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Abstract: Real-time databases deal with time-constrained data and time-constrained transactions. The design of 

this kind of databases requires the introduction of new concepts to support both data structures and the dynamic 

behaviour of the database. In this paper, we give an overview about different aspects of real-time databases and we 

clarify requirements of their modelling. Then, we present a framework for real-time database design and describe 

its fundamental operations. A case study demonstrates the validity of the structural model and illustrates SQL 

queries and Java code generated from the classes of the model. 
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1. Introduction 
 

Real-time databases have to deal with time-constrained 

data and time-constrained transactions. They are now 

being used for several applications such as space 

project control, process control, financial market and 

air traffic control systems. In each of these time-critical 

applications, data about the target environment must be 

continuously collected from the real-world and 

processed in a timely manner to generate real-time 

responses. A real-time database has two distinguishing 

features: the notion of temporal consistent data, and the 

ability to place real-time constraints on transactions. 

Some of its data must not only be logically consistent, 

but also temporally consistent, i.e., must closely reflect 

the current state of the controlled environment. But 

data are collected at discreet moments. Hence, they 

often represent an approximation of reality. As time 

advances continually, a real-time data value becomes 

less and less accurate, until the moment where it does 

not reflect any more the state of the environment. At 

this time point, we say that this data value is no longer 

temporally consistent. Temporal consistency can be 

measured in two ways: absolute consistency and 

relative consistency [22]. A data item, as the speed of 

an aircraft in an air traffic control system, is considered 

absolutely consistent if and only if its age is within a 

specified time interval. It should be often updated. The 

age represents the time duration between its timestamp 

and the current time. For example, the speed age value 

must not exceed five seconds; it verifies its absolute 

consistency constraint as long as it is no more than five 

seconds old. Relative consistency concerns data 

derived from other ones. For example, the lane of an 

aircraft is derived from the location and the altitude 

data items. Its temporal consistency depends of those 

of location and altitude data. So, real-time data are 

subdivided into two types: sensor data and derived 

data [24]. Sensor data are the data issued from 

sensors. Derived data are the data computed using 

sensor data (e.g., lane data). 

 

Transactions in a real-time database environment are 

subdivided into two classes: update transactions and 

user transactions [22]. Update transactions are used 

to update the values of real-time data in order to 

reflect the state of the real world. They are executed 

periodically to update sensor data, or sporadically to 

update derived data. User transactions, representing 

user requests, arrive aperiodically. They may read or 

write non real-time data, but only read real-time data. 

 

Real-time databases are therefore specific. Their 

design need appropriate concepts and tools which are 

not available under systemic or object oriented 

methods. UML, the most used nowadays, can not, in 

its standard form, satisfy the requirements of such 

design. Indeed, it is a general language used to model 

object-oriented applications across a wide range of 

domains. But its extension mechanism, based on the 

concepts of profile and stereotype, allows it, if 

enhanced, to support new concepts and tools and to 
become suitable for a particular domain needing 
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specific software engineering activities. Recently, an 

UML profile for Modeling and Analysis of Real-Time 

and Embedded systems (MARTE) has been 

standardized by the OMG [17] [3]. However, the 

design of real-time databases differs from the design of 

conventional real-time systems. The designers of real-

time databases must consider both temporal aspects of 

data and timing constraints of transactions [26] [9] 

[10]. The design of this kind of databases is thus 

performance-and semantic-dependent. It must consider 

factors such as sensor data, derived data and Quality of 

Data (QoD) management, temporal semantics in 

transaction scheduling algorithms, concurrency control 

protocols, disk caching, and buffer management 

protocols to meet the timing constraints defined by the 

real-time applications. Which concepts and tools are 

suitable to define the design of real-time databases? 

How to define and to implement an UML profile 

supporting these requirements? How to implement a 

real-time database model under a technical 

environment? The present paper deals with these 

problems and aims to bring contributions in real-time 

databases design. 

 

The paper is organized as follows. Section 2 briefly 

covers related works. Section 3 describes our real-time 

object-oriented data model. Section 4 presents a set of 

stereotypes that allows our UML-RTDB profile to 

express real-time database features in a structural 

model. Section 5 quotes different mapping rules of an 

UML-RTDB diagram to an object relationship schema. 

Finally, the last section draws some conclusions. 

 

2. Related work 
 

There is a need to define an UML profile supporting 

real-time database requirements. Several UML 

approaches were already proposed to take into account 

the real-time system requirements, such as UML-RT 

[25], RT-UML [5], UML-SDL [11] and ACCORD/UML 

[13]. The basic concepts of RT-UML were integrated in 

the UML standard through the UML profile for 

Schedulability, Performance, and Time (denoted SPT 

profile) [18], which is recently replaced by the UML 

profile for Modeling and Analysis of Real-Time and 

Embedded Systems (MARTE) [17]. However, UML 

constructs used by these approaches do not support 

real-time database requirements.  A real-time database 

is a database in which both the data and the operations 

upon the data may have timing constraints [22]. In fact, 

real-time databases have all requirements of traditional 

databases, such as the management of accesses to 

structured, shared and permanent data, but they also 

require management of time-constrained data and time-

constrained transactions [2]. 

 

To the best of our knowledge, there is only one UML-

based proposal for real-time databases modeling [4]. In 

their work, the authors have defined an UML package 

for specifying RTSORAC
1
 [29] object, called RT-

Object. However, the RT-Object package is based on 

the Extension Mechanisms package of UML1.3 

which is a past standard. Furthermore, imprecise 

computation encapsulated within the RTSORAC 

object is defined in the context of Epsilon 

Serializability (on transactions) [23], and does not 

support the notion of QoD introduced in [1]. The 

QoD concept allows a robust and controlled behavior 

of real-time databases during transient overloads, 

based on Feedback Control Real-Time Scheduling 

[16]. 

 

The framework proposed in this paper is 

distinguished by the fact that it supplies, like RT-

Object, concepts and tools for real-time database 

modeling. But, unlike RT-Object, UML-RTDB, the 

profile of this framework, supports the QoD concept 

that we define for real-time attributes [9], on one 

hand, and it contains a set of stereotypes to express 

dynamic semantics of real-time attributes and real-

time object features, on the other hand. These 

stereotypes are defined under UML.2.1.2 Profiles 

package [20]. In addition, UML-RTDB allows to 

specify two kinds of real-time attributes, sensor 

attributes and derived attributes, in order to satisfy 

the requirements of current real-time applications. 

 

3. Real-time object model 
 

The mostly used data model for real-time databases is 

the relational model [22]. However, due to the nature 

of many real-time applications, that must handle 

complex real-world objects with short deadlines, 

many researchers believe that the object-oriented 

model is more suitable and powerful than the 

relational model [12]. So, several research projects on 

real-time databases have adopted the object-oriented 

model for building their prototype systems [29] [27]. 

Our work is based on a particular object model, 

named real-time object-oriented data model, which 

incorporates time-constrained data and time-

constrained transactions of real-time databases [9]. 

Thus, a real-time database is a collection of objects 

which are used to manage time-critical dynamic 

systems in the real world. Each object has some 

internal state which is protected by the object 

abstraction. The only way for a transaction to access 

an object is to invoque the methods defined by the 

class of this object. 

 

In this section, we describe our data model and the 

characteristics of its components. We illustrate our 

proposal on an air traffic control system, which 

consists of a large collection of data describing the 

aircrafts, their flight plans, and environment data 

[15]. This includes flight information, such as aircraft 

identification, transponder code, altitude, position and 

                                                 
1
 RTSORAC: Real-Time Semantic Objects 

Relationships And Constraints. 
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speed, origin, destination, route and clearances. In our 

work, each aircraft in the airspace is modeled as a real-

time object. 

 

3.1 Real-time object model 
Real-time objects (RTO) are the real-time object-

oriented database entities. They represent dynamic 

entities of time-critical dynamic applications in the real 

world [8]. We define a real-time object as an extension 

of the real-time object, as used in the ACCORD/UML 

approach [28] [6]. It encapsulates time-constrained 

data, time-constrained methods and concurrency 

control mechanisms. As shown in Figure 1, each real-

time object is made of four components: (i) a set of 

real-time attributes, (ii) a set of real-time methods, (iii) 

a mailbox, and (iv) a local controller. 

 

 

Figure 1. Real-time object model. 

 

3.2 Mailbox 
Because an object model tends to ensure modularity 

and encapsulation, it needs to use a unique method for 

exchanging information between two objects: message 

passing. In this context, all processing are triggered by 

message arrivals. The mailbox is used to store 

messages received by the RTO. A mailbox is attached 

to an object and is generally for a given object 

(instance). It is used only to store messages received by 

the object and waiting to be processed. 

 

In most real-time applications, real-time constraints are 

attached to messages. So, communication between two 

objects is defined as a Client-Server relationship 

between these two objects, where message passing is a 

request of a service from the Client to Server. From 

this point of view, it is completely natural to adopt the 

usual rule of collaboration between a client and a 

supplier: “the client is always right”, meaning that real 

time constraints are set by client and not by server. 

Thus, real-time constraints have to be attached to the 

service request, i.e., the message passing. In our model, 

we characterize each message by a deadline which 

must be met; otherwise the message will be rejected 

(Firm).  

 

3.3 Local controller 
Because of the dynamic nature of the real world, more 

than one transaction may send requests to the same 

real-time object. Concurrent execution of transactions 

allows several methods to run concurrently within the 

same object. To handle this essential property of real-

time database systems, we associate to each real-time 

object a local concurrency control mechanism, named 

local controller, which manages the concurrent 

execution of its methods. 

 

The local controller has to take into account each new 

request arrival. It has also to select the request to be 

executed according to the timing constraints of the 

different requests of the mailbox, in two cases:  (1) 

when a thread becomes available; (2) when it is 

necessary to suspend the current request having the 

low priority to liberate a thread, because there is a 

request that cannot wait. We note that a request 

corresponds to a method of the target object. 

 

Besides, the local controller must verify the 

concurrency constraints between the method of the 

selected request and the already running methods of 

the real-time object. If it detects a conflict, it aborts 

the request having the lowest priority. When a 

method terminates its execution, the corresponding 

thread is released and concurrency constraints are 

relaxed. But, if the service is periodic, the thread is 

not released, since it is allocated to support all 

periodic executions of the requested service. The 

local controller is thus in charge of mailbox 

management, scheduling constraints handling, 

concurrency constraints handling, and thread 

management. 

 

3.4 Real-time attributes 
Data objects are classified into either real-time or non 

real-time. A non real-time data is a classical data 

found in conventional databases, whereas a real-time 

data has a validity interval beyond which it becomes 

useless [22]. Real-time data change continuously to 

reflect the real world state (for example, the current 

temperature value). Each real-time data has a 

timestamp indicating the last observation of the real 

world state. 

 

Our real-time data model is based on the model 

introduced in [22] and we associate to this model the 

notion of maximum data error (MDE) introduced in 

[1]. Thus, a real-time data is modeled by d = (dvalue, 

dtimestamp, davi, dmde), where dvalue represents the real 

world data value, dtimestamp is the last time at which the 

attribute's value was updated, davi is the absolute 

validity interval and dmde is the maximum amount of 

imprecision associated with the attribute's value. 
 

To handle the property of our real-time data model, 

we define an attribute model, called real-time 

attribute, which incorporates fields to support logical 

constraints (dvalue), temporal constraints (dtimestamp, davi) 

and QoD constraints (dmde). As shown in Figure 2, 

each real-time attribute is characterized by <N, CV, 

TS, VD, MDE> [9] where: 
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Figure 2. Structure of Real-time attribute. 

 

 Name (N): is the name of the attribute. 

 

Current Value (CV): is used to store the final attribute 

value captured by the related last update method. This 

field is used by the system to determine logical 

integrity constraints of the attribute value. 

  

TimeStamp (TS): is used to store the last time at which 

the attribute's value was updated [22]. This 

characteristic is of the type Time which is supported by 

the UML2.0 standard. Access to the timestamp of an 

attribute is necessary for determining temporal 

consistency of this attribute. For example, in an aircraft 

object, there is an attribute for storing the altitude, 

called Altitude, to which a sensor regularly provides 

readings. This update is reported every twenty seconds. 

Thus the Altitude attribute is considered temporally 

inconsistent if the update does not occur within that 

time frame. There are many ways to define timestamps. 

In our model, the timestamp is the time when the value 

is produced.  If the value is produced by a sensor 

device, then timestamp is the time when the value is 

read by the sensor. If the value is produced by a 

transaction, then timestamp is the time when the 

transaction completes.  This field is used by the system 

to determine whether or not timing constraints have 

been violated. 

 

ValidityDuration (VD): is used to store the length of 

absolute validity interval (denoted by avi) of the 

attribute value [22]. It represents the amount of time 

during which the attribute value is considered valid. 

This element is numeric and allows to determine, in 

association with TS, the absolute consistency of the 

attribute. A data item is considered absolutely 

consistent (fresh) with respect to time as long as the 

age of the data value is within a given interval [22].  

For instance, the Altitude value is considered fresh if 

the current time is earlier than timestamp of Altitude 

followed by the length of the absolute validity interval 

(avi) of Altitude; i.e. {Altitude.TS ≤ currenttime < 

Altitude.TS + Altitude.VD}. 

 

Maximum Data Error (MDE): is used to memorize 

the absolute maximum data error tolerated on the 

attribute value [1]. Currently, the demand for real-time 

database services has increased in most applications 

where it is desirable to execute transactions within their 

deadlines. They also have to use precise and fresh data 

in order to reflect the continuously changing external 

environment. However, in many applications, it seems 

to be difficult for transactions both to meet their 

deadlines and to keep the database consistent. To 

support these applications, the QoD concept is 

introduced in [1] to indicate that data stored in the 

database may have some deviation from its value in 

the real world. Thereby, data error, denoted DE, 

represents the deviation between the current data 

value and the updated value. The upper bound of the 

error is given by the Maximum Data Error. For 

instance, the maximum error on the Speed value is 5 

km/h. This field allows the system to handle the 

unpredictable workload of the database by discarding 

sensor transactions where DE ≤ Attribut.MDE, and to 

enhance the freshness of data using Feedback Control 

Scheduling [1]. It has the same type as CV field. 

 

We note that only the two first fields, Name and 

Current Value, are visible to the users. The other 

fields are used by real-time database system in order 

to maintain the temporal consistency of the real-time 

database. 

 

3.5 Sensor and Derived attributes 
Since real-time data is subdivided into two types: 

sensor data and derived data [24], we characterize 

the real-time object model by three types of attributes 

as follows: 

 

 
 

Figure 3. Aircraft object. 

 

Classical attributes: they are used to store non real-
time data [9]. As shown in Figure 3, we characterize 

the Aircraft object by two classical attributes, 

Identifier and Destination. 

 

Sensor attributes: they are used to store sensor data 
which must be periodically updated in order to 

closely reflect the real world state of the application 

environment [9]. 

 

For example, we characterize the Aircraft object by 

four sensor attributes: Direction, Location, Altitude 
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and Speed. These attributes are periodically updated to 

reflect the state of an Aircraft instance. 

 

Derived attributes: they are used to store derived data 

that have to be calculated from sensor attributes [9]. 

We characterize the Aircraft object by two derived 

attributes: Path, which is calculated from Direction and 

Location values, and Lane, which is calculated from 

Location and Altitude values. We note that in this 

paper, we consider that a derived attribute is not 

characterized by an MDE field. 

 

3.6 Real-time methods 
We consider a method execution as a transaction which 

is composed of one or many sub-transactions (a 

method can call other methods) [14]. We classify the 

real-time object methods into three classes: periodic 

methods, sporadic methods, and aperiodic methods. 

 

Periodic methods: the temporal consistency of each 
sensor data is ensured by a sensor transaction, which 

periodically updates the value of the sensor data [24]. 

Thereby, we associate to each sensor attribute a 

periodic method, which periodically updates the values 

of the Current Value and the TimeStamp fields. We 

assume that a periodic method execution is a sensor 

transaction. This latter is defined as a write-only 

transaction which obtains the state of the environment 

and writes the sensed data to the database. We propose 

two types of timing constraints for periodic methods: 

absolute timing constraints, i.e. a deadline, and a 

period. The periodicity of the method execution is 

imposed by the validity time of each value of the 

sensor attribute. A periodic method must complete its 

execution before the deadline; otherwise the value to 

be written will be considered obsolete [22].  

 

For example, we characterize the Aircraft object by a 

set of periodic methods such as: 

 

(1) UpdateAltitude(): which periodically carries out 
write operations of Current Value and TimeStamp 

fields of the Altitude attribute. 

 

(2) UpdateLocation(): which periodically performs  
write operations of  Current Value and TimeStamp 

fields of the Location attribute. 

 

Sporadic methods: derived data are the data calculated 
from sensor data [24]. Thereby, we associate to each 

derived attribute a sporadic method, which 

sporadically calculates its value from sensor attributes. 

The access mode of the sporadic method to derive 

attribute value is always ``write''. Its timing constraints 

are also deadline and periodicity. The periodicity of the 

method execution depends on the considered update 

policy. In this paper, we consider a dynamic update 

policy as proposed in [7]. Then, we characterize the 

Aircraft object by the following sporadic methods: 

 

(1) ComputeLane(): which computes the Lane 

attribute value using Location and Altitude 

values. 

 

(2) ComputePath(): which computes the Path 

attribute value using Location and Direction 

values. 

 

Aperiodic methods: they include the remainder of 
methods that allow to read/write classical attributes 

and read only sensor and derived real-time attributes. 

User transactions typically arrive aperiodically. They 

do not write any temporal data, but they can 

read/write non temporal data and only read temporal 

data [24]. To include nested transactions in this 

object model, we assume that an aperiodic method 

execution is a user transaction which may invoke 

atomic operations or invoke other methods on other 

objects [14]. Operations represent the actions of the 

method. They include statements for conditional 

branching, looping, I/O, reads/writes of non real-time 

attributes, and reads/writes of real-time attributes, 

including their current value, timestamp, validity 

duration and maximum data error fields. 

 

4. The UML-RTDB profile 
 

In this section, we present an UML profile, entitled 

UML-RTDB, which is a specialized variant of the 

UML2.1.2 for real-time database applications. The 

main aim of our proposal is to supply, to the 

designers of real-time databases, UML extensions to 

support real-time database requirements. An UML 

extension is specified in the UML metamodel by a 

stereotype. This latter defines how an existing 

metaclass may be extended, and enables to use  

platform or domain specific terminology or notation, 

in addition to the ones used for the extended 

metaclass [20]. In our work, UML-RTDB stereotypes 

extend metamodel classes with specific sensor and 

derived attributes, specific periodic and sporadic 

operations and a specific real-time class that allow 

the design of class diagrams for real-time databases. 

We base our proposal on the Extension relationship 

proposed in UML2.1.2 Profiles package [20]. 

 

4.1 Real-time data type 
As defined in section 3.4, each real-time attribute 

value is characterized by a timestamp, which 

indicates the time at which it was last updated. So, for 

each real-time attribute value corresponds a 

timestamp, which distinguishes it from other 

attribute's values. Thereby, as illustrated in Figure 4 

for the attribute Speed, the values of the VD and 

MDE fields are the same for all real-time attributes. 

But, the values of the TS field change for each real-

time attribute. 

 



24 International Journal of Computing & Information Sciences  Vol. 6, No. 1, August 2008, On-Line 

 
 
Figure 4. Illustration of the dynamic semantic of a real-

time attribute. 

 

For this reason, we define three new UML data types, 

called RTInteger, RTReal and RTString, that describe 

the type of real-time attribute values. As shown in 

Figure 5, each metaclasse is characterized by two 

properties: 

 

(1) Value: it indicates the attribute value written by the 
related update method. It is of the type Integer, 

Real or String in the case of the metaclass 

RTInteger, RTReal or RTString, respectively. 

 

(2) Timestamp: it indicates the last time at which the 
attribute's value was updated. 

 

 
 

Figure 5. Data types of UML-RTDB profile. 

 

In this work, we consider that time granularity is the 

“Second”. The designers of real-time databases can 

easily modify the values of stereotype properties 

according to the requirements of real-time applications. 

 

4.2 Sensor and Derived stereotypes 
Since a real-time attribute is either sensor or derived 

(cf. section 3.5), we define two stereotypes, 

<<Sensor>> and <<Derived>>, to declare 

respectively sensor attributes and derived attributes in 

the class diagrams. As shown in Figure 6, we define an 

abstract stereotype, called <<RealTimeAttribute>>, to 

factorize the Validity Duration property, which 

characterizes both <<Sensor>> and <<Derived>> 

stereotype. As for Maximum Data Error property, it 

characterizes only <<Sensor>> stereotype (cf. 

section 3.5). 

 

 

Figure 6. Definition of Sensor and Derived stereotypes. 

 

4.3 Periodic and Sporadic stereotypes 
We characterize the UML-RTDB profile by three 

stereotypes, <<Periodic>>, <<Sporadic>> and 

<<Aperiodic>>, to declare respectively periodic 

methods, sporadic methods and aperiodic methods in 

the class diagrams. As illustrated in Figure 7, we 

define an abstract stereotype, named <<Update>>, 

which generalizes these latter stereotypes. It is 

characterized by a Deadline, which indicates the last 

time by which the method execution must be 

completed. In addition, we characterize the 

<<Periodic>> stereotype by a Period in order to 

define the periodicity of the methods. 

 

 

 
Figure 7. Definition of Periodic and Sporadic 

stereotypes. 

 

4.4 Real-Time Class stereotype 
A real-time database is by definition a database 

system. It then has queries, schemas, transactions, 

commit protocols, concurrency control support, and 

storage management [26]. So, the design of a real-

time database has to take into account the 

management of all these components. That's why we 

define a <<RealTimeClass>> stereotype (cf. Figure 

8) in order to deal with the time-constrained data, 

time-constrained operations, parallelism, and 

concurrency property inherent to real-time databases. 
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The <<RealTimeClass>> stereotype is added to 

classes in order to specify that their instances will 

encapsulate real-time data, real-time operations, and a 

local concurrency control mechanism. 

 

 

Figure 8. Definition of RealTimeClass stereotype. 
 

5. From an UML-RTDB diagram to an 

Object Relationship schema 
 

Many development tools are based on relational 

database [2]. Although the relational model is useful 

for many applications, we believe that it is not as well-

suited as an object-oriented database model for 

applications that require complex data management, 

have complex relationships between data, first-class 

support for timing constraints, and more scheduling 

flexibility than serializability can provide. The 

mapping of an UML-RTDB class generates, in the 

relational model, a large number of tables. So, queries 

need many joins to retrieve needed data, and their 

execution becomes expensive (i.e. a large amount of 

time). The main reason of this inadequacy is that 

relational model can deal only with simple data. In 

other words, a relational model uses a tabular 

representation of the real-world entities in the first 

normal form (1NF). For instance, the mapping of the 

Aircraft class gives seven tables: one to represent the 

atomic attributes of the Aircraft, and six tables 

representing every object connected with the Aircraft: 

Direction, Location, Altitude, Speed, Path and Lane. 

Each table contains a foreign key referring to the 

primary key of the Aircraft. The selection of all 

information of an Aircraft needs six join operations. 

This decreases significantly the performance of the 

system. 

 

For these reasons, we see that the mapping of real-time 

class to the object-relational model is more suitable 

than the relational model. In fact, the object-relational 

model allows the use of simple or complex structures. 

Each structure is defined through an appropriate 

mechanism, called User Defined Types (UDT). An 

object-relational table is thus defined by means of 

either complex or simple data. The recordings of an 

object-relational table represent concrete objects, 

which have methods endowed with an Object Identity 

(OID). 

 

Moreover, object-relational technology is a relational 

technology which is extended with new capabilities, 

such as methods, UDT, etc. It offers two advantages: 

firstly, it is compatible with relational technology and 

provides a better support for complex object. 

Secondly, object-relational databases are becoming 

commonplace because many commercial DataBase 

Management System (DBMS) are adding object-

oriented capabilities to their products, such as Oracle 

11g, IBM DB2 and PostgreSQL. For These reasons, 

we base our work on the object-relational databases 

design. 

 

To map real-time classes in the object-relational 

model, we proceed in the following manner. 

 

5.1 Mapping of derived attributes 
Derived attributes are mapped through the following 

actions: 

 

(1) Action 1: Creation of an UDT, named RealTime, 

which contains three fields CV, TS and VD (cf. 

Query1). 

 

Query 1 Creation of an UDT for derived attributes 

SQL create type RealTime as object 
2. (Value number, 
3. TimeStampValue timestamp, 
4. ValidityDuration number) 
5. not final; 
6. / 
 

(2) Action 2: For every attribute whose multiplicity 
is greater than one, we : 

• Create an UDT which represents a nested 

table, named NT_RealTime, of RealTime 

type, when the exact value of the multiplicity 

was not mentioned. 

• Create an UDT which represents an array, 

named ARR_RealTime, of RealTime type, 

when the exact value of the multiplicity was 

mentioned. 

 

5.2 Mapping of sensor attributes 
Sensor attributes are mapped through the following 

actions: 

 

(1) Action 1: Creation of an UDT, named 

RealTimeSensor, composed of four fields: CV, 

TS, VD and MDE (cf. Query 2). 

 

Query 2  Creation of an UDT for sensor attributes 

SQL create type RealTimeSensor under 
RealTime 

2. (MaximumDataError number) 
3.  / 

 

(2) Action 2: Is the same as action 2 for the derived 
attribute mapping (cf. section 5.1). 
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6. Mapping of real-time class 

 
Real-time class is mapped through the following 

actions: 

 

(1) Action 1: Creation of an UDT, named 

NOM_CTR_TYPE, which contains the following 

fields (cf.  Query 3): 

 

Query 3  Creation of an UDT for aircraft class 

SQL create type Aircraft as object 
2. (Identifier varchar2(15), 
3. Destination varchar2(15) 
4. Direction RealTimeSensor, 
5. Location RealTimeSensor, 
6. Path RealTime, 
7. Lane RealTime)  
8. / 

 

• Classical attributes of the real-time class. 

• Sensor attributes of the real-time class, with the 

suitable types (types obtained from the 

mapping of sensor attributes: AN_TYPE, 

NT_AN_TYPE or ARR_AN_TYPE). 

• Derived attributes of the real-time class, with 

the appropriate types (types obtained from the 

mapping of the derived attributes: AN_TYPE, 

NT_AN_TYPE or ARR_AN_TYPE). 

 

(2) Action 2: Creation of an object-relational table 
which has the same name as the real-time class. 

Then, we add other constraints (primary key, 

foreign key, etc.) (cf. Query 4). 

 

Query 4  Creation of an UDT for aircraft class 

SQL create table AircraftTable of 
Aircraft  

2. (constraint pk_AircraftTable 
primary key (Identifier)); 

 

Figure 9 illustrates the structure of an Aircraft real-time 

class. It encapsulates classical attributes, and real-time 

sensor and derived attributes. 

 

7. Implementation 

 
The implementation of our UML-RTDB components is 

done through an extension of an UML CASE Tool, 

named Fujaba (From UML to Java And Back Again). 

The Fujaba environment aims to provide round-trip 

engineering support for UML and Java. The main 

distinction to other UML tools is its tight integration of 

UML class and UML behaviour diagrams to a visual 

programming language. This integration enables 

Fujaba to perform a lot of static analysis work, 

facilitating the creation of a consistent overall 

specification. In addition, it turns these UML diagrams 

into a powerful visual programming language and 

allows covering the generation of complete application 

code. Since Fujaba is open source, we could add to it 

the appropriate tools and make it able to accept real-

time database specification. Figure 10 shows the class 

diagram under Fujaba of our air traffic control 

application. We have chosen a “Watch” icon to 

indicate sensor attribute and a “Calculator” icon to 
indicate derived attribute of Aircraft real-time class. 

In addition, a “SPO” icon is used to indicate sporadic 

methods and “PER” icon to indicate periodic 

methods. Figure 12 presents Java code generated 

from the Aircraft real-time class.  Figure 11 presents 

SQL queries generated also from the Aircraft real-

time class. 

 

 
 

 

    Figure 9. Definition of RealTimeClass stereotype. 

 

 

 
 

Figure 10. Air traffic control class diagram. 

 

 

 
 

 

Figure 11. Java code generation from Aircraft  

real-time class. 
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Figure 12. SQL queries generation from Aircraft   

real-time class. 

 

8. Conclusion and future work 
 

Many real-time applications need a database 

environment. But classical databases can not satisfy all 

requirements of these applications. We have studied, in 

this paper, the temporal requirements of real-time 

databases, for data and operations. To specify dynamic 

semantics and complex data structure of these 

databases, we have proposed a set of appropriate 

concepts and tools, giving a real-time object-oriented 

data model. This model incorporates new types of data 

(sensor attributes and derived attributes), time-

constrained data, time-constrained methods (periodic 

methods, sporadic methods and aperiodic methods), 

and a concurrency control protocol (local controller). 

The framework we have designed and implemented to 

support this model helps designers to produce real-time 

applications, with temporal data and transactions 

semantics. It is composed by an UML profile for real-

time databases, named UML-RTDB, a translator to a 

object-relational model, and an UML CASE Tool. 

UML-RTDB, based on UML2.2.1 Profiles package, 

contains a set of stereotypes expressing sensor 

attributes, derived attributes, periodic methods, 

sporadic methods and real-time class. So, it allows to 

design class diagrams for real-time databases. The 

translator is based on a set of mapping rules from a 

real-time class diagram to an object-relational model, 

which allows to use simple or complex structures. 

Finally, the UML CASE Tool is a support for the 

development of real-time databases. It is built as an 

extension of Fujaba, an open source standard UML 

CASE Tool. 

 

In our future work, we will extend UML-RTDB with 

other stereotypes in order to express time-constrained 

associations and time-constrained multiplicities. 

Among them, we will study how to model dynamic 

aspects of real-time databases in the behavioural model 

(Activity diagram and State diagram). Moreover, we 

will add tools to Fujaba in order to support these 

dynamic and behavioural aspects.  We note that in 

our laboratories (LITIS and MIRACL); there is a 

PhD which has just begun treating real-time object-

oriented data model implementation, Concurrency 

Control Techniques and corresponding performance 

study. 
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