
HAL Id: hal-00442371
https://hal.science/hal-00442371

Submitted on 21 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typing rule-based transformations over topological
collections
Julien Cohen

To cite this version:
Julien Cohen. Typing rule-based transformations over topological collections. 4th International
Workshop on Rule-Based Programming, Jun 2003, Valencia, Spain. pp.61-76, �10.1016/S1571-
0661(04)80676-5�. �hal-00442371�

https://hal.science/hal-00442371
https://hal.archives-ouvertes.fr

Electronic Notes in Theoretical Computer Science 86 No. 2 (2003)
14 pages

Typing rule-based transformations over

topological collections

Julien Cohen
1

LaMI, U.M.R. 8042

CNRS – Université d’Évry Val d’Essonne
523 place des Terrasses de l’Agora

91000 Évry, France

Abstract

Pattern-matching programming is an example of a rule-based programming style developed in functional
languages. This programming style is intensively used in dialects of ML but is restricted to algebraic
data-types.
This restriction limits the field of application. However, as shown by [9] at RULE’02, case-based function
definitions can be extended to more general data structures called topological collections. We show in this
paper that this extension retains the benefits of the typed discipline of the functional languages. More
precisely, we show that topological collections and the rule-based definition of functions associated with
them fit in a polytypic extension of mini-ML where type inference is still possible.

1 Introduction

Pattern-matching on algebraic data-types (ADT) allows the definition of functions

by cases, a restricted form of rule based programming that is both relevant and pow-

erful to specify function acting on ADTs. ML adopted a restricted form of pattern

matching, where only the top-level structure of an ADT is matched against the pat-

tern [15]. Examples of more expressive patterns are given, e.g., by the Mathematica

language. However, both ML-like language or Mathematica are restricted to the

handling of terms, that is, tree-shaped data structures (sets or multisets handled in

Mathematica are represented by terms modulo associativity and commutativity).

In [9] and [8] a framework where pattern matching can be expressed uniformly

on many different data structures is exhibited. They rely on the notion of topo-

logical collection which embeds a neighborhood relation over its elements. The

neighborhood relation enables the definition of a general notion of path (a sequen-

tial specification of a sub-structure); a pattern is used to specify a path that selects

1 The author is grateful to Olivier Michel and Jean-Louis Giavitto of the MGS Project for their valuable
support.

Cohen

an arbitrary sub-collection to be substituted. This leads to a general functional

language where the pattern matching is not limited to ADTs.

We show in this paper that the topological collections bring a smooth extension

of the Hindley-Milner type system [10][14] with some polytypism [12] and we suggest

an extension of the Damas-Milner type inference algorithm that allows to find a type

to programs expressed in an extension of mini-ML with topological collections and

rule based transformations over them.

Section 2 gives a brief description of the topological collections and their trans-

formation; section 3 gives an overview of types in this framework; the types are

investigated in section 4 where the typing rules and the inference algorithm are

given; several direct extensions of the language are discussed in section 5 and sec-

tion 6 concludes this paper.

2 Topological Collections and Transformations

Topological collections are data structures corresponding conceptually to a mapping

from a set of positions into a set of values such that there is a neighborhood relation

over the positions. Two values of a collection are said to be neighbors if their

positions are neighbors. The sequence is an example of topological collection where

the elements have at most a left neighbor and a right neighbor. The NEWS grid

which is a generalization of arrays of dimension 2 is another example where each

element has at most four neighbors, considering a Von Neumann neighborhood [13].

The notion of neighborhood is a means to embed in the programming language

the spatial locality of computations of programs.

Many other data structures can be seen from the topological point of view. For

example the set and the multi-set (or bag) are topological collections where each

element is neighbor of each other element (the set of positions of a set, is the set of

the elements itself). See [7] for other examples of topological collections.

These data structures come with a rule based style of programming: a rule de-

fines a local transformation by specifying some elements to be matched and the

corresponding action. The topological disposition of the matched elements is ex-

pressed directly within the pattern of the rule. Thus a collection can be transformed

by the simultaneous application of local transformations to non-intersecting match-

ing sub-sets of the collection.

The MGS programming language described in [7] and [8] supplies the topological

collections as first-class values and transformations as a means to describe rule based

functions over collections. The language we work on in our paper is largely inspired

by MGS although some features such as the possibility for a collection to contain

elements of different types have been left out.

In the rest of this section we describe the handling of collections via rules in our

restriction of MGS.

A rule is written p=>e where p is the pattern and e is the expression that will

replace the instances of p. A transformation is a list of rules introduced by the

keyword trans. The application of a transformation trans[p1=>e1; p2=>e2] to a

2

Cohen

collection c consists in selecting a number of non-intersecting occurrences of p1 in c

such that there is no further possible occurrence; then replacing the selected parts

by the appropriate elements calculated from e1; then selecting a number of non-

intersecting occurrences of p2 and replacing them with the appropriate values.

The pattern can be a single element x or a single element satisfying a condition

x/e where e is a boolean expression; it can also be a two elements pattern x, y such

that y is a neighbor of x. Here the comma expresses the neighborhood relation and

is not intended to express a tuple. The pattern x/(x = 0), y/(y = 1), z/(z = 2)

matches three values such that the first is a 0, the second is a 1, the third is a 2,

the second is in the neighborhood of the first and the third is in the neighborhood

of the second.

The right hand side of the rule is composed of an expression denoting the ele-

ments replacing the selected elements. In order to allow the replacement of parts

by parts of different size, the value expressed in the right hand side of a rule must

be a sequence. The elements of this sequence will substitute the matched elements.

Thus we can consider rules replacing sub-parts constituted of a single element with

several element, or sub-parts constituted of several elements with one element or

even with no element, and so on.

A way of building a sequence is using the empty sequence empty seq and the

constructor ::. The syntactic shortcut [e] can be used to express e::empty seq.

2.1 Two examples

The following two examples show two programs acting respectively on sequences

and sets.

Sorting a Sequence.

A kind of bubble-sort is immediate:

trans[x, y/(y<x) => y :: x :: empty seq ; x => [x]]

This two rules transformation has to be applied on the sequence until a fixpoint

is reached. The fixpoint is a sorted sequence.

This is not really the bubble-sort because the swapping of elements can happen

at arbitrary places; hence an out-of-order element does not necessarily bubble to

the top in the characteristic way.

We will see in section 4 that the rule x => [x] is required.

Eratosthene’s Sieve on a Set.

The idea is to apply the transformation on the set of the integers between 2

and n. The transformation replaces an x and an y such that x divides y by x.

The iteration until a fixpoint of this transformation results in the set of the prime

integers less than n.

trans [x, y/(y mod x = 0) => [x] ; x => [x]]

3

Cohen

3 Typing the Collections and the Transformations

The type of a topological collection is described by two pieces of information: the

type of the elements inside the collection and its organization. The former is called

its content type and the latter its topology (see [11] for an example of separation

between the shape and the data). For example, a set of integers and a set of strings

do not have the same content type but have the same topology. Collection types

will be denoted by [τ]ρ where τ is the content type and ρ is the topology. Thus a

set of strings will have the type [string]set.

The usual notion of polymorphism of ML languages is provided on the content

type. For example the cardinal function that returns the number of elements of

a set would have the type [α]set → int where α is a free type variable since it

can be applied to a set irrespectively of the type of its elements. The nature of

the content type does not affect the behavior of the cardinal function, therefore the

polymorphism is said to be uniform on the content type.

Instead of providing different functions that count the number of elements for

each topology, the language provides the function size with the type [α]θ → int

where θ is a free topology variable. Functions that accept any kind of topology are

said to be polytypic [12].

A way of handling collections is using polytypic operators and constant collec-

tions: the constructor operator :: has the type α → [α]θ → [α]θ; the destructors

oneof and rest have the type [α]θ → α and [α]θ → [α]θ and are such that for any

collection c, oneof(c) and rest(c) make a partition of c (see [3]).

The constant collections are empty set, empty seq and so on.

Collections can also be handled with transformations. As seen in the previous

section, transformations are functions on collections described by rewriting rules.

This kind of function is introduced by the keyword trans. For example the function

trans [x=>[x]] implements the identity over collections and has the type [α]θ →
[α]θ. It is the identity because it maps the identity to all the elements of the

collection.

As we said, the right hand side of a rule must be a sequence because the pattern

matched can be replaced by a different number of elements. On some topologies

such as the grid, the pattern and the replacement sequence must have the same

size. If the sizes are not compatible a structural error will be raised at execution

time. These structural errors are not captured by our type system. See [7] for more

details on the substitution process in the collections.

The map function can be expressed as follows:

fun f -> trans [x => [f x]]

and has the type (α → β) → [α]θ → [β]θ.

Unlike in the original MGS language, a collection cannot contain elements of

different types. We have chosen to set this restriction to allow to build an inference

4

Cohen

e ::= id | cte | (e, e) | fun x-> e

| e e | let id = e in e

| trans [l]

l ::= id => e

| p => e ; l

p ::= id

| id/e

| id,p

| id/e,p

Fig. 1. Syntax of the language

algorithm in the Damas-Milner style [5]. Allowing such heterogeneous collections

would lead to a system with subsumption and union types that would need complex

techniques to determine the types of a program.

4 The Language

In this section we first describe the syntax of the studied language. Then we describe

the type verification rules and finally we give the type inference algorithm that

computes the principal type of a program.

4.1 Syntax

Topological collections are values manipulated with constants, operators, functions

and transformations, no new syntactic construction is needed.

For the transformation we have to enrich the syntax of mini-ML [4] as shown in

figure 1.

The construction p => e is called a rule and a transformation is a syntactic list

of rules. In the construction id/e occurring in a pattern, e is called a guard.

The last rule of a transformation must be a variable for exhaustiveness purpose.

Putting the rule x => [x] in last position of a transformation expresses that all

unmatched values are left unmodified. It is not possible to infer a relevant default

case for a transformation. For example the rule x => [x] cannot be the default case

for a transformation of the type [string]θ → [int]θ. Therefore the default case must

be specified explicitly by the programmer. This explains the grammar for the list of

rules l which enforces the presence of a last rule of the form id => e matching every

remaining element. The expression e in the right hand side provides the appropriate

default value.

We will use some operators such as :: in an infix position but this syntax can

be easily transformed into the one of figure 1. Operators are functional constants

of the language.

5

Cohen

4.2 The Type System

Types Algebra

We enrich the polymorphic type system of mini-ML with the topological collections.

The collection type introduces a new kind of construction in types: the topology.

From a type point of view, transformations are just functions that act on topo-

logical collections without changing their topology, so no new construct is needed

for them in the type algebra.

Types : τ ::= T base type (int, float, bool, string)

| α type variables

| τ → τ functions

| τ × τ tuples

| [τ]ρ collections

Topologies : ρ ::= R base topology (bag, set, seq, grid, ...)

| θ topology variables

We give in appendix A the definitions of Lt and Lr which calculate the type

variables and the topology variables occurring in a type.

Type Schemes

A type scheme is a type quantified over some type variables and some topology

variables:

σ ::= ∀[α1, . . . , αn][θ1, . . . , θm].τ

A type τ is an instance of a type scheme σ = ∀[α1, . . . , αn][θ1, . . . , θm].τ ′ and

we write σ ≤ τ if and only if there are some types τ1, . . . , τn and some topologies

ρ1, . . . , ρm such that τ = τ ′[α1 � τ1, . . . , αn � τn, θ1 � ρ1, . . . , θm � ρm] .

In the following, an environment is a function from identifiers to type schemes.

TC is the function that gives the type scheme of the constants of the language.

For example TC(::) is ∀[α][θ].α → [α]θ → [α]θ.

Lt and Lr are extended to type schemes and calculate the free variables of a type

scheme, that is the variables occurring in the type scheme which are not bound by

the quantifier. For example if σ is ∀[α1][θ1].[α1]θ1 → [α2]θ2 then Lt(σ) is α2 and

Lr(σ) is θ2.

Typing Rules

The typing rules are nearly the same as the Hindley-Milner rules [10][14]. The

differences are that a rule has been added for the transformations and that the

notions of instance and the Gen function have been adapted to the type algebra.

The Gen function transforms a type into a type scheme by quantifying the

variables that are free in the type and that are not bound in the current environment.

6

Cohen

The definition of Gen is the following:

Gen(τ,Γ) = ∀[α1, . . . , αn][θ1, . . . , θm].τ with {α1, . . . , αn} = Lt(τ)\Lt(Γ) and

{θ1, . . . , θm} = Lr(τ)\Lr(Γ).

The typing rules are:

Γ(x) ≤ τ

Γ ⊢ x : τ
(var − inst)

TC(c) ≤ τ

Γ ⊢ c : τ
(const − inst)

Γ ∪ {x : τ1} ⊢ e : τ2

Γ ⊢ (fun x → e) : τ1 → τ2
(fun)

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ
(app)

Γ ⊢ e1 : τ1 Γ ∪ {x : Gen(τ1,Γ)} ⊢ e2 : τ2

Γ ⊢ (let x = e1 in e2) : τ2
(let)

˘

Γ ∪ {xj
i : τ}(j≤mi)

∪ {self : [τ]ρ} ⊢ ei : [τ ′]seq
¯

(i≤n)
˘

Γ ∪ {xj
i : τ}(j≤k) ∪ {self : [τ]ρ} ⊢ ek

i : bool
¯

(i≤n),(k≤mi)

Γ ⊢ trans [x1
1/e1

1,...,x
m1

1 /em1

1 =>e1;...;x1
n/e1

n,...,x
mn
n /emn

n =>en] : [τ]ρ → [τ ′]ρ
(trans)

In the (trans) rule, kn is always equal to 1 and e1
n is always equal to true.

Inside a rule the self identifier refers to the collection the transformation is

applied on.

The (trans) rule expresses that a transformation has the type [τ]ρ → [τ ′]ρ if

when you suppose that all the xj
i have the same type τ and that self has the type

[τ]ρ it can be proven that the ej
i are boolean values and that the ei have the type

[τ ′]seq.

We can see that if self is not used in a transformation, this one will be polytypic

since ρ will not be bound to any topology.

The following examples show a type verification on a polytypic transformation

and on a non-polytypic one.

Polytypic Example

The following transformation can be proven to be an [int]θ → [int]θ function for

any topology θ.

trans [x, y/x>y => x :: y :: (x-y) :: empty seq ; x => [x]]

The proof is given in figure 2a where Γ0 = {x : int; y : int; self : [int]θ},
Γ1 = {x : int; self : [int]θ} and with the following lemmas:

Γ ⊢ e1 : int Γ ⊢ e2 : [int]seq

Γ ⊢ e1::e2 : [int]seq

Γ ⊢ e : τ

Γ ⊢ [e] : [τ]seq

Non-Polytypic Example

The operator is left acts as a predicate that returns true if the element is at

the left extremity of the sequence. Thus it returns false is the element has a left

7

C
o
h
e
n

. . .

Γ0 ⊢ x>y : bool

Γ0(x) ≤ int

Γ0 ⊢ x : int

. . .

Γ0 ⊢ y::(x-y)::empty seq : [int]seq

Γ0 ⊢ x::y::(x-y)::empty seq : [int]seq

Γ1(x) ≤ int

Γ1 ⊢ x : int
Γ1 ⊢ [x] : [int]seq

⊢ trans [x,y/x>y => x::y::(x-y)::empty seq ; x=>[x]] : [int]θ → [int]θ

TC(not) ≤ bool → bool

Γ2 ⊢ not : bool → bool

. . .

Γ2 ⊢ not(is left x self) : bool
Γ2 ⊢ not(is left x self) : bool

. . .

Γ2 ⊢ x+(left x self) : int
Γ2 ⊢ [x+(left x self)] : [int]seq

Γ2(x) ≤ int

Γ2 ⊢ x : int
Γ2 ⊢ [x] : [int]seq

⊢ trans [x/(not(is left x self))=>[x+(left x self)] ; x=>[x]] : [int]seq → [int]seq
(b)

F
ig

.
2
.

T
w

o
ex

a
m

p
les

o
f
ty

p
e

v
erifi

ca
tio

n

8

Cohen

neighbor. It can be used only within a transformation 2 and takes two arguments:

the first is a pattern variable and the second is a collection. Similarly, the operator

left takes a pattern variable x and a sequence s and returns the left neighbor of x

in s.

Let us consider the following transformation:

trans [x/(not (is left x self)) => [x+(left x self)] ; x=>[x]]

This transformation does not have the same effect as the following one:

trans [l, x => (l :: l+x :: empty seq) ; x=>[x]]

because in the former, every element x of the sequence except the leftmost one will

be replaced by the sum of itself and its left neighbor whereas in the latter, the l

element will be replaced by itself and thus will not be increased. For example the

former transformation applied to the sequence (1::2::3::4::empty seq) results

in (1::3::5::7::empty seq) whereas the application of the latter transformation

to the same sequence would result in (1::4::3::7::emty seq).

The figure 2b where Γ2 = {x : int; self : [int]seq} proves that the first transfor-

mation has the type [int]seq → [int]seq.

This transformation cannot be proven to have the type [int]ρ → [int]ρ if ρ 6= seq

because left and is left act exclusively on sequences.

4.3 Type Inference

The typing rules given in section 4.2 are a means to verify that a program has a

given type but this type is a parameter of the verification procedure. We now give

the equivalent of the Damas-Milner type inference that enables the full automated

type verification since it computes the principal type of a program. The resulting

type is said to be principal because every type that can fit the program is an instance

of this type.

The type inference algorithm is given after the unification procedure.

Unification

Unifying two types τ1 and τ2 consists in finding a substitution ϕ over the free

variables of τ1 and τ2 called the unifier such that ϕ(τ1) = ϕ(τ2).

A substitution is a most general unifier (mgu) for two types τ1 and τ2 if for any

unifier ϕ1 of τ1 and τ2, there is a substitution ϕ2 such that ϕ = ϕ2 ◦ ϕ1.

We give the mgu function that computes the most general unifier of a set of

pairs of types denoted by τ1 = τ2. This function is necessary to the type inference

procedure. If mgu fails then there is no unifier for the given types.

The difference between our mgu and Damas and Milner’s original mgu is the

addition of the case for the collection types. Two collection types are unified by

unifying their content types and their topologies. The substitution doing this unifi-

2 The is left operator is only available in transformations, where the identifiers introduced by the pattern
are bound to a position in the collection. Allowing only such identifiers to be arguments of is left allows
to remove any ambiguity on the position denoted in the sequence, even if the position contains a value
occurring several times.

9

Cohen

cation is found as ϕ1 ◦ϕ2 where ϕ2 unifies the topologies and ϕ1 unifies the content

types. The computation of ϕ2 is made by the dedicated mgur function. This func-

tion fails when the two topologies are different base topologies since they cannot be

unified. The substitution ϕ2 is applied to the content types before computing ϕ1

with mgu.

The standard cases of the definition of mgu are:

mgu
(

∅
)

= []

mgu
(

{τ = τ} ∪ C) = mgu(C)

mgu
(

{α = τ} ∪ C) (if α is not free in τ) = let ϕ = [α � τ] in mgu(ϕ(C)) ◦ ϕ

mgu
(

{τ = α} ∪ C) (if α is not free in τ) = let ϕ = [α � τ] in mgu(ϕ(C)) ◦ ϕ

mgu
(

{τ1 → τ2 = τ ′
1 → τ ′

2} ∪ C
)

= mgu
(

{τ1 = τ ′1 ; τ2 = τ ′2} ∪ C
)

mgu
(

{τ1 × τ2 = τ ′
1 × τ ′

2} ∪ C
)

= mgu
(

{τ1 = τ ′1 ; τ2 = τ ′2} ∪ C
)

The new case for the collections is:

mgu
(

{[τ]ρ = [τ ′]ρ′} ∪ C
)

= let ϕ = mgur(ρ = ρ′) in mgu
(

ϕ
(

{τ = τ ′} ∪ C
))

◦ ϕ

The unification of topologies is defined by:

mgur(ρ = ρ) = []

mgur(θ = ρ) = [θ � ρ]

mgur(ρ = θ) = [θ � ρ]

Type Inference

The type reconstruction algorithm is nearly the same as the Damas-Milner one. The

differences are that it uses specialized versions of mgu and Gen functions and that

there is a new case for the transformations. It is described here in an imperative

way: ϕ is the current substitution and Vt and Vr are sets of free type variables and

topology variables.

The algorithm is given in figure 3.

The case for the transformations consists in unifying the types of all the pattern

variables and unifying the types of the right hand side rules together and with a

sequence collection type. These unifications have to be made with respect to the

guards that are boolean values.

If W succeeds it computes the most general type of the program analyzed and

this one can be run without type error. If it fails because of an mgu or an mgur

failure then the program is ill-typed and might lead to a type error at execution

time.

10

Cohen

fresh t = let α ∈ Vt

do Vt � Vt\{α}

return α

fresh r = let θ ∈ Vr

do Vr � Vr\{θ}

return θ

W (Γ ⊢ e) =
(* original cases *)
If e = x

let ∀[α1, . . . , αn][θ1, ..., θm].τ = Γ(x)
let α′

1, . . . , α′
n = fresh t, . . . , fresh t

let θ′1, . . . , θ′m = fresh r, . . . , fresh r

return τ [α1 � α′
1, . . . , αn � α′

n, θ1 � θ′1, . . . , θm � θ′m]
If e = fun x → e

let α = fresh t
let τ = W (Γ ∪ x : ∀[][].α ⊢ e)
return α → τ

If e = e1 e2
let τ1 = W (Γ ⊢ e1)
let τ2 = W (Γ ⊢ e2)
let α = fresh t
do ϕ � mgu(ϕ(τ1) = ϕ(τ2 → α)) ◦ ϕ

If e = let x = e1 in e2
let τ1 = W (Γ ⊢ e1)
let σ = Gen(ϕ(τ1), ϕ(Γ))
return W (Γ ∪ {x : σ} ⊢ e2)

(* new case for the transformations *)
If e = trans [p1=>e1; ...; pn=>en]

let α, β = fresh t, fresh t
let θ = fresh r
for i = 1..n

let id1
i /e1

i , . . . , idmi

i /emi

i = pi

for j = 1..mi

let τ j
i

= W
`

Γ ∪ {self : [α]θ} ∪ {idk
i : α}k≤j ⊢ ej

i
)

do ϕ � mgu
`

{ϕ(τ j
i) = bool}) ◦ ϕ

let τi = W
`

Γ ∪ {self : [α]θ} ∪ {idk
i : α}k≤mi

⊢ ei

´

do ϕ � mgu
`

{ϕ(τi) = ϕ([β]seq)}
´

◦ ϕ
return [α]θ → [β]θ

Fig. 3. Type inference algorithm

5 Extensions

5.1 Repetition in a Pattern

The star * expressing an arbitrary repetition of a sub-pattern during the matching

process has been introduced in [9]. The pattern x/(x=0), * as y, z/(z=0) for

example can match an arbitrary subcollection such that it contains two 0 and that

there is a path between these 0. This means that one can reach the second 0 from

the first one only by going from an element to one of its neighbors repetitively.

To take the star into account we modify the syntax of the patterns as follows:

p ::= q | q, p

q ::= id | ∗ as id

where q stands for elementary patterns.

We have not kept the guards in the elementary patterns in order to keep the

11

Cohen

formulas readable but their addition does not lead to new problems.

The elements matched by the star are named and can be referred to as a se-

quence.

The star could have been considered as a repetition of a subpattern as in

(x,y/x=y)* but we have chosen to restrict the star to the repetition of single ele-

ments for the sake of simplicity.

Before giving the new typing rule, we introduce a function which gives the type

binding corresponding to an elementary pattern: b(q, τ) is such that b(x, τ) = (x : τ)

and b(* as x, τ) = (x : [τ]seq). This function is used in the trans typing rule which

is modified as follows:

{

Γ ∪ {b(qj
i , τ)}j≤mi

∪ {self : [τ]ρ} ⊢ ei : [τ ′]seq
}

i≤n

Γ ⊢ trans [q1
1,...,q

m1
1 =>e1;...;q1

n,...,q
mn
n =>en] : [τ]ρ → [τ ′]ρ

(trans′)

5.2 Directions in Patterns

In section 4.2 we saw the operator left that returns the left neighbor of an element

in a sequence. In the framework of topological collections, a topology can supply

several neighborhood operators. For example left and right are the neighborhood

operators of the sequence and north and east are neighborhood operators of the

grid. Neighborhood operators are also called directions.

A direction can be used to refine the patterns: the commas of the pattern can

be substituted by a direction to restrict the accepted neighbors for the rest of the

pattern. The substituting direction is surrounded with the symbols | and > to

sketch a kind of arrow.

For example if d is a direction we can use the pattern x |d> y which is a short-

cut 3 for x,y/y=(d x self). However, the pattern x |d> y allows faster research

of the instances of the pattern in the collection than x,y/y=(d x self).

The pattern x |d> y can be typed as x,y/y=(d x self).

The Bead-Sort Example

The bead-sort is an original way of sorting positive integers presented by [2]. The

sorting algorithm considers a column of numbers written in unary basis. Figure 4a

shows the numbers 3, 2, 4 and 2 where the beads stand for the digits. The sorting

is done by letting the beads fall down as shown on figure 4b.

The problem can be represented on a grid of booleans where true stands for

a digit and false for the absence of digit as shown on figure 4c. The bead-sort is

achieved by iterating the application of the following transformation until a fixpoint

is reached:

trans [x/x=false |north> y/y=true => y::x::empty seq ; x=>[x]]

The first rule of this transformation is expressed as

3 The expression y=(d x self) in a guard where y is a pattern variable and d is a direction tests that the
values denoted are the same and that their positions in the collection are the same. See the MGS manual [6]
for more details.

12

Cohen

(3)

(2)

(4)

(2)

(a)

(2)

(2)

(3)

(4)

(b)

t t

t t

f

ff

t t t t

t t f f

t

(c)

t

t t

f

ff

t t t

t t

t f

t t

f

(d)

Fig. 4. The Bead-Sort

x/x=false , y/(y=true && y=north x self) => y::x::empty seq

in order to fit the type system. The result of W on this transformation is [bool]grid →
[bool]grid.

5.3 Strategies

As far as the rules application strategy guarantees that every element of the collec-

tion is matched (this is always possible since the last rule always matches) the type

system is not affected.

For instance, the MGS language provides several strategies such as higher pri-

ority given to the first rules or random application of the rules.

6 Conclusion

Including the topological collections and pattern matching programming on these

structures in the ML framework allows to bring together a powerful programming

language with a rule programming framework common to several other languages.

Our algorithm has been tested on MGS programs and has been included in a

prototype MGS compiler in order to achieve type-oriented optimizations on the pro-

duced code. We believe that the best pattern matching algorithms would be wasted

on a dynamically typed language and thus a type inference algorithm is an impor-

tant step in the development of an efficient compiler for rule based transformations.

However some restrictions on the MGS language had to be done in order to

keep the simplicity of the Damas-Milner algorithm. We are currently working on a

type inference system with union types [1] to account for heterogeneous collections

supplied by the MGS language.

Finally, we said that an error could occur when a transformation tries to replace

a subpart by a part of different shape on topologies as the grid which cannot get

out of shape. Such errors are not type errors but some of them could be detected

statically with a specific type based analysis. Some research such as [11] manage

with this kind of error but the concerned languages do not provide the flexibility of

the rule based transformations proposed here.

A Free Variables

The free variables of a type are the variables occurring in that type. Lt computes

the free type variables whereas Lr computes the free topology variables.

13

Cohen

Lt(T) = ∅

Lt(α) = {α}

Lt(τ1 → τ2) = Lt(τ1) ∪ Lt(τ2)

Lt(τ1 × τ2) = Lt(τ1) ∪ Lt(τ2)

Lt([τ]ρ) = Lt(τ)

Lr(T) = ∅

Lr(α) = ∅

Lr(τ1 → τ2) = Lr(τ1) ∪ Lr(τ2)

Lr(τ1 × τ2) = Lr(τ1) ∪ Lr(τ2)

Lr([τ]θ) = {θ} ∪ Lr(τ)

Lr([τ]R) = Lr(τ)

The free variables of a type scheme are the non-quantified variables occurring

in it:

Lt(∀[α1, . . . , αn], [θ1, . . . , θm].τ) = Lt(τ)\{α1, . . . , αn}

Lr(∀[α1, . . . , αn], [θ1, . . . , θm].τ) = Lr(τ)\{θ1, . . . , θm}

References

[1] Aiken, A. and E. Wimmers, Type inclusion constraints and type inference, in: Proceedings of the Seventh
ACM Conference on Functional Programming and Computer Architecture, 1993, pp. 31–41.

[2] Arulanandham, J. J., C. S. Calude and M. J. Dinneen, Bead-Sort: A natural sorting algorithm, EATCS
Bull 76 (2002), pp. 153–162.

[3] Buneman, P., S. Naqvi, V. Tannen and L. Wong, Principles of programming with complex objects and
collection types, Theoretical Computer Science 149 (1995), pp. 3–48.

[4] Clement, D., J. Despeyroux, T. Despeyroux and G. Kahn, A simple applicative language: Mini-ML,
in: Proceedings of the ACM conference on LISP and Functional Programming, 1986, pp. 13–27.

[5] Damas, L. and R. Milner, Principal type-schemes for functionnal programs, in: Proceedings of the 15’th
Annual Symposium on Principles of Programming Languages (1982), pp. 207–212.

[6] Giavitto, J.-L. and O. Michel, MGS: a programming language for the transformations of topological

collections, Technical Report lami-61-2001, LaMI Université d’Évry Val d’Essonne (2001).

[7] Giavitto, J.-L. and O. Michel, MGS: a rule-based programming language for complex objects and
collections, in: M. van den Brand and R. Verma, editors, Electronic Notes in Theoretical Computer
Science, 59 (2001).

[8] Giavitto, J.-L. and O. Michel, Data structure as topological spaces, in: Proceedings of the 3nd
International Conference on Unconventional Models of Computation UMC02, 2509, Himeji, Japan,
2002, pp. 137–150, Lecture Notes in Computer Science.

[9] Giavitto, J.-L. and O. Michel, Pattern-matching and rewriting rules for group indexed data structures,
in: RULE’02 (2002), pp. 55–66.

[10] Hindley, J., The principal type scheme of an object in combinatory logic, Transactions of the American
Mathematical Society 146 (1969), pp. 29–60.

[11] Jay, C. B., A semantics for shape, Science of Computer Programming 25 (1995), pp. 251–283.

[12] Jeuring, J. and P. Jansson, Polytypic programming, in: J. Launchbury, E. Meijer and T. Sheard, editors,
Advanced Functional Programming, Second International School (1996), pp. 68–114, LNCS 1129.

[13] Lisper, B. and P. Hammarlund, On the relation between functional and data-parallel programming
languages, in: Proc. of the 6th. Int. Conf. on Functional Languages and Computer Architectures, ACM,
1993, pp. 210–222.

[14] Milner, R., A theory of type polymorphism in programming, Journal of Computer and System Sciences
17 (1978), pp. 348–375.

[15] Wadler, P., “Efficient compilation of pattern matching,” Prentice-Hall, 1987 Ch. 6 of ”The
Implementation of Functionnal Programming Language”, S. L. Peyton Jones.

14

	Introduction
	Topological Collections and Transformations
	Two examples

	Typing the Collections and the Transformations
	The Language
	Syntax
	The Type System
	Type Inference

	Extensions
	Repetition in a Pattern
	Directions in Patterns
	Strategies

	Conclusion
	Free Variables
	References

