r)) < ∞.
Finally, they also require that the electromagnetic potential vanishes at infinity. In this Note, using the idea introduced by Ounaies for a class of nonlinear Dirac equations (see [START_REF] Ounaies | Perturbation method for a class of non linear Dirac equations[END_REF]) and adapted in [START_REF] Nodari | Perturbation Method for Particle-like Solutions of the Einstein-Dirac Equations[END_REF] to the Einstein-Dirac equations, we obtain the following result.

Theorem 1.1. Given e, m, ω such that e 2m 2 < 0, 0 < ω < m and mω is sufficiently small, there exists a non trivial solution of (1-5).

Perturbation method for the Einstein-Dirac-Maxwell equations

First of all, we observe that, writing T (r) = 1 + t(r) and integrating the equation ( 5), the Einstein-Dirac-Maxwell equations become

√ AΦ ′ 1 = 1 r Φ 1 -((ω -eV )(1 + t) + m)Φ 2 (6) √ AΦ ′ 2 = ((ω -eV )(1 + t) -m)Φ 1 - 1 r Φ 2 (7) 2rAt ′ = (A -1)(1 + t) -16π(ω -eV )(1 + t) 3 Φ 2 1 + Φ 2 2 +32π 1 r (1 + t) 2 Φ 1 Φ 2 + 16πm(1 + t) 2 Φ 2 1 -Φ 2 2 +r 2 A(1 + t) 3 (V ′ ) 2 (8) √ A(1 + t)V ′ = - 8πe r 2 r 0 Φ 2 1 + Φ 2 2 (1 + t) √ A ds. ( 9 
)
where A(r) = 1 + a(r) and

a(r) = - 1 r exp (-F (r)) r 0 16π(ω -eV )(1 + t) 2 Φ 2 1 + Φ 2 2 +s 2 (1 + t) 2 (V ′ ) 2 exp (F (s)) ds (10) with F (r) = r 0 s(1 + t) 2 (V ′ ) 2 ds. After that, we introduce the new variable (ϕ, χ, τ, ζ) such that Φ 1 (r) = ε 1/2 ϕ(ε 1/2 r), Φ 2 (r) = εχ(ε 1/2 r), t(r) = ετ (ε 1/2 r), V (r) = εζ(ε 1/2 r)
where Φ 1 , Φ 2 , t, V satisfy (6-9) and ε = mω. Using the explicit expression of a(r), given in (10), we write

a(Φ 1 , Φ 2 , t, V ) = εα(ε, ϕ, χ, τ, ζ) with α(0, ϕ, χ, τ, ζ) = -16πm r r 0 ϕ 2 ds . It is now clear that if Φ 1 , Φ 2 , t, V satisfy (6-9), then ϕ, χ, τ, ζ satisfy the system              (1 + εα(ε, ϕ, χ, τ, ζ)) 1/2 d dr ϕ -1 r ϕ + 2mχ + K 1 (ε, ϕ, χ, τ, ζ) = 0 (1 + εα(ε, ϕ, χ, τ, ζ)) 1/2 d dr χ + 1 r χ + ϕ -mϕτ + eϕζ + K 2 (ε, ϕ, χ, τ, ζ) = 0 (1 + εα(ε, ϕ, χ, τ, ζ)) d dr τ -α(ε,ϕ,χ,τ,ζ) 2r + K 3 (ε, ϕ, χ, τ, ζ) = 0 (1 + εα(ε, ϕ, χ, τ, ζ)) 1/2 (1 + ετ ) d dr ζ + 8πe r 2 r 0 ϕ 2 ds + K 4 (ε, ϕ, χ, τ, ζ) = 0 (11) where K 1 (0, ϕ, χ, τ, ζ) = K 2 (0, ϕ, χ, τ, ζ) = K 3 (0, ϕ, χ, τ, ζ) = K 4 (0, ϕ, χ, τ, ζ) = 0.
Then, for ε = 0, (11) becomes

               -d 2 dr 2 ϕ + 2mϕ + 16π(e 2 -m 2 )m ∞ 0 ϕ 2 max(r,s) ds ϕ = 0 χ(r) = 1 2m 1 r ϕ -d dr ϕ τ (r) = 8πm ∞ 0 ϕ 2 max(r,s) ds ζ(r) = 8πe ∞ 0 ϕ 2 max(r,s) ds (12)
We remark that if e 2m 2 < 0 the first equation of the system (12) is the Choquard equation

-△u + 2mu -4(m 2 -e 2 )m R 3 |u(y)| 2 |x-y| dy u = 0 in H 1 R 3 (13) with u(x) = ϕ(|x|) |x| .
It is well known that Choquard's equation ( 13) has a unique radial, positive solution u 0 with |u 0 | 2 = N for some N > 0 given. Furthermore, u 0 is infinitely differentiable, goes to zero at infinity and is a radial nondegenerate solution; by this we mean that the linearization of (13) around u 0 has a trivial nullspace in L 2 r (R 3 ) (see [START_REF] Lieb | Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation[END_REF], [START_REF] Lions | The Choquard equation and related questions[END_REF], [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF] for more details). Let φ 0 = (ϕ 0 , χ 0 , τ 0 , ζ 0 ) be the ground state solution of (12).

The main idea is that the solutions of (11) are the zeros of a

C 1 operator D : R × X ϕ × X χ × X τ × X ζ → Y ϕ × Y χ × Y τ × Y ζ .
So, to obtain a solution of (11) from φ 0 , we define the operators [START_REF] Nodari | Perturbation Method for Particle-like Solutions of the Einstein-Dirac Equations[END_REF] and We observe that, thanks to the nondegeneracy of the solution of Choquard's equation, D ϕ,χ,τ,ζ (0, φ 0 ) is a one-to-one operator. Moreover, it can be written as a sum of an isomorphism and a compact operator. It is thus an isomorphism. Finally, the application of the implicit function theorem yields the following result, which is equivalent to Theorem 1.1.

L 1 (ε, ϕ, χ, τ, ζ) = (1 + εα(ε, ϕ, χ, τ, ζ)) 1/2 1 r d dr ϕ - ϕ r 2 + 2m χ r + 1 r K 1 (ε, ϕ, χ, τ, ζ) L 2 (ε, ϕ, χ, τ, ζ) = (1 + εα(ε, ϕ, χ, τ, ζ)) 1/2 1 r d dr χ + χ r 2 + ϕ r -m ϕ r τ + e ϕ r ζ + 1 r K 2 (ε, ϕ, χ, τ, ζ) L 3 (ε, ϕ, χ, τ, ζ) = (1 + εα(ε, ϕ, χ, τ, ζ)) d dr τ - α(ε, ϕ, χ, τ, ζ) 2r + K 3 (ε, ϕ, χ, τ, ζ) L 4 (ε, ϕ, χ, τ, ζ) = (1 + εα(ε, ϕ, χ, τ, ζ)) 1/2 (1 + ετ ) d dr ζ + 8πe r 2 r 0 ϕ 2 ds +K 4 (ε, ϕ, χ, τ, ζ) and 
D(ε, ϕ, χ, τ, ζ) = (L 1 (ε, ϕ, χ, τ, ζ), L 2 (ε, ϕ, χ, τ, ζ), L 3 (ε, ϕ, χ, τ, ζ), L 4 (ε, ϕ, χ, τ, ζ)) , with X ϕ , X χ , X τ , Y ϕ , Y χ , Y τ defined as in
X ζ = ζ : (0, ∞) → R lim r→∞ ζ(r) = 0, d dr ζ ∈ L 1 ((0, ∞), dr) ∩ L 2 ((0, ∞), rdr) Y ζ = L 1 ((0, ∞), dr) ∩ L 2 ((0, ∞),
Theorem 2.1. Suppose e 2m 2 < 0 and let φ 0 be the ground state solution of (12), then there exists δ > 0 and a function η ∈ C((0, δ), X ϕ × X χ × X τ × X ζ ) such that η(0) = φ 0 and D(ε, η(ε)) = 0 for 0 ≤ ε < δ.

  rdr)with their natural norms.Next, we linearize the operator D on (ϕ, χ, τ, ζ) around (0, φ 0 ):D ϕ,χ,τ,ζ (0, φ 0 )(h, k, l, z)
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