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Introduction

Let f be the negative part of the quantized enveloping algebra of type A (1) . Lusztig's description of the canonical basis of f implies that this basis can be naturally identified with the set of isomorphism classes of simple objects of a category of modules of the affine Hecke algebras of type A. This identification was mentioned in [G], and was used in [A]. More precisely, there is a linear isomorphism between f and the Grothendieck group of finite dimensional modules of the affine Hecke algebras of type A, and it is proved in [A] that the induction/restriction functors for affine Hecke algebras are given by the action of the Chevalley generators and their transposed operators with respect to some symmetric bilinear form on f .

The branching rules for affine Hecke algebras of type B have been investigated quite recently, see [E], [START_REF] Enomoto | Symmetric Crystals and the affine Hecke algebras of type B[END_REF]2,3], [M] and [VV]. In particular, in [E], [START_REF] Enomoto | Symmetric Crystals and the affine Hecke algebras of type B[END_REF]2,3] an analogue of Ariki's construction is conjectured and studied for affine Hecke algebras of type B. Here f is replaced by a module θ V(λ) over an algebra θ B. More precisely it is conjectured there that θ V(λ) admits a canonical basis which is naturally identified with the set of isomorphism classes of simple objects of a category of modules of the affine Hecke algebras of type B. Further, in this identification the branching rules of the affine Hecke algebras of type B should be given by the θ B-action on θ V(λ). This conjecture has been proved [VV]. It uses both the geometric picture introduced in [E] (to prove part of the conjecture) and a new kind of graded algebras similar to the KLR algebras from [KL], [R].

A similar description of the branching rules for affine Hecke algebras of type D has also been conjectured in [KM]. In this case f is replaced by another module • V over the algebra θ B (the same algebra as in the type B case). The purpose of this paper is to prove the type D case. The method of the proof is the same as in [VV]. First we introduce a family of graded algebras • R m for m a non negative integer. They can be viewed as the Ext-algebras of some complex of constructible sheaves naturally attached to the Lie algebra of the group SO(2m), see Remark 2.8. This complex enters in the Kazhdan-Lusztig classification of the simple modules of the affine Hecke algebra of the group Spin(2m). Then we identify • V with the sum of the Grothendieck groups of the graded algebras • R m .
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The plan of the paper is the following. In Section 1 we introduce a graded algebra • R(Γ) ν . It is associated with a quiver Γ with an involution θ and with a dimension vector ν. In Section 2 we consider a particular choice of pair (Γ, θ). The graded algebras • R(Γ) ν associated with this pair (Γ, θ) are denoted by the symbol • R m . Next we introduce the affine Hecke algebra of type D, more precisely the affine Hecke algebra associated with the group SO(2m), and we prove that it is Morita equivalent to • R m . In Section 3 we categorify the module • V from [KM] using the graded algebras • R m , see Theorem 3.28. The main result of the paper is Theorem 3.33. 0. Notation 0.1. Graded modules over graded algebras. Let k be an algebraically closed field of characteristic 0. By a graded k-algebra R = d R d we'll always mean a Z-graded associative k-algebra. Let R-mod be the category of finitely generated graded R-modules, R-fmod be the full subcategory of finite-dimensional graded modules and R-proj be the full subcategory of projective objects. Unless specified otherwise all modules are left modules. We'll abbreviate

K(R) = [R-proj], G(R) = [R-fmod].
Here [C C C] denotes the Grothendieck group of an exact category C C C. Assume that the k-vector spaces R d are finite dimensional for each d. Then K(R) is a free Abelian group with a basis formed by the isomorphism classes of the indecomposable objects in R-proj, and G(R) is a free Abelian group with a basis formed by the isomorphism classes of the simple objects in R-fmod. Given an object M of R-proj or R-fmod let [M ] denote its class in K(R), G(R) respectively. When there is no risk of confusion we abbreviate M = [M ]. We'll write [M : N ] for the composition multiplicity of the R-module N in the R-module M . Consider the ring

A = Z[v, v -1 ]. If the grading of R is bounded below then the A-modules K(R), G(R) are free. Here A acts on G(R), K(R) as follows vM = M [1], v -1 M = M [-1]. For any M, N in R-mod let hom R (M, N ) = d Hom R (M, N [d])
be the Z-graded k-vector space of all R-module homomorphisms. If R = k we'll omit the subscript R in hom's and in tensor products. For any graded k-vector

space M = d M d we'll write gdim(M ) = d v d dim(M d ),
where dim is the dimension over k. 0.2. Quivers with involutions. Recall that a quiver Γ is a tuple (I, H, h → h ′ , h → h ′′ ) where I is the set of vertices, H is the set of arrows and for each h ∈ H the vertices h ′ , h ′′ ∈ I are the origin and the goal of h respectively. Note that the set I may be infinite. We'll assume that no arrow may join a vertex to itself. For each i, j ∈ I we write

H i,j = {h ∈ H; h ′ = i, h ′′ = j}.
We'll abbreviate i → j if H i,j = ∅. Let h i,j be the number of elements in H i,j and set i

• j = -h i,j -h j,i , i • i = 2, i = j.
An involution θ on Γ is a pair of involutions on I and H, both denoted by θ, such that the following properties hold for each h in H

• θ(h) ′ = θ(h ′′ ) and θ(h) ′′ = θ(h ′ ), • θ(h ′ ) = h ′′ iff θ(h) = h.
We'll always assume that θ has no fixed points in I, i.e., there is no i ∈ I such that θ(i) = i. To simplify we'll say that θ has no fixed point. Let

θ NI = {ν = i ν i i ∈ NI : ν θ(i) = ν i , ∀i}.
For any ν ∈ θ NI set |ν| = i ν i . It is an even integer. Write |ν| = 2m with m ∈ N.

We'll denote by θ I ν the set of sequences

i = (i 1-m , . . . , i m-1 , i m ) of elements in I such that θ(i l ) = i 1-l and k i k = ν. For any such sequence i we'll abbreviate θ(i) = (θ(i 1-m ), . . . , θ(i m-1 ), θ(i m )). Finally, we set θ I m = ν θ I ν , ν ∈ θ NI, |ν| = 2m.
0.3. The wreath product. Given a positive integer m, let S m be the symmetric group, and Z 2 = {-1, 1}. Consider the wreath product W m = S m ≀ Z 2 . Write s 1 , . . . , s m-1 for the simple reflections in S m . For each l = 1, 2, . . . m let ε l ∈ (Z 2 ) m be -1 placed at the l-th position. There is a unique action of W m on the set {1m, . . . , m -1, m} such that S m permutes 1, 2, . . . m and such that ε l fixes k if k = l, 1l and switches l and 1l. The group W m acts also on θ I ν . Indeed, view a sequence i as the map

{1 -m, . . . , m -1, m} → I, l → i l .
Then we set w(i) = i • w -1 for w ∈ W m . For each ν we fix once for all a sequence

i e = (i 1-m , . . . , i m ) ∈ θ I ν .
Let W e be the centralizer of i e in W m . Then there is a bijection

W e \W m → θ I ν , W e w → w -1 (i e ).
Now, assume that m > 1. We set s 0 = ε 1 s 1 ε 1 . Let • W m be the subgroup of W m generated by s 0 , . . . , s m-1 . We'll regard it as a Weyl group of type D m such that s 0 , . . . , s m-1 are the simple reflections. Note that W e is a subgroup of • W m . Indeed, if W e ⊂ • W m there should exist l such that ε l belongs to W e . This would imply that i l = θ(i l ), contradicting the fact that θ has no fixed point. Therefore θ I ν decomposes into two • W m -orbits. We'll denote them by θ I ν + and θ I ν -. For m = 1 we set • W 1 = {e} and we choose again θ I ν + and θ I ν -in a obvious way.

1. The graded k-algebra • R(Γ) ν

Fix a quiver Γ with set of vertices I and set of arrows H. Fix an involution θ on Γ. Assume that Γ has no 1-loops and that θ has no fixed points. Fix a dimension vector ν = 0 in θ NI. Set |ν| = 2m.

1.1. Definition of the graded k-algebra • R(Γ) ν . Assume that m > 1. We define a graded k-algebra • R(Γ) ν with 1 generated by 1 i , κ l , σ k , with i ∈ θ I ν , l = 1, 2, . . . , m, k = 0, 1, . . . , m -1 modulo the following defining relations

(a) 1 i 1 i ′ = δ i,i ′ 1 i , σ k 1 i = 1 s k i σ k , κ l 1 i = 1 i κ l , (b) κ l κ l ′ = κ l ′ κ l , (c) σ 2 k 1 i = Q i k ,i s k (k) (κ s k (k) , κ k )1 i , (d) σ k σ k ′ = σ k ′ σ k if 1 k < k ′ -1 < m -1 or 0 = k < k ′ = 2, (e) (σ s k (k) σ k σ s k (k) -σ k σ s k (k) σ k )1 i = =      Q i k ,i s k (k) (κ s k (k) , κ k ) -Q i k ,i s k (k) (κ s k (k) , κ s k (k)+1 ) κ k -κ s k (k)+1 1 i if i k = i s k (k)+1 , 0 else, (f ) (σ k κ l -κ s k (l) σ k )1 i =      -1 i if l = k, i k = i s k (k) , 1 i if l = s k (k), i k = i s k (k) , 0 
else.

Here we have set κ 1-l = -κ l and

(1.1)

Q i,j (u, v) = (-1) hi,j (u -v) -i•j if i = j, 0 else. If m = 0 we set • R(Γ) 0 = k ⊕ k. If m = 1 then we have ν = i + θ(i) for some i ∈ I. Write i = iθ(i), and • R(Γ) ν = k[κ 1 ]1 i ⊕ k[κ 1 ]1 θ(i) .
We'll abbreviate σ i,k = σ k 1 i and κ i,l = κ l 1 i . The grading on • R(Γ) 0 is the trivial one. For m 1 the grading on • R(Γ) ν is given by the following rules :

deg(1 i ) = 0, deg(κ i,l ) = 2, deg(σ i,k ) = -i k • i s k (k) .
We define ω to be the unique involution of the graded k-algebra • R(Γ) ν which fixes 1 i , κ l , σ k . We set ω to be identity on • R(Γ) 0 .

1.2. Relation with the graded k-algebra θ R(Γ) ν . A family of graded k-algebra θ R(Γ) λ,ν was introduced in [VV, sec. 5.1], for λ an arbitrary dimension vector in NI. Here we'll only consider the special case λ = 0, and we abbreviate θ R(Γ) ν = θ R(Γ) 0,ν . Recall that if ν = 0 then θ R(Γ) ν is the graded k-algebra with 1 generated by 1 i , κ l , σ k , π 1 , with i ∈ θ I ν , l = 1, 2, . . . , m, k = 1, . . . , m -1 such that 1 i , κ l and σ k satisfy the same relations as before and

π 2 1 = 1, π 1 1 i π 1 = 1 ε1i , π 1 κ l π 1 = κ ε1(l) , (π 1 σ 1 ) 2 = (σ 1 π 1 ) 2 , π 1 σ k π 1 = σ k if k = 1. If ν = 0 then θ R(Γ) 0 = k.
The grading is given by setting deg(1 i ), deg(κ i,l ), deg(σ i,k ) to be as before and deg(π

1 1 i ) = 0.
In the rest of Section 1 we'll assume m > 0. Then there is a canonical inclusion of graded k-algebras

(1.2) • R(Γ) ν ⊂ θ R(Γ) ν such that 1 i , κ l , σ k → 1 i , κ l , σ k for i ∈ θ I ν , l = 1, . . . , m, k = 1, . . . , m -1 and such that σ 0 → π 1 σ 1 π 1 .
From now on we'll write σ 0 = π 1 σ 1 π 1 whenever m > 1. The assignment x → π 1 xπ 1 defines an involution of the graded k-algebra θ R(Γ) ν which normalizes • R(Γ) ν . Thus it yields an involution

γ : • R(Γ) ν → • R(Γ) ν .
Let γ be the group of two elements generated by γ. The smash product • R(Γ) ν ⋊ γ is a graded k-algebra such that deg(γ) = 0. There is an unique isomorphism of graded k-algebras

(1.3) • R(Γ) ν ⋊ γ → θ R(Γ) ν
which is identity on • R(Γ) ν and which takes γ to π 1 .

1.3. The polynomial representation and the PBW theorem. For any i in θ I ν let θ F i be the subalgebra of • R(Γ) ν generated by 1 i and κ i,l with l = 1, 2, . . . , m.

It is a polynomial algebra. Let

θ F ν = i∈ θ I ν θ F i .
The group W m acts on θ F ν via w(κ i,l ) = κ w(i),w(l) for any w ∈ W m . Consider the fixed points set

• S ν = ( θ F ν ) • Wm .
Regard θ R(Γ) ν and End( θ F ν ) as θ F ν -algebras via the left multiplication. In [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 5.4] is given an injective graded θ F ν -algebra morphism θ R(Γ) ν → End( θ F ν ). It restricts via (1.2) to an injective graded θ F ν -algebra morphism

• R(Γ) ν → End( θ F ν ).
Next, recall that • W m is the Weyl group of type D m with simple reflections s 0 , . . . , s m-1 .

For each w in • W m we choose a reduced decomposition ẇ of w. It has the following form

w = s k1 s k2 • • • s kr , 0 k 1 , k 2 , . . . , k r m -1.
We define an element

σ ẇ in • R(Γ) ν by (1.4) σ ẇ = i 1 i σ ẇ , 1 i σ ẇ = 1 i if r = 0 1 i σ k1 σ k2 • • • σ kr else,
Observe that the element σ ẇ may depend on the choice of the reduced decomposition ẇ.

1.4. Proposition. The k-algebra • R(Γ) ν is a free (left or right) θ F ν -module with basis {σ ẇ ; w ∈ • W m }. Its rank is 2 m-1 m!.
The operator 1 i σ ẇ is homogeneous and its degree is independent of the choice of the reduced decomposition ẇ.

Proof : The proof is the same as in [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 5.5]. First, we filter the algebra • R(Γ) ν with 1 i , κ i,l in degree 0 and σ i,k in degree 1. The Nil Hecke algebra of type D m is the k-algebra • NH m generated by σ0 , σ1 , . . . , σm-1 with relations

σk σk ′ = σk ′ σk if 1 k < k ′ -1 < m -1 or 0 = k < k ′ = 2, σs k (k) σk σs k (k) = σk σs k (k) σk , σ2 k = 0. We can form the semidirect product θ F ν ⋊ • NH m ,
which is generated by 1 i , κl , σk with the relations above and

σk κl = κs k (l) σk , κl κl ′ = κl ′ κl ′ .
One proves as in [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 5.5] that the map

θ F ν ⋊ • NH m → gr( • R(Γ) ν ), 1 i → 1 i , κl → κ l , σk → σ k . is an isomorphism of k-algebras. ⊓ ⊔ Let θ F ′ ν = i θ F ′ i ,
where θ F ′ i is the localization of the ring θ F i with respect to the multiplicative system generated by

{κ i,l ± κ i,l ′ ; 1 l = l ′ m} ∪ {κ i,l ; l = 1, 2, . . . , m}. 1.5. Corollary. The inclusion • R(Γ) ν ⊂ End( θ F ν ) yields an isomorphism of θ F ′ ν -algebras θ F ′ ν ⊗θ Fν • R(Γ) ν → θ F ′ ν ⋊ • W m , such that for each i and each l = 1, 2, . . . , m, k = 0, 1, 2, . . . , m -1 we have (1.5) 1 i → 1 i , κ i,l → κ l 1 i , σ i,k →    (κ k -κ s k (k) ) -1 (s k -1)1 i if i k = i s k (k) , (κ k -κ s k (k) ) hi s k (k) ,i k s k 1 i if i k = i s k (k) .
Proof: Follows from [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]cor. 5.6] and Proposition 1.4. ⊓ ⊔ 

Restricting the θ F ν -action on • R(Γ) ν to the k-subalgebra • S ν we get a structure of graded • S ν -algebra on • R(Γ) ν . 1.6. Proposition. (a) • S ν is isomorphic to the center of • R(Γ) ν . (b) • R(Γ) ν is a free graded module over • S ν of rank (2 m-1 m!) 2 . Proof : Part (a)
T k , X ±1 l , k = 0, 1, . . . , m -1, l = 1, 2, . . . , m
satisfying the following defining relations :

(a) X l X l ′ = X l ′ X l , (b) T k T s k (k) T k = T s k (k) T k T s k (k) , T k T k ′ = T k ′ T k if 1 k < k ′ -1 or k = 0, k ′ = 2, (c) (T k -p)(T k + p -1 ) = 0, (d) T 0 X -1 1 T 0 = X 2 , T k X k T k = X s k (k) if k = 0, T k X l = X l T k if k = 0, l, l -1 or k = 0, l = 1, 2. Finally, we set H 0 = k ⊕ k and H 1 = k[X ±1 1 ].

Remarks. (a)

The extended affine Hecke algebra

H B m of type B m with pa- rameters p, q ∈ k × such that q = 1 is generated by P , T k , X ±1 l , k = 1, . . . , m -1, l = 1, . . . , m such that T k , X ±1
l satisfy the relations as above and

P 2 = 1, (P T 1 ) 2 = (T 1 P ) 2 , P T k = T k P if k = 1, P X -1 1 P = X 1 , P X l = X l P if l = 1.
See e.g., [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]sec. 6.1]. There is an obvious k-algebra embedding

H m ⊂ H B m . Let γ denote also the involution H m → H m , a → P aP . We have a canonical isomorphism of k-algebras H m ⋊ γ ≃ H B m .
Compare Section 1.2.

(b) Given a connected reductive group G we call affine Hecke algebra of G the Hecke algebra of the extended affine Weyl group W ⋉ P , where W is the Weyl group of (G, T ), P is the group of characters of T , and T is a maximal torus of G. Then H m is the affine Hecke algebra of the group SO(2m). Let H e m be the affine Hecke algebra of the group Spin(2m). It is generated by H m and an element X 0 such that

X 2 0 = X 1 X 2 . . . X m , T k X 0 = X 0 T k if k = 0, T 0 X 0 X -1 1 X -1 2 T 0 = X 0 .
Thus H m is the fixed point subset of the k-algebra automorphism of H e m taking T k , X l to T k , (-1) δ l,0 X l for all k, l. Therefore, if p is not a root of 1 the simple H mmodules can be recovered from the Kazhdan-Lusztig classification of the simple H e m -modules via Clifford theory, see e.g., [Re].

2.3. Intertwiners and blocks of H m . We define

A = k[X ±1 1 , X ±1 2 , . . . , X ±1 m ], A ′ = A[Σ -1 ], H ′ m = A ′ ⊗ A H m ,
where Σ is the multiplicative set generated by

1 -X l X ±1 l ′ , 1 -p 2 X ±1 l X ±1 l ′ , l = l ′ .
For k = 0, . . . , m -1 the intertwiner ϕ k is the element of H ′ m given by the following formulas

(2.1) ϕ k -1 = X k -X s k (k) pX k -p -1 X s k (k) (T k -p).
The group • W m acts on A ′ as follows

(s k a)(X 1 , . . . , X m ) = a(X 1 , . . . , X k+1 , X k , . . . , X m ) if k = 0, (s 0 a)(X 1 , . . . , X m ) = a(X -1 2 , X -1 1 , . . . , X m ).
There is an isomorphism of A ′ -algebras

A ′ ⋊ • W m → H ′ m , s k → ϕ k . The semi-direct product group Z⋊Z 2 = Z⋊{-1, 1} acts on k × by (n, ε) : z → z ε p 2n .
Given a Z⋊ Z 2 -invariant subset I of k × we denote by H m -Mod I the category of all H m -modules such that the action of X 1 , X 2 , . . . , X m is locally finite with eigenvalues in I. We associate to the set I and to the element p ∈ k × a quiver Γ as follows.

The set of vertices is I, and there is one arrow p 2 i → i whenever i lies in I. We equip Γ with an involution θ such that θ(i) = i -1 for each vertex i and such that θ takes the arrow p 2 i → i to the arrow i -1 → p -2 i -1 . We'll assume that the set I does not contain 1 nor -1 and that p = 1, -1. Thus the involution θ has no fixed points and no arrow may join a vertex of Γ to itself.

2.4. Remark. We may assume that I = ±{p n ; n ∈ Z odd }. See the discussion in [KM]. Then Γ is of type A ∞ if p has infinite order and Γ is of type A

(1) r if p 2 is a primitive r-th root of unity.

H m -modules versus

• R m -modules. Assume that m 1. We define the graded k-algebra θ R I,m = ν θ R I,ν , θ R I,ν = θ R(Γ) ν , • R I,m = ν • R I,ν , • R I,ν = • R(Γ) ν , θ I m = ν θ I ν ,
where ν runs over the set of all dimension vectors in θ NI such that |ν| = 2m. When there is no risk of confusion we abbreviate

θ R ν = θ R I,ν , θ R m = θ R I,m , • R ν = • R I,ν , • R m = • R I,m .
Note that θ R ν and θ R m are the same as in [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]sec. 6.4], with λ = 0. Note also that the k-algebra • R m may not have 1, because the set I may be infinite. We define • R m -Mod 0 as the category of all (non-graded) • R m -modules such that the elements κ 1 , κ 2 , . . . , κ m act locally nilpotently. Let • R m -fMod 0 and H m -fMod I be the full subcategories of finite dimensional modules in

• R m -Mod 0 and H m -Mod I respectively. Fix a formal series f (κ) in k[[κ]] such that f (κ) = 1 + κ modulo (κ 2 ).
2.6. Theorem. We have an equivalence of categories

• R m -Mod 0 → H m -Mod I , M → M which is given by (a) X l acts on 1 i M by i -1 l f (κ l ) for each l = 1, 2, . . . , m, (b) if m > 1 then T k acts on 1 i M as follows for each k = 0, 1, . . . , m -1, (pf (κ k ) -p -1 f (κ s k (k) ))(κ k -κ s k (k) ) f (κ k ) -f (κ s k (k) ) σ k + p if i s k (k) = i k , f (κ k ) -f (κ s k (k) ) (p -1 f (κ k ) -pf (κ s k (k) ))(κ k -κ s k (k) ) σ k + (p -2 -1)f (κ s k (k) ) pf (κ k ) -p -1 f (κ s k (k) ) if i s k (k) = p 2 i k , pi k f (κ k ) -p -1 i s k (k) f (κ s k (k) ) i k f (κ k ) -i s k (k) f (κ s k (k) ) σ k + (p -1 -p)i k f (κ s k (k) ) i s k (k) f (κ k ) -i k f (κ s k (k) ) if i s k (k) = i k , p 2 i k .
Proof : This follows from [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]thm. 6.5] by Section 1.2 and Remark 2.2(a). One can also prove it by reproducing the arguments in loc. cit. by using (1.5) and (2.1). ⊓ ⊔

Corollary.

There is an equivalence of categories

Ψ : • R m -fMod 0 → H m -fMod I , M → M.
2.8. Remarks. (a) Let g be the Lie algebra of G = SO(2m). Fix a maximal torus T ⊂ G. The group of characters of T is the lattice

m l=1 Z ε l , with Bourbaki's nota- tion. Fix a dimension vector ν ∈ θ NI. Recall the sequence i e = (i 1-m , . . . , i m-1 , i m ) from Section 0.3. Let g ∈ T be the element such that ε l (g) = i -1 l for each l = 1, 2, . . . , m. Recall also the notation θ V V V ν , V, θ E V , and θ G V from [VV]. Then V is an object of θ V V V ν , θ G V = G g is the centralizer of g in G,
and

θ E V = g g,p , g g,p = {x ∈ g; , ad g (x) = p 2 x}.
Let F g be the set of all Borel Lie subalgebras of g fixed by the adjoint action of g. It is a non connected manifold whose connected components are labelled by θ I ν + . In Section 3.14 we'll introduce two central idempotents 1 ν,+ , 1 ν,-of • R ν . This yields a graded k-algebra decomposition

• R ν = • R ν 1 ν,+ ⊕ • R ν 1 ν,-.
By [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]thm. 5.8] 

the graded k-algebra • R ν 1 ν,+ is isomorphic to Ext * Gg (L g,p , L g,p ),
where L g,p is the direct image of the constant perverse sheaf by the projection

{(b, x) ∈ F g × g g,p ; x ∈ b} → g g,p , (b, x) → x.
The complex L g,p has been extensively studied by Lusztig, see e.g., [L1], [L2]. We hope to come back to this elsewhere. (b) The results in Section 2.5 hold true if k is any field. Set f (κ) = 1 + κ for instance.

2.9. Induction and restriction of H m -modules. For i ∈ I we define functors (2.2)

E i : H m+1 -fMod I → H m -fMod I , F i : H m -fMod I → H m+1 -fMod I ,
where E i M ⊂ M is the generalized i -1 -eigenspace of the X m+1 -action, and where

F i M = Ind Hm+1 Hm⊗k[X ±1 m+1 ] (M ⊗ k i ). Here k i is the 1-dimensional representation of k[X ±1 m+1 ] defined by X m+1 → i -1 .
3. Global bases of • V and projective graded where v shifts the grading by 1. We consider the following A-modules

• K I = m 0 • K I,m , • K I,m = K( • R m ), • G I = m 0 • G I,m , • G I,m = G( • R m ).
We'll also abbreviate

• K I, * = m>0 • K I,m , • G I, * = m>0 • G I,m .
From now on, to unburden the notation we may abbreviate • R = • R m , hoping it will not create any confusion. For any M, N in • R-mod we set

(M : N ) = gdim(M ω ⊗• R N ), M : N = gdim hom• R (M, N ),
where ω is the involution defined in Section 1.1. The Cartan pairing is the perfect A-bilinear form

• K I × • G I → A, (P, M ) → P : M .
First, we concentrate on the A-module

• G I . Consider the duality • R-fmod → • R-fmod, M → M ♭ = hom(M, k),
with the action and the grading given by

(xf )(m) = f (ω(x)m), (M ♭ ) d = Hom(M -d , k).
This duality functor yields an A-antilinear map

• G I → • G I , M → M ♭ .
Let • B denote the set of isomorphism classes of simple objects of • R-fMod 0 . We can now define the upper global basis of • G I as follows. The proof is given in Section 3.21.

3.2. Proposition/Definition. For each b in • B there is a unique selfdual irreducible graded

• R-module • G up (b) which is isomorphic to b as a (non graded) • R-module. We set • G up (0) = 0 and • G up = { • G up (b); b ∈ • B}. Hence • G up is a A-basis of • G I .
Now, we concentrate on the A-module • K I . We equip • K I with the symmetric A-bilinear form (3.1)

• K I × • K I → A, (M, N ) → (M : N ).
Consider the duality

• R-proj → • R-proj, P → P ♯ = hom• R (P, • R),
with the action and the grading given by

(xf )(p) = f (p)ω(x), (P ♯ ) d = Hom• R (P [-d], • R).
This duality functor yields an A-antilinear map The proof is the same as in [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 8.4].

• K I → • K I , P → P ♯ . Set K = Q(v). Let K → K, f → f be the unique involution such that v = v -1 . 3.3. Definition. For each b in • B let • G low (b) be the unique indecomposable graded module in • R-proj whose top is isomorphic to • G up (b). We set • G low (0) = 0 and • G low = { • G low (b); b ∈ • B}, a A-basis of • K I .
3.5. Example. Set ν = i + θ(i) and i = iθ(i). Consider the graded • R ν -modules

• R i = • R1 i = 1 i • R, • L i = top( • R i ).
The global bases are given by

• G low ν = { • R i , • R θ(i) }, • G up ν = { • L i , • L θ(i) }.
For m = 0 we have

• R 0 = k ⊕ k. Set φ + = k ⊕ 0 and φ -= 0 ⊕ k. We have • G low 0 = • G up 0 = {φ + , φ -}.
3.6. Definition of the operators e i , f i , e ′ i , f ′ i . In this section we'll always assume m > 0 unless specified otherwise. First, let us introduce the following notation. Let D m,1 be the set of minimal representative in

• W m+1 of the cosets in • W m \ • W m+1 . Write D m,1;m,1 = D m,1 ∩ (D m,1 ) -1 .
For each element w of D m,1;m,1 we set

W (w) = • W m ∩ w( • W m )w -1 .
Let R 1 be the k-algebra generated by elements 1 i , κ i , i ∈ I, satisfying the defining relations 1 i 1 i ′ = δ i,i ′ 1 i and κ i = 1 i κ i 1 i . We equip R 1 with the grading such that deg

(1 i ) = 0 and deg(κ i ) = 2. Let R i = 1 i R 1 = R 1 1 i , L i = top(R i ) = R i /(κ i ).
Then R i is a graded projective R 1 -module and L i is simple. We abbreviate

θ R m,1 = θ R m ⊗ R 1 , • R m,1 = • R m ⊗ R 1 .
There is an unique inclusion of graded k-algebras

(3.2) θ R m,1 → θ R m+1 , 1 i ⊗ 1 i → 1 i ′ , 1 i ⊗ κ i,l → κ i ′ ,m+l , κ i,l ⊗ 1 i → κ i ′ ,l , π i,1 ⊗ 1 i → π i ′ ,1 , σ i,k ⊗ 1 i → σ i ′ ,k ,
where, given i ∈ θ I m and i ∈ I, we have set i ′ = θ(i)ii, a sequence in θ I m+1 . This inclusion restricts to an inclusion

• R m,1 ⊂ • R m+1 . 3.7. Lemma. The graded • R m,1 -module • R m+1 is free of rank 2(m + 1).
Proof : For each w in D m,1 we have the element σ ẇ in • R m+1 defined in (1.5).

Using filtered/graded arguments it is easy to see that

• R m+1 = w∈Dm,1 • R m,1 σ ẇ . ⊓ ⊔
We define a triple of adjoint functors (ψ ! , ψ * , ψ * ) where

ψ * : • R m+1 -mod → • R m -mod × R 1 -mod
is the restriction and ψ ! , ψ * are given by

ψ ! : • R m -mod × R 1 -mod → • R m+1 -mod, (M, M ′ ) → • R m+1 ⊗• Rm,1 (M ⊗ M ′ ), ψ * : • R m -mod × R 1 -mod → • R m+1 -mod, (M, M ′ ) → hom• Rm,1 ( • R m+1 , M ⊗ M ′ ).
First, note that the functors ψ ! , ψ * , ψ * commute with the shift of the grading.

Next, the functor ψ * is exact, and it takes finite dimensional graded modules to finite dimensional ones. The right graded • R m,1 -module • R m+1 is free of finite rank. Thus ψ ! is exact, and it takes finite dimensional graded modules to finite dimensional ones. The left graded • R m,1 -module • R m+1 is also free of finite rank. Thus the functor ψ * is exact, and it takes finite dimensional graded modules to finite dimensional ones. Further ψ ! and ψ * take projective graded modules to projective ones, because they are left adjoint to the exact functors ψ * , ψ * respectively. To summarize, the functors ψ ! , ψ * , ψ * are exact and take finite dimensional graded modules to finite dimensional ones, and the functors ψ ! , ψ * take projective graded modules to projective ones.

For any graded • R m -module M we write

(3.3) f i (M ) = • R m+1 1 m,i ⊗• Rm M, e i (M ) = • R m-1 ⊗• Rm-1,1 1 m-1,i M.
Let us explain these formulas. The symbols 1 m,i and 1 m-1,i are given by

1 m-1,i M = i 1 θ(i)ii M, i ∈ θ I m-1 . Note that f i (M ) is a graded • R m+1 -module, while e i (M ) is a graded • R m-1 - module.
The tensor product in the definition of e i (M ) is relative to the graded k-algebra homomorphism

• R m-1,1 → • R m-1 ⊗ R 1 → • R m-1 ⊗ R i → • R m-1 ⊗ L i = • R m-1 .
In other words, let e ′ i (M ) be the graded • R m-1 -module obtained by taking the direct summand 1 m-1,i M and restricting it to M ). 3.8. Definition. The functors e i , f i preserve the category • R-proj, yielding Alinear operators on • K I which act on • K I, * by the formula (3.3) and satisfy also

• R m-1 . Observe that if M is finitely generated then e ′ i (M ) may not lie in • R m-1 -mod. To remedy this, since e ′ i (M ) affords a • R m-1 ⊗ R i -action we consider the graded • R m-1 -module e i (M ) = e ′ i (M )/κ i e ′ i ( 
f i (φ + ) = • R θ(i)i , f i (φ -) = • R iθ(i) , e i (R θ(j)j ) = δ i,j φ + + δ i,θ(j) φ -.
Let e i , f i denote also the A-linear operators on • G I which are the transpose of f i , e i with respect to the Cartan pairing.

Note that the symbols e i (M ), f i (M ) have a different meaning if M is viewed as an element of • K I or if M is viewed as an element of • G I . We hope this will not create any confusion. The proof of the following lemma is the same as in [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]lem. 8.9].

Lemma. (a)

The operators e i , f i on • G I are given by

e i (M ) = 1 m-1,i M f i (M ) = hom• Rm,1 ( • R m+1 , M ⊗ L i ), M ∈ • R m -fmod. (b) For each M ∈ • R m -mod, M ′ ∈ • R m+1 -mod we have (e ′ i (M ′ ) : M ) = (M ′ : f i (M )). (c) We have f i (P ) ♯ = f i (P ♯ ) for each P ∈ • R-proj. (d) We have e i (M ) ♭ = e i (M ♭ ) for each M ∈ • R-fmod. 3.10. Induction of H m -modules versus induction of • R m -modules. Recall the functors E i , F i on H-fMod I defined in (2.
2). We have also the functors

for : • R m -fmod → • R m -fMod 0 , Ψ : • R m -fMod 0 → H m -fMod I ,
where for is the forgetting of the grading. Finally we define functors (3.4)

E i : • R m -fMod 0 → • R m-1 -fMod 0 , E i M = 1 m-1,i M, F i : • R m -fMod 0 → • R m+1 -fMod 0 , F i M = ψ ! (M, L i ).

Proposition.

There are canonical isomorphisms of functors

E i • Ψ = Ψ • E i , F i • Ψ = Ψ • F i , E i • for = for • e i , F i • for = for • f θ(i) .
Proof : The proof is the same as in [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 8.17]. ⊓ ⊔ 3.12. Proposition. (a) The functor Ψ yields an isomorphism of Abelian groups m 0

[ • R m -fMod 0 ] = m 0 [H m -fMod I ].
The functors E i , F i yield endomorphisms of both sides which are intertwined by Ψ.

(b) The functor for factors to a group isomorphism

• G I /(v -1) = m 0 [ • R m -fMod 0 ].
Proof : Claim (a) follows from Corollary 2.7 and Proposition 3.11. Claim (b) follows from Proposition 3.2. ⊓ ⊔ 3.13. Type D versus type B. We can compare the previous constructions with their analogues in type B. Let θ K, θ B, θ G low , etc, denote the type B analogues of • K, • B, • G low , etc. See [VV] for details. We'll use the same notation for the functors ψ * , ψ ! , ψ * , e i , f i , etc, on the type B side and on the type D side. Fix m > 0 and ν ∈ θ NI such that |ν| = 2m. The inclusion of graded k-algebras

• R ν ⊂ θ R ν in (1.2) yields a restriction functor res : θ R ν -mod → • R ν -mod
and an induction functor

ind : • R ν -mod → θ R ν -mod, M → θ R ν ⊗• Rν M.
Both functors are exact, they map finite dimensional graded modules to finite dimensional ones, and they map projective graded modules to projective ones. Thus, they yield morphisms of A-modules

res : θ K I,m → • K I,m , res : θ G I,m → • G I,m , ind : • K I,m → θ K I,m , ind : • G I,m → θ G I,m .
Moreover, for any P ∈ θ K I,m and any L ∈ θ G I,m we have

(3.5) res(P ♯ ) = (resP ) ♯ , ind(P ♯ ) = (indP ) ♯ res(L ♭ ) = (resL) ♭ , ind(L ♭ ) = (indL) ♭ .
Note also that ind and res are left and right adjoint functors, because

θ R ν ⊗• Rν M = hom• Rν ( θ R ν , M )
as graded θ R ν -modules.

3.14. Definition. For any graded • R ν -module M we define the graded • R ν -module M γ with the same underlying graded k-vector space as M such that the action of • R ν is twisted by γ, i.e., the graded k-algebra • R ν acts on M γ by a m = γ(a)m for a ∈ • R ν and m ∈ M . Note that (M γ ) γ = M , and that M γ is simple (resp. projective, indecomposable) if M has the same property.

For any graded • R m -module M we have canonical isomorphisms of • R-modules

(f i (M )) γ = f i (M γ ), (e i (M )) γ = e i (M γ ).
The first isomorphism is given by

• R m+1 1 m,i ⊗• Rm M → • R m+1 1 m,i ⊗• Rm M, a ⊗ m → γ(a) ⊗ m.
The second one is the identity map on the vector space 1 m,i M .

Recall that θ I ν is the disjoint union of θ I ν + and θ I ν -. We set

1 ν,+ = i∈ θ I ν + 1 i , 1 ν,-= i∈ θ I ν - 1 i .
3.15. Lemma. Let M be a graded • R ν -module.

(a) Both 1 ν,+ and 1 ν,-are central idempotents in • R ν . We have

1 ν,+ = γ(1 ν,-). (b) There is a decomposition of graded • R ν -modules M = 1 ν,+ M ⊕ 1 ν,-M. (c) We have a canonical isomorphism of • R ν -modules res • ind(M ) = M ⊕ M γ .
(d) If there exists a ∈ {+, -} such that 1 ν,-a M = 0, then there are canonical isomorphisms of graded • R ν -modules

M = 1 ν,a M, 0 = 1 ν,a M γ , M γ = 1 ν,-a M γ .
Proof: Part (a) follows from Proposition 1.6 and the equality ε 1 c) is given by definition, and (d) follows from (a), (b).

( θ I ν + ) = θ I ν -. Part (b) follows from (a), (
⊓ ⊔

Now, let m and ν be as before. Given i ∈ I, we set

ν ′ = ν + i + θ(i).
There is an obvious inclusion W m ⊂ W m+1 . Thus the group W m acts on θ I ν ′ , and the map θ

I ν → θ I ν ′ , i → θ(i)ii is W m -equivariant. Thus there is a i ∈ {+, -} such that the image of θ I ν + is contained in θ I ν ′
ai , and the image of θ I ν -is contained in θ I ν ′ -ai . 3.16. Lemma. Let M be a graded • R ν -module such that 1 ν,-a M = 0, with a = +, -. Then we have

1 ν ′ ,-aia f i (M ) = 0, 1 ν ′ ,aia f θ(i) (M ) = 0. Proof: We have 1 ν ′ ,-aia f i (M ) = 1 ν ′ ,-aia • R ν ′ 1 ν,i ⊗• Rν M = • R ν ′ 1 ν ′ ,-aia 1 ν,i 1 ν,a ⊗• Rν M.
Here we have identified 1 ν,a with the image of (1 ν,a , 1 i ) via the inclusion (3.2). The definition of this inclusion and that of a i yield that

1 ν ′ ,aia 1 ν,i 1 ν,a = 1 ν,a , 1 ν ′ ,-aia 1 ν,i 1 ν,a = 0.
The first equality follows. Next, note that for any i ∈ θ I ν , the sequences θ(i)ii and iiθ(i) = ε m+1 (θ(i)ii) always belong to different • W m+1 -orbits. Thus, we have a θ(i) = -a i . So the second equality follows from the first.

⊓ ⊔

Consider the following diagram

• R ν -mod × R i -mod ψ ! / / ind×id • R ν ′ -mod ψ * o o ind θ R ν -mod × R i -mod ψ ! / / res×id O O θ R ν ′ -mod. ψ * o o res O O
3.17. Lemma. There are canonical isomorphisms of functors

ind • ψ ! = ψ ! • (ind × id), ψ * • ind = (ind × id) • ψ * , ind • ψ * = ψ * • (ind × id), res • ψ ! = ψ ! • (res × id), ψ * • res = (res × id) • ψ * , res • ψ * = ψ * • (res × id).
Proof : The functor ind is left and right adjoint to res. Therefore it is enough to prove the first two isomorphisms in the first line. The isomorphism

ind • ψ ! = ψ ! • (ind × id)
comes from the associativity of the induction. Let us prove that

ψ * • ind = (ind × id) • ψ * . For any M in • R ν ′ -mod, the obvious inclusion θ R ν ⊗ R i ⊂ θ R ν ′ yields a map (ind × id) ψ * (M ) = ( θ R ν ⊗ R i ) ⊗• Rν ⊗Ri ψ * (M ) → ψ * ( θ R ν ′ ⊗• Rν ⊗Ri M ).
Combining it with the obvious map

θ R ν ′ ⊗• Rν ⊗Ri M → θ R ν ′ ⊗• R ν ′ M we get a morphism of θ R ν ⊗ R i -modules (ind × id) ψ * (M ) → ψ * ind(M ).
We need to show that it is bijective. This is obvious because at the level of vector spaces, the map above is given by

M ⊕ (π 1,ν ⊗ M ) → M ⊕ (π 1,ν ′ ⊗ M ), m + π 1,ν ⊗ n → m + π 1,ν ′ ⊗ n.
Here π 1,ν and π 1,ν ′ denote the element π 1 in θ R ν and θ R ν ′ respectively. ⊓ ⊔

Corollary. (a)

The operators e i , f i on • K I, * and on θ K I, * are intertwined by the maps ind, res, i.e., we have

e i • ind = ind • e i , f i • ind = ind • f i , e i • res = res • e i , f i • res = res • f i .
(b) The same result holds for the operators e i , f i on • G I, * and on θ G I, * .

3.19. Now, we concentrate on non graded irreducible modules. First, let Proof: For any θ R ν -module M = 0, both 1 ν,+ M and 1 ν,-M are nonzero. Indeed, we have M = 1 ν,+ M ⊕ 1 ν,-M , and we may suppose that 1 ν,+ M = 0. The automorphism M → M , m → π 1 m takes 1 ν,+ M to 1 ν,-M by Lemma 3.15(a). Hence 1 ν,-M = 0. Now, to prove part (a), suppose that φ : L → L γ is an isomorphism of • R νmodules. We can regard φ as a γ-antilinear map L → L. Since L is irreducible, by Schur's lemma we may assume that φ 2 = id L . Then L admits a θ R ν -module structure such that the • R ν -action is as before and π 1 acts as φ. Thus, by the discussion above, neither 1 ν,+ L nor 1 ν,-L is zero. This contradicts the fact that L is an irreducible • R ν -module.

Res : θ R ν -Mod → • R ν -Mod, Ind : • R ν -Mod → θ R ν -
Parts (b), (c) follow from (a) by Clifford theory, see e.g., [RR, appendix].

⊓ ⊔

We can now prove Proposition 3.2. In particular, ẽi (M ) is irreducible or zero and fi (M ) is irreducible.

Proof: By Corollary 3.18 we have ind(e i (M )) = e i (ind(M )). Thus, since ind is an exact functor we have ind(ẽ i (M )) ⊂ e i (ind(M )). Since ind is an additive functor, by Lemma 3.20(b) we have indeed ind(ẽ i (M )) ⊂ ẽi (ind(M )).

Note that ind(M ) is irreducible by Lemma 3.20(b), thus ẽi (ind(M )) is irreducible by [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 8.21]. Since ind(ẽ i (M )) is nonzero, the inclusion is an isomorphism. The fact that ind(ẽ i (M )) is irreducible implies in particular that ẽi (M ) is simple.

The proof of the second isomorphism is similar. The third equality is obvious.

⊓ ⊔

Similarly, for each irreducible

• R-module b in • B we define Ẽi (b) = soc(E i (b)), Fi (b) = top(F i (b)), ε i (b) = max{n 0; E n i (b) = 0}.
Hence we have

for • ẽi = Ẽi • for, for • fi = Fi • for, ε i = ε i • for. 3.24. Proposition. For each b, b ′ in • B we have (a) Fi (b) ∈ • B, (b) Ẽi (b) ∈ • B ∪ {0}, (c) Fi (b) = b ′ ⇐⇒ Ẽi (b ′ ) = b, (d) ε i (b) = max{n 0; Ẽn i (b) = 0}, (e) ε i ( Fi (b)) = ε i (b) + 1, (f ) if Ẽi (b) = 0 for all i then b = φ ± .
Proof: Part (c) follows from adjunction. The other parts follow from [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]prop. 3.14] and Lemma 3. 3.26. The algebra θ B and the θ B-module • V. Following [EK1,2,3] we define a K-algebra θ B as follows.

3.27. Definition. Let θ B be the K-algebra generated by e i , f i and invertible elements t i , i ∈ I, satisfying the following defining relations (a) t i t j = t j t i and t θ(i) = t i for all i, j,

(b) t i e j t -1 i = v i•j+θ(i)•j e j and t i f j t -1 i = v -i•j-θ(i)•j f j for all i, j, (c) e i f j = v -i•j f j e i + δ i,j + δ θ(i),j t i for all i, j, (d) a+b=1 
-i•j (-1) a e (a) i e j e (b) i = a+b=1-i•j (-1) a f (a) i f j f (b) i = 0 if i = j.
Here and below we use the following notation

θ (a) = θ a / a !, a = a l=1 v a+1-2l , a ! = m l=1 l .
We can now construct a representation of θ B as follows. By base change, the operators e i , f i in Definition 3.8 yield K-linear operators on the K-vector space

• V = K ⊗ A • K I .
We equip • V with the K-bilinear form given by

(M : N ) KE = (1 -v 2 ) m (M : N ), ∀M, N ∈ • R m -proj.

Theorem. (a)

The operators e i , f i define a representation of θ B on • V.

The θ B-module • V is generated by linearly independent vectors φ + and φ -such that for each i ∈ I we have

e i φ ± = 0, t i φ ± = φ ∓ , {x ∈ • V; e j x = 0, ∀j} = k φ + ⊕ k φ -.
(b) The symmetric bilinear form on • V is non-degenerate. We have (φ a : φ a ′ ) KE = δ a,a ′ for a, a ′ = +, -, and (e i x : y) = (x : f i y) KE for i ∈ I and x, y ∈ • V.

Proof : For each i in I we define the A-linear operator t i on • K I by setting

t i φ ± = φ ∓ and t i P = v -ν•(i+θ(i)) P γ , ∀P ∈ • R ν -proj.
We must prove that the operators e i , f i , and t i satisfy the relations of θ B. The relations (a), (b) are obvious. The relation (d) is standard. It remains to check (c). For this we need a version of the Mackey's induction-restriction theorem. Note that for m > 1 we have

D m,1;m,1 = {e, s m , ε m+1 ε 1 }, W (e) = • W m , W (s m ) = • W m-1 , W (ε m+1 ε 1 ) = • W m .
Recall also that for m = 1 we have set

• W 1 = {e}. 3.29. Lemma. Fix i, j in I. Let µ, ν in θ NI be such that ν +i+θ(i) = µ+j +θ(j). Put |ν| = |µ| = 2m. The graded ( • R m,1 , • R m,1 )-bimodule 1 ν,i
• R m+1 1 µ,j has a filtration by graded bimodules whose associated graded is isomorphic to

δ i,j • R ν ⊗ R i ⊕ δ θ(i),j ( • R ν ) γ ⊗ R θ(i) [d ′ ] ⊕ A[d],
where A is equal to

( • R m 1 ν ′ ,i ⊗ R i ) ⊗ R ′ (1 ν ′ ,i • R m ⊗ R i ) if m > 1, ( • R θ(j) ⊗ R i ⊗• R1⊗R1 • R θ(i) ⊗ R j ) ⊕ ( • R j ⊗ R i ⊗• R1⊗R1 • R i ⊗ R j ) if m = 1.
Here we have set ν

′ = ν -j -θ(j), R ′ = • R m-1,1 ⊗ R 1 , i = iθ(i), j = jθ(j), d = -i • j, and d ′ = -ν • (i + θ(i))/2.
The proof is standard and is left to the reader. Now, recall that for m > 1 we have

f j (P ) = • R m+1 1 m,j ⊗• Rm,1 (P ⊗ R 1 ), e ′ i (P ) = 1 m-1,i P,
where 1 m-1,i P is regarded as a • R m-1 -module. Therefore we have

e ′ i f j (P ) = 1 m,i • R m+1 1 m,j ⊗• Rm,1 (P ⊗ R 1 ), f j e ′ i (P ) = • R m 1 m-1,j ⊗• Rm-1,1 (1 m-1,i P ⊗ R 1 ).
Therefore, up to some filtration we have the following identities

• e ′ i f i (P ) = P ⊗ R i + f i e ′ i (P )[-2], • e ′ i f θ(i) (P ) = P γ ⊗ R θ(i) [-ν • (i + θ(i))/2] + f θ(i) e ′ i (P )[-i • θ(i)], • e ′ i f j (P ) = f j e ′ i (P )[-i • j] if i = j, θ (j) 
. These identities also hold for m = 1 and P = (b) Let θ V be the θ B-module K ⊗ A θ K I and let φ be the class of the trivial θ R 0 -module k, see [START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF]thm. 8.30]. We have an inclusion of θ B-modules θ V → • V, φ → φ + ⊕ φ -, P → res(P ). We deduce that

• R θ(i)i for any i ∈ I. The first claim of part (a) follows because R i = k ⊕ R i [2]. The fact that • V is generated by φ ± is a
       f i ( • G low (b)) = ε i (b) + 1 • G low ( Fi b) + b ′ f b,b ′ • G low (b ′ ), b ′ ∈ • B, ε i (b ′ ) > ε i (b) + 1, f b,b ′ ∈ v 2-εi(b ′ ) Z[v], (b)        e i ( • G low (b)) = v 1-εi(b) • G low ( Ẽi b) + b ′ e b,b ′ • G low (b ′ ), b ′ ∈ • B, ε i (b ′ ) ε i (b), e b,b ′ ∈ v 1-εi(b ′ ) Z[v].
f i ( • G low (b)) = 1 a resf i ( θ G low ( θ b)). Now, write f i ( θ G low ( θ b)) = fθ b, θ b ′ θ G low ( θ b ′ ), θ b ′ ∈ θ B.
Then we have Let R ⊂ K be the set of functions which are regular at v = 0. Let • L be the Rsubmodule of • V spanned by the elements fi1 . . . fi l (φ ± ) with l 0, i 1 , . . . , i l ∈ I.

f i ( • G low (b)) = fθ b, θ b ′ 1 a res( θ G low ( θ b ′ )).
The following is the main result of the paper. Proof : Part (a) follows from [START_REF] Enomoto | Symmetric Crystals for gl∞[END_REF]thm. 4.1,cor. 4.4], [START_REF] Enomoto | A quiver construction of symmetric crystals[END_REF]Section 2.3] ⊓ ⊔

  follows from Corollary 1.5. Part (b) follows from (a) and Proposition 1.4. ⊓ ⊔ 2. Affine Hecke algebras of type D 2.1. Affine Hecke algebras of type D. Fix p in k × . For any integer m 0 we define the extended affine Hecke algebra H m of type D m as follows. If m > 1 then H m is the k-algebra with 1 generated by

3. 4 .

 4 Proposition. (a) We have • G low (b) : • G up (b ′ ) = δ b,b ′ for each b, b ′ in • B. (b) We have P ♯ : M = P : M ♭ for each P , M . (c) We have • G low (b) ♯ = • G low (b) for each b in • B.

  Modbe the (non graded) restriction and induction functors. We havefor • res = Res • for, for • ind = Ind • for. 3.20. Lemma. Let L, L ′ be irreducible • R ν -modules.(a) The • R ν -modules L and L γ are not isomorphic. (b) Ind(L) is an irreducible θ R ν -module, and every irreducible θ R ν -module is obtained in this way.(c) Ind(L) ≃ Ind(L ′ ) iff L ′ ≃ L or L γ .

  3.21. Proof of Proposition 3.2. Let b ∈ • B. We may suppose that b = 1 ν,+ b. By Lemma 3.20(b) the module θ b = Ind(b) lies in θ B. By[START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF] prop. 8.2] there exists a unique selfdual irreducible graded θ R-module θ G up ( θ b) which is isomorphic to θ b as a non graded module. Set• G up (b) = 1 ν,+ res( θ G up ( θ b)). By Lemma 3.15(d) we have • G up (b) = b as a non graded • R-module,and by (3.5) it is selfdual. This proves existence part of the proposition. To prove the uniqueness, suppose that M is another module with the same properties. Then ind(M ) is a selfdual graded θ R-module which is isomorphic to θ b as a non graded θ R-module. Thus we have ind(M ) = θ G up ( θ b) by loc. cit. By Lemma 3.15(d) we have alsoM = 1 ν,+ res( θ G up ( θ b)). So M is isomorphic to • G up (b). ⊓ ⊔3.22. The crystal operators on • G I and • B. Fix a vertex i in I. For each irreducible graded • R m -module M we define ẽi (M ) = soc (e i (M )), fi (M ) = top ψ ! (M, L i ), ε i (M ) = max{n 0; e n i (M ) = 0}. 3.23. Lemma. Let M be an irreducible graded • R-module such that e i (M ), f i (M ) belong to • G I, * . We have ind(ẽ i (M )) = ẽi (ind(M )), ind( fi (M )) = fi (ind(M )), ε i (M ) = ε i (ind(M )).

  . Remark. For any b ∈ • B and any i = j we have Fi (b) = Fj (b). This is obvious if j = θ(i). Because in this case Fi (b) and Fj (b) are • R ν -modules for different ν. Now, consider the case j = θ(i). We may suppose that Fi (b) = 1 ν,+ Fi (b) for certain ν. Then by Lemma 3.16 we have 1 ν,+ Fθ(i) (b) = 0. In particular Fi (b) is not isomorphic to Fθ(i) (b).

  corollary of Proposition 3.31 below. Part (b) of the theorem follows from[START_REF] Kashiwara | Crystals and affine Hecke algebras of type D[END_REF] prop. 2.2(ii)] and Lemma 3.9(b).⊓ ⊔3.30. Remarks. (a) The θ B-module • V is the same as the θ B-module V θ from [KM, prop. 2.2]. The involution σ : • V → • V in [KM, rem. 2.5(ii)]is given by σ(P ) = P γ . It yields an involution of • B in the obvious way. Note that Lemma 3.20(a) yields σ(b) = b for any b ∈ • B.

  3.31. Proposition. For any b ∈ • B the following holds (a)

Proof:

  We prove part (a), the proof for (b) is similar.If • G low (b) = φ ± this is obvious. So we assume that • G low (b) is a • R m -module for m 1. Fix ν ∈ θ NI such that f i ( • G low (b)) is a • R ν -module. We'll abbreviate 1 ν,a = 1 a for a ∈ {+, -}. Since • G low (b) is indecomposable, it fulfills the condition of Lemma 3.16. So there exists a ∈ {+, -} such that 1 -a f i ( • G low (b)) = 0. Thus, by Lemma 3.15(c), (d) and Corollary 3.18 we havef i ( • G low (b)) = 1 a res indf i ( • G low (b)) = 1 a res f i ind( • G low (b)).Note that θ b = Ind(b) belongs to θ B by Lemma 3.20(b). Hence (3.5) yields ind( • G low (b)) = θ G low ( θ b).

For

  any θ b ′ ∈ θ B the • R-module 1 a Res( θ b ′ ) belongs to • B. Thus we have 1 a res( θ G low ( θ b ′ )) = • G low (1 a Res( θ b ′ )). If θ b ′ = θ b ′′ then 1 a Res( θ b ′ ) = 1 a Res( θ b ′′ ), because θ b ′ = Ind(1 a Res( θ b ′ )). Thus f i ( • G low (b)) = fθ b, θ b ′ • G low (1 a Res( θ b ′ )),and this is the expansion of the lhs in the lower global basis. Finally, we haveε i (1 a Res( θ b ′ )) = ε i ( θ b ′ )by Lemma 3.23. So part (a) follows from[START_REF] Varagnolo | Canonical bases and affine Hecke algebras of type B[END_REF] prop. 10.11(b), 10.16]. ⊓ ⊔ 3.32. The global bases of • V. Since the operators e i , f i on • V satisfy the relations e i f i = v -2 f i e i + 1, we can define the modified root operators ẽi , fi on the θ B-module • V as follows. For each u in • V we write

R

  • G low (b), ẽi ( • L) ⊂ • L, fi ( • L) ⊂ • L, ẽi ( • G low (b)) = • G low ( Ẽi (b)) mod v • L, fi ( • G low (b)) = • G low ( Fi (b)) mod v • L. (b) The assignment b → • G low (b) mod v • L yields a bijection from • B to the subset of • L/v • L consisting of the fi1 . . . fi l (φ ± )'s. Further • G low (b) is the unique element x ∈ • V such that x ♯ = x and x = • G low (b) mod v • L. (c) For each b, b ′ in • B let E i,b,b ′ , F i,b,b ′ ∈ A be the coefficients of • G low (b ′ ) in e θ(i) ( • G low (b)), f i ( • G low (b)) respectively. Then we have E i,b,b ′ | v=1 = [F i Ψfor( • G up (b ′ )) : Ψfor( • G up (b))], F i,b,b ′ | v=1 = [E i Ψfor( • G up (b ′ )) : Ψfor( • G up (b))].

  , and Proposition 3.31. The first claim in (b) follows from (a). The second one is obvious. Part (c) follows from Proposition 3.11. More precisely, by duality we can regardE i,b,b ′ , F i,b,b ′ as the coefficients of • G up (b) in f θ(i) ( • G up (b ′ )) and e i ( • G up (b ′ )) respectively. Therefore, by Proposition 3.11 we can regard E i,b,b ′ | v=1 , F i,b,b ′ | v=1 as the coefficients of Ψfor( • G up (b)) in F i Ψfor( • G up (b ′ )) and E i Ψfor( • G up (b ′ )) respectively.

  • R-modules 3.1. The Grothendieck groups of • R m . The graded k-algebra • R m is free of finite rank over its center by Proposition 1.6, a commutative graded k-subalgebra. Therefore any simple object of • R m -mod is finite-dimensional and there is a finite number of isomorphism classes of simple modules in • R m -mod. The Abelian group G( • R m ) is free with a basis formed by the classes of the simple objects of • R mmod. The Abelian group K( • R m ) is free with a basis formed by the classes of the indecomposable projective objects. Both G( • R m ) and K( • R m ) are free A-modules,