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Multiscale analyses for the Shallow Water

equations

Didier Bresch, Rupert Klein, and Carine Lucas

Abstract This paper explores several asymptotic limit regimes for shallow water

flows over multiscale topography. Depending on the length and time scales consid-

ered and on the characteristic water depth and height of topography, a variety of

mathematically quite different asymptotic limit systems emerges. Specifically, we

recover the classical “lake equations” for balanced flow without gravity waves in the

single time, single space scale limit (Greenspan, Cambridge Univ. Press, (1968)),

discuss a weakly nonlinear and a strongly nonlinear multi-scale version of these

wave-free equations involving short-range topography, and we re-derive the equa-

tions for long-wave shallow water waves passing over short-range topography by

Le Maı̂tre et al., JCP (2001).

1 Introduction

1.1 Governing equations and non-dimensionalization

In this article, we present multiscale analyses for the shallow water equations,

∂tH +div(Hu) = 0

∂t(Hu)+div(Hu⊗u)+g∇H2/2 = −gH∇b
, (1)
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where (H,u)(t,x) are the depth of the water layer and the flow velocity, g is

the gravitational acceleration, b(x) denotes the bottom topography, (t,x) are time

and horizontal space coordinates, and ⊗ indicates the tensorial product. Non-

dimensionalizing (H,u,b,x, t) by characteristic values Href,uref,bref,L, tref, respec-

tively, we obtain, using the same symbols for the dimensionless variables as used

above for the dimensional ones,

Sr∂tH +div(Hu) = 0

Sr∂t(Hu)+div(Hu⊗u)+
1

Fr2
∇H2/2 = −

β

Fr2
H∇b

. (2)

Here

Sr =
L

trefuref

, Fr =

√
gHref

u2
ref

, β =
bref

Href

, (3)

are the Strouhal, and Froude numbers, and the ratio of typical variations of the to-

pography versus the water layer depth.

The asymptotic limit regimes to be analyzed in this paper will be defined by

particular distinguished limits of these dimensionless parameters, and by multi-

ple spacio-temporal scales. Throughout, we consider low Froude number flows, for

which flow velocities are systematically small compared with the speed of the grav-

ity waves, and we introduce the reference asymptotic expansion parameter, ε , via

Fr = εα ≪ 1 , (4)

with α depending on the particular flow regime considered.

As discussed in [8], low Froude numbers give rise to multiple length or time

scales or both, depending on the particular set-up of initial and boundary condi-

tions, and on the structure of any pertinent source terms. For example, a typical

distance trefuref = L/Sr which an advected particle traverses during the reference

time tref differs asymptotically from the distance tref

√
gHref = (L/Sr)/εα traversed

by a shallow water gravity during the same time. Similarly, variations of an advected

variable over length scales of order O(L) induce temporal variations of that quantity

on a time scale L/uref = Sr tref, whereas gravity waves with characteristic length L

feature asymptotically shorter time scales of order L/
√

Href = εα Sr tref. See also the

analogous discussion of low Mach number compressible flows in [7].

We are interested here in multiscale topography. The relevant scalings as adopted

in the asymptotic analyses to follow below are indicated in Fig. 1. Thus, for ε ≪ 1,

we refer to a “normal scale”, resolved by a dimensionless coordinate x, a short range

resolved by X = x/ε , and a long-wave scale represented by χ = εx. Depending on

the flow regime considered, ε is representative of different powers of the Froude and

Strouhal numbers as discussed shortly.
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Fig. 1 Slow, classical and fast scales.

1.2 Asymptotic flow regimes and organization of the paper

Essentially different flow characteristics emerge under the following different dis-

tinguished asymptotic limits, all of which we will analyse in some detail below. We

will assume

β ≡ 1 (5)

throughout, i.e., we allow for topographical heights comparable with the shallow

water depth, and otherwise consider:

• The “Lake Equations”: single-scale, inviscid balanced flow over topography

(Section 2)

We let Fr = ε , i.e., α = 1, follow the flow over advective time scales so that

Sr = 1, and assume

Fr = ε
Sr = 1

}
(H,u)(t,x;ε) = ∑

i

ε i (H,u)i (t,x) , b(x;ε) ≡ B(x) . (6)

• Inviscid balanced flow over multiscale topography (Section 3)

Similar to the previous case, we consider multiscale topography, yet this time

we assume its second characteristic scale to be much shorter than L instead of

much longer. At the same time, by letting Fr(ε) = o(Sr(ε)) as ε → 0, we restrict

the considered flows to characteristic lengths that are too short to support gravity

waves over the given time scales. Moreover, we distinguish a weakly nonlinear

and a fully nonlinear regime, characterized by

weakly nonlinear regime (Section 3.1)

Fr2 = ε3

Sr = ε−1

}
(H,u)(t,x;ε) = ∑

i

ε i (H,u)i
(

t,
x

ε
,x

)
; b(x;ε) = B

( x

ε
,x

)
(7)

fully nonlinear regime: (Section 3.2)
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Fr = ε
Sr = 1

}
(H,u)(t,x;ε) = ∑

i

ε i (H,u)i
(

t,
x

ε
,x

)
; b(x;ε) = B

( x

ε
,x

)
. (8)

In these balanced, i.e., waveless, flow regimes, gradients of the water height on

scale L drive mean flows, which in conjunction with the short-range topography

induce a small-scale flow response. Depending on whether we adopt the scal-

ings for strong or weak nonlinearity, the nonlinear advection of momentum by

the small-scale flow does or does not affect in turn the mean flow dynamics at

leading order, respectively. In case of strong nonlinearity, the result is a nonlin-

ear Darcy-type homogenized equation system, with homogenized nonlinear ad-

vective momentum transport replacing the viscous fluxes in the classical Darcy

theory.

• Gravity waves over multiscale topography (Section 4)

Again we let Fr = ε and Sr = 1, but express (H,u)(t,x;ε) and b(x;ε) through

(H,u)(t,x;ε) = ∑
i

ε i (H,u)i (t,x,εx) , b(x;ε) = B(x,εx) . (9)

In this regime we will observe how long-range gravity waves generate localized

balanced flow over the normal-scale topography, and how they will be affected by

the induced effective average nonlinear momentum transport. Analogous regimes

were studied in [7] for weakly compressible flow with small-scale entropy and

vorticity in the context of ocean flows in [9], and for near-equatorial atmospheric

motions in [12].

We draw conclusions in section 5.

2 Single-scale limit: the “lake equations”

Here we let Fr = ε and Sr = 1, so that the dimensionless equations from (2) become

∂tH +div(Hu) = 0

∂t(Hu)+div(Hu⊗u)+
H

ε2
∇(H +B) = 0

. (10)

Single-scale expansion of the solution in terms of ε according to

O(ε−2)
H0∇(H0 +B) = 0 , (11)

O(ε−1)
H1∇(H0 +B)+H0∇H1 = 0 , (12)

O(ε0)
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∂tH
0 +div(H0u0) = 0

∂t(H
0u0)+div(H0u0 ⊗u0)+H2∇(H0 +B)+H1∇H1 +H0∇H2 = 0

. (13)

From (11), (12) we conclude that

H0 +B ≡ c0(t) (14)

and H1 ≡ c1(t). Then, since the topography, B, is assumed time independent, we

have from (13) that

div(H0u0) = −
dc0

dt
∂t(H

0u0)+div(H0u0 ⊗u0)+H0∇H2 = 0

. (15)

The time change of the total water height, c0(t), follows from integrating (15) over

the entire flow domain to be

dc0

dt
= −

1

|Ω |

∫

Ω

H0u0 ·ndσ , (16)

i.e., the change of water height is given by the total flux of water across the domain

boundary.

Equations (14)–(16) constitute the classical zero Froude number shallow water or

“lake equations”. They form a closed system, once appropriate initial and boundary

conditions for u0,c0 are provided. See [5].

3 Inviscid balanced flow over short-wave topography

The second choice for the topography is to consider a bottom that depends on x and

on the fast variable X = x/ε , such as the one plotted on Figure 2. For this case, we

expand the velocity and the water height as

u(t,x;ε) = u0(t,X ,x)+ εu1(t,X ,x)+ . . .

H(t,x;ε) = H0(t,X ,x)+ εH1(t,X ,x)+ . . .
, X =

x

ε
, (17)

and we replace them in the Shallow Water system from (2), for (X ,x) in T2 ×D .

We begin in section 3.1 with a study of the weakly nonlinear system that arises

under the distinguished limit Sr = ε−1,Fr2 = ε3 for the Strouhal and Froude num-

bers (see (7)): we show that the limit as ε → 0 leads to a weakly nonlinear limit

version of the lake equations with oscillatory topography. In section 3.2, we study

the Shallow Water equations with a strong nonlinearity and show that the balanced

multiscale regime leads to a new nonlinear Darcy-type problem in which cumulative
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Fig. 2 Example of a topography that depend on the fast variable X = x/ε and on x.

inertial forces of the small-scale flow through the topography replaces the viscous

forces in the classical Darcy model.

3.1 Weakly nonlinear regime

With Sr = ε−1 and Fr2 = ε3, the dimensionless shallow water equations from (2)

read
∂tH + εdiv(Hu) = 0

∂t(Hu)+ εdiv(Hu⊗u)+
H

ε2
∇(H +b) = 0

. (18)

Assuming multiscale topography such that b(x;ε) ≡ B(x/ε,x), and adopting the

asymptotic expansion scheme from (17), we identify terms multiplied by like pow-

ers of ε ,

O(ε−3)
H0∇X (H0 +B) = 0, (19)

O(ε−2)
H0∇x(H

0 +B)+H1∇X (H0 +B)+H0∇X H1 = 0 , (20)

O(ε−1)

H1∇x(H
0 +B)+H0∇xH1 +H2∇X (H0 +B)+H1∇X H1 +H0∇X H2 = 0 , (21)

O(ε0)
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∂tH
0 +divX (H0u0) = 0

∂t(H
0u0)+divX (H0u0 ⊗u0)+H2∇x(H

0 +B)+H1∇xH1

+H0∇xH2 +H3∇X (H0 +B)+H2∇X H1 +H1∇X H2 +H0∇X H3 = 0

, (22)

O(ε1)
∂tH

1 +divx(H
0u0)+divX (H1u0)+divX (H0u1) = 0. (23)

Equation (19) enables us to assert that, at leading order, the water height reads:

H0(t,X ,x) = −B(X ,x)+ c(t,x). Then the second term of (20) is equal to zero and,

taking the mean value in X , we find that H0(t,X ,x)+B(X ,x) does not depend on x.

In the same way with (22)1, we have ∂t(H
0 +B)+divX (H0u0) = 0, and, computing

the mean value in the fast variable, we get that the function c does not even depend

on the time: it is a constant in time and space, given by the value of H0 at the initial

time. Consequently we know that

H0(X ,x) ≡−B(X ,x)+C where C = B+H0
|t=0

. (24)

With this result and (20), we obtain ∇X H1 = 0. Then, (21) integrated in X yields

that H1 does not depend on x, so the first order of the water height does not depend

on the space variables either. Averaging (23) in X and integrating in x over the

(finite) domain, we find

dH1

dt
= −

∮

Ω
H0u0 ·ndσ , (25)

where here and below, an overbar denotes averaging over the small-scale coordinate.

Equation (25) states that the first-order water height can change in time only

due to fluxes through the boundary of the overall flow domain. From here on we

assume for simplicity that rigid vertical walls bound the domain, and in that case,

H1 ≡ const., and we may assume H1 ≡ 0. Equipped with this result, the sublinear

growth condition applied to (23) provides

divx H0u0 = 0 . (26)

Inserting the results obtained thus far in (21) we find ∇X H2 = 0, and then (22),

(23) yield the following multiscale system of equations for H2,H3, and the leading-

order velocity, u0,

∂t(H
0u0)+divX (H0u0 ⊗u0)+H0∇xH2 +H0∇X H3 = 0

divX (H0u0) = 0

divxH0u0 = 0

∇X H2 = 0

, (27)

with H0(X ,x) = C−B(X ,x).
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We are interested in separately extracting the large and small-scale dynamics

represented by this system. Averaging all equations in X eliminates the second and

fourth equations, whereas the first and third become the governing equations for the

Non-stationary linear balanced mean flow

∂t H0u0 +H0∇xH2 = −H3∇X B

divx H0u0 = 0
. (28)

This equation describes how the leading-order large-scale flow responds to accumu-

lated small-scale pressure forces on the topography, with its divergence constraint

enforced by adjustment of the second order height, H2, which acts as the usual La-

grangian multiplier.

Subtracting (28) from (27), and observing that H0 + B ≡ C implies H0 −H0 ≡

H̃0 = −B̃, we obtain the governing equations for the

Non-stationary nonlinear balanced small-scale flow

∂t H̃0u0 +divX (H0u0 ⊗u0)+ ˜H0∇X H3 = B̃∇xH2

divX H̃0u0 = 0
. (29)

Here and below, the tildae denote small-scale fluctuations.

Equations (28) and (29) reveal how the small and large-scale flow components

interact through their respective Lagrangian multiplier pressure fields. The gradient

of the second-order height H2, which is equivalent to a pressure field and purely

large-scale, acts on on fluctuations of the topography to drive the small-scale flow.

The divergence of the latter is controlled by the third-order height (or pressure) field,

H3. This field produces an accumulated topographical force, H3∇X B, which in turn

drives the large-scale flow.

Energy conservation

The multi-scale system derived here observes an energy principle. Multiplying

Equation (27)1 by u0, and integrating in x and X by parts we get

1

2

d

dt

∫ ∫
H0

∣∣u0
∣∣2

dxdX −
∫ ∫ (

H2divx(H
0u0)+H3divX (H0u0)

)
dxdX = 0 .

(30)

The last term is equal to zero thanks to (27)2, whereas the integrand of the second

term may be rewritten as −H2
(
divX (H0u1)

)
, thanks to Equation (23), and the pre-

vious conclusion that H1 ≡ 0. The requirement of sublinear growth of H0u1 in X

then eliminates this term, and we find

1

2

d

dt

∫ ∫
H0

∣∣u0
∣∣2

dxdX = 0. (31)
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The system in (27) or (28) combined with (29) are obtained here through

multiple-scales asymptotics from the full “compressible” Shallow Water equations

under a particular distinguished limit of the Strouhal and Froude numbers, and of the

asymptotic separation of the topographic scales. In contrast, the same system was

obtained by Bresch and Varet in [3] through a sequential limit of two small parame-

ters: first they let the Froude number vanish to obtain the balanced “lake equations”,

and then adopt a distinguished limit between the Strouhal number (their parameter

η), and the ratio of the characteristic spacial scales. In this setting, Bresch and Varet

prove convergence to the limit model with the two-scale method, used, e.g., in [10]

for homogenization problems.

3.2 Fully nonlinear regime

We are now interested in a strong nonlinear term, that is, we adopt order one

Strouhal number, and furthermore we let Fr = ε . Thus we consider the Shallow

Water equations in the form

∂tH +div(Hu) = 0

∂t(Hu)+div(Hu⊗u)+
H

ε2
∇(H +b) = 0

, (32)

with multiscale topography, so that b(x;ε) = B(x/ε,x).
We perform the same expansion for our variables as in the weakly nonlinear case,

see (17), and we identify like powers of ε in the expanded equations,

O(ε−3)
H0∇X (H0 +B) = 0 , (33)

O(ε−2)
H0∇x(H

0 +B)+H1∇X (H0 +B)+H0∇X H1 = 0 , (34)

O(ε−1)

divX (H0u0) = 0

divX (H0u0 ⊗u0)+H1∇x(H
0 +B)+H0∇xH1 +H2∇X (H0 +B)

+ H1∇X H1 +H0∇X H2 = 0

, (35)

O(ε0)
∂tH

0 +divx(H
0u0)+divX (H0u1)+divX (H1u0) = 0 , (36)

3.2.1 Sublinear growth conditions

Here we derive the effective balanced flow equations for the leading-order solutions

from (33)–(36). First, (33) yields
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∇X (H0 +B) ≡ 0 (37)

as in the weakly nonlinear case. Using this information in (34), we obtain after

division by H0 and averaging in X that

∇x(H
0 +B) = ∇X H1 ≡ 0 . (38)

For convenience, we rewrite (35) here taking into account the results just ob-

tained, viz.

divX (H0u0) = 0 , (39)

divX (H0u0 ⊗u0)+H0∇xH1 +H0∇X H2 = 0 . (40)

Equation (40) lends itself to two independent sublinear growth constraints. To obtain

the first we simply average in X , to obtain the second we divide by H0 and then

average in X . This yields

H0 ∇xH1 +H0∇X H2 = 0 , (41)

u0 ·∇X u0 +∇xH1 = 0 . (42)

3.2.2 Equations for the small-scale flow

Using (39), we conclude from (40) that

u0 ·∇X u0 +∇X H2 = −∇xH1 . (43)

We eliminate H2 from this equation by taking the curl, using u ·∇u = ∇u2/2−u×
(∇× u), and, using ω = ∇× u with divω ≡ 0, we have ∇× (u×ω) = ω ·∇u−
ω divu−u ·∇ω and, taking into account that we have a two-dimensional flow only,

u0 ·∇X ζ 0 +ζ 0divX u0 = divX (ζ 0u0) = 0 , (44)

where ζ = k ·ω = −∂X2
u1 +∂X1

u2 and k is the unit vector normal to the flow plane.

Combining this result with the divergence condition in (39), we find

H0u0 ·∇X (ζ 0/H0) = 0 , (45)

so that

ζ 0 = H0Q(ψ∗,0,x, t) , (46)

where ψ∗,0 is a stream function for the mass flux H0u0 satisfying

ψ∗,0 = ψ0 +X⊥ ·H0u0 with H0u0 = ∇⊥
X ψ∗,0 , (47)
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and Q(ψ,x, t) is a prescribed potential vorticity distribution function. Collecting,

we obtain an elliptic determining equation for the fluctuating part of the stream

function, ψ0,

H0∇2
X ψ0 −∇X H0 ·∇X ψ0 = (H0)3Q(ψ∗,0,x, t)−∇X H0 ·H0u0

⊥
. (48)

This is the cell problem for a stationary vortical flow over variable topography with

prescribed vorticity on each of the stream surfaces and with a prescribed large-scale

mass flow.

3.2.3 Equations for the large-scale flow

In the previous section we have determined the leading-order velocity, u0, only up to

a large-scale mean mass flux, H0u0. We obtain its governing equation by explicitly

introducing the split of the mass flux into mean and fluctuations, i.e.,

H0u0 = U +H0ũ where U = H0u0 , ũ = u0 −
1

H0
H0u0 =

1

H0
∇⊥

X ψ0 , (49)

and averaging (43) in X . This procedure yields

U ·T +∇xH1 = −q (50)

where

T =
1

H0
∇X ũ and q = ũ ·∇X ũ . (51)

This is a nonlinear Darcy-type problem, with the effective mean friction tensor, T ,

and q the accumulated inertial force from the small-scale flow. The latter being

determined by the nonlinear cell problem defined in the previous section.

A determining equation for the first-order pressure is obtained by averaging (36)

in X , so that

divxU = −divx

(
(∇xH1 +q) ·T−1

)
= −

dH
0

dt
. (52)

Equations (48)–(52) define an interesting stationary multi-scale problem which,

to the best of our knowledge, has not been derived or studied before. A large-scale

mean mass flux drives a quasistationary small-scale flow over the topography. The

small-scale dynamics is determined by vorticity transport, especially vortex stretch-

ing do to the motion in a layer with variable height. The large-scale flow adjusts,

in turn, to two accumulated forcings from the small scales both of which are in-

duced by nonlinear advection of momentum. The first results from the advection of

small-scale momentum by the mean flow (first term in (50)), whereas the second is

the nonlinear average of the nonlinear self-advection of the small-scale momentum

(right-hand side of (50)).
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4 Gravity waves over long-wave modulated topography

Here we let Sr = 1 to focus on advective times for the normal scale L, and Fr = ε so

as to include gravity wave dynamics on a large scale L/ε . We start again from the di-

mensionless shallow water equations in (10), and we are now interested in large flow

domains with characteristic extension O(L/ε), and we allow for multi-scale bottom

topography with associated long-wave modulations, so that b(x;ε) = B(x,εx), see

Fig. 3. These scalings are analogous to those considered in [7] and [9] for weakly

compressible flows of a gas and for oceanic motions, respectively. These authors

pursued asymptotic analyses to motivate related specialized numerical schemes.
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Fig. 3 Example of multiscale topography with leading-order variations on the normal scale repre-

sented by the x-coordinate, and long-wave modulations resolved by the slow variable χ = εx.

We expand the flow variables as

(H,u)(t,x;ε) = (H,u)0(t,x,χ)+ ε (H,u)1(t,x,χ)+ . . . , (χ = εx) (53)

and, after inserting into (10) collect terms involving like powers of ε as usual,

O(ε−2)
H0∇x(H

0 +B) = 0 (54)

O(ε−1)
H0∇xH1 +H0∇χ(H0 +B)+H1∇x(H

0 +B) = 0 (55)

O(ε0)

∂tH
0 +divx(H

0u0) = 0, (56)

∂t(H
0u0)+divx(H

0u0 ⊗u0)+H0∇xH2 (57)
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+H1∇xH1 +H2∇x(H
0 +B)+H0∇χ H1 +H1∇x(H

0 +B) = 0 ,

O(ε)
∂tH

1 +divx(H
0u1)+divx(H

1u0)+divχ(H0u0) = 0 . (58)

Equation (54) requires H0 + B not to depend on x. Integrating (55) in x, after

division by H0, we find H0 + B to be independent of χ as well through a sublin-

ear growth (or secular) condition, so that the water surface is flat to leading order.

Inserting this result back, we conclude that H1 is independent of x as well.

Next we observe that we may replace ∂tH
0 ≡ ∂t(H

0 + B) in (56), as the bottom

topography is supposed to be time independent. Then, integrating again in x, we find

as a sublinear growth condition that H0 + B is time independent. This also implies

∂tH
0 ≡ 0 and we conclude that

divx(H
0u0) = 0 , (59)

i.e., that the leading-order small-scale flow is “incompressible”. Equations (57)–(58)

then become

∂t(H
0u0)+divx(H

0u0 ⊗u0)+H0∇xH2 +H0∇χ H1 = 0, (60)

∂tH
1 +divx(H

0u1)+divx(H
1u0)+divχ(H0u0) = 0. (61)

This is a multiscale system, which we decompose by averaging in x and subtracting

the result from the above into separate but coupled descriptions of the long-wave

and short-wave components of the flow. Thus we obtain the

Long-wave equations for rough topography

∂t

(
H0u0

)
+H0∇χ H1 = H2∇xH0 , (62)

∂tH
1 +divχ

(
H0u0

)
= 0 . (63)

These are the standard linearized shallow water wave equations, except for the mo-

mentum source term on the r.h.s. of (62) which we have derived integrating H0∇xH2

by parts and using a sublinear growth constraint to eliminate the arising divergence

term. This source term represents the net resistance, or large-scale accumulated pres-

sure force, that arises as a result of the small-scale flow through the rough topog-

raphy. Subtracting the long-wave equations in (62), from the unaveraged equation

(60), and using the small-scale divergence constraint from (59), we obtain the de-

termining equations for the small-scale component of the leading-order momentum,

H̃0u0, and for the small-scale structure of the second order height, H2. With the

φ̃ = φ −φ denoting the small-scale component of some field φ , we find the

Balanced small-scale flow equations for rough topography

∂tH̃0u0 +divx(H
0u0 ⊗u0)+H0∇xH2 = −H̃0∇χ H1, (64)



14 Didier Bresch, Rupert Klein, and Carine Lucas

divxH̃0u0 = 0 . (65)

The small-scale flow is driven by the long-wave unbalanced part of the large-scale

height gradient, −H̃0∇χ H1. Since the leading-order momentum is divergence-free

on the small scale, the second-order height H2 assumes the role of a Langrangian

multiplier responsible for guaranteeing compliance with this constraint. The nonlin-

ear momentum advection term, divx

(
H0u0 ⊗u0

)
, may be rewritten in terms of the

large and small-scale momentum components using

H0u0(t,x,χ) = H0u0(t,χ)+ H̃0u0(t,x,χ)

u0 =
1

H0

(
H0u0 + H̃0u0

)

H̃0u0 ≡ 0

. (66)

Equations (62), (63) and (64), (65) are the shallow-water analog to the single time

scale – multiple length scale, variable density low Mach number flow equations

derived first in [7], and in the shallow water context in [9].

If the topography does not depend on x, the previous equations may be combined

to obtain wave equation with spacially varying signal speed for H1,

∂ 2
t H1 −divχ

(
(C−B(χ))∇χ H1

)
= 0 , (67)

where C = B+H0 ≡ const.

5 Conclusions

Exploring a number of multiscale shallow water regimes using formal multiple-

scales asymptotics, we find that there is a range of different possibilities for scale

interactions in these flows.

• Balanced flows For flows that are free of surface waves, a multiscale topography

can mediate scale interactions through two mechanisms:

1. Weakly nonlinear regime The large-scale accumulation of net pressure

forces on the topography as induced by small-scale flow fluctuations drives

the large-scale balanced flow. In turn, the large-scale height gradients that

ensure compliance with the large-scale divergence constraint produce small-

scale forces when acting on the topographical fluctuations, thereby driving the

small-scale flow.

2. Strongly nonlinear regime Here we find the quasi-steady balanced large-

scale flow to follow a Darcy-type equation, yet with the homogenized net

forces induced not by viscosity or friction, but rather by the accumulation

of small-scale nonlinear momentum fluxes. The small-scale flow in turn is

driven by the large-scale mean height gradients, and its detailed structure is
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determined by the dynamics of vorticity as it gets stretched and compressed

when the small-scale flow passes over the variable topography.

• Long waves passing over multiscale topography The interaction mechanism

across scales is here similar to that found for the weakly nonlinear balanced flow

regime, yet the large-scale flow now involves non-balanced free surface waves.

We understand the present paper as a point of departure for further work providing,

on the one hand, asymptotic limit cornerstones against which to measure the per-

formance of general shallow water numerical flow solvers. On the other hand, some

of the regimes discussed here are of sufficient practical interest to warrant further

work on the rigorous mathematical justification of the model equations derived here

through merely formal asymptotic arguments. Another direction of research that we

intent to pursue concerns viscous regularizations and rigorous justification of the

formal analyses presented here.
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