Raluca M Balan 
email: rbalan@uottawa.ca
  
Ciprian A Tudor 
email: tudor@math.univ-lille1.fr
  
  
  
  
The Stochastic Wave Equation with Fractional Noise: a random field approach

Keywords: MSC 2000 subject classification: Primary 60H15; secondary 60H05 stochastic wave equation, random field solution, spatially homogenous Gaussian noise, fractional Brownian motion

We consider the linear stochastic wave equation with spatially homogenous Gaussian noise, which is fractional in time with index H > 1/2. We show that the necessary and sufficient condition for the existence of the solution is a relaxation of the condition obtained in [10], when the noise is white in time. Under this condition, we show that the solution is L 2 (Ω)-continuous. Similar results are obtained for the heat equation. Unlike the white noise case, the necessary and sufficient condition for the existence of the solution in the case of the heat equation is different (and more general) than the one obtained for the wave equation.

Introduction

The random field approach to s.p.d.e.'s initiated in [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF], has become increasingly popular in the past few decades, as an alternative to the semigroup approach developed in [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF], or the analytic approach of [START_REF] Krylov | Stochastic partial differential equations: six perspectives[END_REF].

Generally speaking, a random field solution of the (non-linear) equation:

Lu(t, x) = α(u(t, x)) Ẇ (t, x) + β(u(t, x)), t > 0, x ∈ R d (1) 
or of Poisson type. Historically, the two approaches have been initiated at about the same time (see [START_REF] Mueller | Long time existence for the wave equation with a noise term[END_REF], [START_REF] Dalang | The stochastic wave equation in two spatial dimensions[END_REF], [START_REF] Millet | A stochastic wave equation in two space dimensions: Smoothness of the law[END_REF] for the wave equation with Gaussian noise in dimension d = 2, and [START_REF] Dalang | On Markov properties of Lévy waves in two dimensions[END_REF], [START_REF] Bié | Etude d'une EDPS conduite par un bruit poissonnien. (Study of a SPDE driven by a Poisson noise)[END_REF] for the Poisson case).

After the ingenious extension of the martingale measure stochastic integral due to [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF], it became clear that the random field approach can be pursued for the study of general s.p.d.e.'s with spatially homogenous Gaussian noise. Since this extension allows for integrands which are non-negative measures (in space), the theory developed in [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF] covers instantly the case of the (non-linear) wave equation in dimensions d ∈ {1, 2, 3}, and the case of the heat equation in any dimensions d. In the non-linear case, the existence of the solution is obtained by a Picard's iteration scheme, under the usual Lipschitz assumptions on α, β, and the following condition, linking the operator L and the spatial covariance function f :

R d t 0 |FG(u, •)(ξ)| 2 duµ(dξ) < ∞. (2) 
(Here µ is a non-negative tempered measure, whose Fourier transform in f .) Moreover, [START_REF] Alos | Stochastic integration with respect to the fractional Brownian motion[END_REF] is the necessary any sufficient condition for the stochastic integral t 0 R d G(t-s, x-y)W (ds, dy) to be well-defined, and hence the necessary any sufficient condition for the existence of the solution in the linear case, when α ≡ 1 and β ≡ 0. Since for both heat and wave operators,

c (1) t 1 1 + |ξ| 2 ≤ t 0 |FG(u, •)(ξ)| 2 du ≤ c (2) t 1 1 + |ξ| 2 , for all ξ ∈ R d , (3) 2 
for some constants c

(1)

t , c (2) t 
> 0, condition (2) is equivalent to:

R d 1 1 + |ξ| 2 µ(dξ) < ∞.
Subsequently, using the Malliavin calculus techniques, it was shown that the random variable u(t, x) has an absolutely continuous law with respect to the Lebesgue measure on R, and this density is infinitely differentiable. These results are valid for the heat equation in any dimension d, and for the wave equation in dimension d ∈ {1, 2, 3} (see [START_REF] Quer-Sardanyons | Absolute continuity of the law of the solution of the 3-dimensional stochastic wave equation[END_REF], [START_REF] Quer-Sardanyons | A stochastic wave equation in dimension 3: Smoothness of the law[END_REF], [START_REF] Sanz-Solé | Malliavin Calculus with Applications to Stochastic Partial Differential Equations[END_REF]), under the additional assumption (which was removed in [START_REF] Nualart | Existence and smoothness of the density for spatially homogenous SPDEs[END_REF]):

R d 1 1 + |ξ| 2 α µ(dξ) < ∞, for some α ∈ (0, 1). ( 4 
)
Under [START_REF] Balan | Stochastic heat equation with multiplicative fractional-colored noise[END_REF], one also obtains the Hölder continuity of the solution for the heat equation in any dimension d and the wave equation in dimensions d ∈ {1, 2, 3}. This is done using Kolmogorov's criterion and some estimates for the p-th moments of the increments of the solution (see [START_REF] Sanz-Solé | Path properties of a class of Gaussian processes with applications to spde's[END_REF], [START_REF] Sanz-Solé | Hölder continuity for the stochastic heat equation with spatially correlated noise[END_REF], [START_REF] Dalang | Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension 3[END_REF]).

The case of the wave equation in dimension d ≥ 4 was solved in the recent article [START_REF] Conus | The non-linear stochastic wave equation in high dimensions[END_REF], using an extension of the integral developed in [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF]. The existence of a random-field solution is obtained under condition [START_REF] Alos | Stochastic integration with respect to the fractional Brownian motion[END_REF]. In the the affine case (i.e. α(u) = au + b, a, b ∈ R and β ≡ 0), and under the additional assumption (4), the solution is shown to be Hölder continuous.

In parallel with these developments, a new process began to be used intensively in stochastic analysis: the fractional Brownian motion (fBm) with index H ∈ (0, 1), a zero-mean Gaussian process (B t ) t≥0 with covariance: R H (t, s) = 1 2 (t 2H + s 2H -|t -s| 2H ).

The case H = 1/2 corresponds to the classical Brownian motion, while the cases H > 1/2 and H < 1/2 have many contrasting properties. We refer the reader to the survey article [START_REF] Nualart | Stochastic integration with respect to fractional Brownian motion and applications[END_REF] and the monographs [START_REF] Biagini | Stochastic Calculus for the Fractional Brownian Motion and Applications[END_REF] and [START_REF] Mishura | Stochastic Calculus for Fractional Brownian Motion and Related Processes[END_REF] for more details. Most importantly, in the case

H > 1/2, R H (t, s) = α H t 0 s 0 |u -v| 2H-2 dudv, (5) 
where α H = H(2H -1). This shows that (B t ) t≥0 has a homogenous covariance structure, similar to the spatial structure of the noise Ẇ considered above. Returning to our discussion about s.p.d.e.'s with a Gaussian noise, it seems natural to consider equation [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF], when the covariance of the noise Ẇ is given formally by:

E[ Ẇ (t, x) Ẇ (s, y)] = α H |t -s| 2H-2 f (x -y). (6) 
However, this simple modification changes the problem drastically, since unless H = 1/2, the fBm is not a semimartingale, and therefore the previous method, based on martingale measure stochastic integrals, cannot be applied.

Several methods have been proposed for developing a stochastic calculus with respect to fBm: (i) the Malliavin calculus (see [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF], [START_REF] Alòs | Stochastic calculus with respect to Gaussian processes[END_REF], [START_REF] Alos | Stochastic integration with respect to the fractional Brownian motion[END_REF], [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]), which exploits the fact that the fBm is Gaussian; (ii) the method of generalized Lebesgue-Stieltjes integration (see [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus I[END_REF]), which uses the Hölder continuity of the fBm trajectories; (iii) the rough path analysis (see [START_REF] Lyons | Differential equations driven by rough signals[END_REF], [START_REF] Lyons | System Control and Rough Paths[END_REF]), which uses the fact that the paths of the fBm have bounded p-variation, for p > 1/H; (iv) the stochastic calculus via regularization based also in general on the properties of the paths of the fBm (see [START_REF] Gradinaru | Generalized covariations, local time and Stratonovich It's formula for fractional Brownian motion with Hurst index H ≥ 1 4[END_REF]).

These methods have been applied to s.p.d.e.'s (see [START_REF] Maslovski | Evolution equations driven by a fractional Brownian motion[END_REF], [START_REF] Nualart | Variational solutions for partial differential equations driven by fractional a noise[END_REF], [START_REF] Sanz-Solé | Mild solutions for a class of fractional SPDE's and their sample paths[END_REF], [START_REF] Gubinelli | Young integrals and SPDEs[END_REF]), [START_REF] Quer-Sardanyons | The 1-d stochastic wave equation driven by a fractional Brownian sheet[END_REF]), but not using the random field approach A notable exception is the heat equation. The linear equation with noise [START_REF] Biagini | Stochastic Calculus for the Fractional Brownian Motion and Applications[END_REF] and H > 1/2 was examined in [START_REF] Balan | The stochastic heat equation with fractional-colored noise: existence of the solution[END_REF], for particular functions f (e.g. f (x) = |x| -(d-α) with α ∈ (0, d)). We also mention the works [START_REF] Nualart | The fractional stochastic heat equation on the circle: Time regularity and potential theory[END_REF] and [START_REF] Tindel | Stochastic evolution equations with fractional Brownian motion[END_REF] for the case of the space variable belonging to the unit circle. The quasi-linear equation (i.e. α ≡ 0) was treated in [START_REF] Øksendal | Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations[END_REF], and the equation with multiplicative noise (i.e. α(u) = u, β ≡ 0) was studied in [START_REF] Hu | Heat equations with fractional white noise potentials[END_REF]; in these two references, the covariance structure of the noise is a particular case of ( 6

): for H, H i > 1/2 E[ Ẇ (t, x) Ẇ (s, y)] = α H |t -s| 2H-2 d i=1 (α Hi |x i -y i | 2Hi-2 ).
(This type of noise is called fractional Brownian field.) The heat equation with multiplicative noise (6) was studied in [START_REF] Balan | Stochastic heat equation with multiplicative fractional-colored noise[END_REF] (for particular functions f and H > 1/2) and [START_REF] Hu | Stochastic heat equation driven by fractional noise and local time[END_REF] (in the case H ∈ (0, 1) and f = δ 0 ). In the case when the spatial dimension is d = 1, the non-linear equation has been treated in [START_REF] Quer-Sardanyons | The 1-d stochastic wave equation driven by a fractional Brownian sheet[END_REF] using a two-parameter Young integral based on the Hölder continuity of fBm.

To the best of our knowledge, there is no study of the wave equation driven by a noise Ẇ , whose covariance is given by [START_REF] Biagini | Stochastic Calculus for the Fractional Brownian Motion and Applications[END_REF]. The goal of the present article is to start filling this gap, by identifying the necessary and sufficient conditions for the existence of a random field solution of the linear wave equation with noise [START_REF] Biagini | Stochastic Calculus for the Fractional Brownian Motion and Applications[END_REF] and H > 1/2. We also treat the heat equation.

When H > 1/2, it turns out that under relatively mild assumptions on the fundamental solution G of the operator L, the necessary and sufficient condition for the existence of the random-field solution of the linear equation Lu = Ẇ is:

R d t 0 t 0 F G(u, •)(ξ)F G(v, •)(ξ)|u -v| 2H-2 dudvµ(dξ) < ∞, (7) 
which is more general than [START_REF] Alos | Stochastic integration with respect to the fractional Brownian motion[END_REF]. Note that the integrand of the µ(dξ) integral in [START_REF] Carmona | Random nonlinear wave equations: Smoothness of the solutions[END_REF] is the H(0, t)-norm of the function u → F G(u, •)(ξ). Quite surprisingly, and in contrast with (3), the estimates that we obtain for this norm are different in the case of the wave and heat operators: in the case of the wave equation, ( 7) is equivalent to

R d 1 1 + |ξ| 2 H+1/2 µ(dξ) < ∞, (8) 
whereas in the case of the heat equation, ( 7) is equivalent to:

R d 1 1 + |ξ| 2 2H µ(dξ) < ∞, (9) 
The amazing fact is that for the wave operator, these estimates can be deduced using only the estimates of the L 2 (0, t)-norm (given by (3)), the trick being to pass to the spectral representation of the H(0, t)-norm of u → F G(u, •)(ξ). In the case of the heat operator, there is no need for this machinery, since u → F G(u, •)(ξ) is a non-negative function, and its H(0, t)-norm can be bounded directly by the L 1/H (0, t)-norm, which is easily computable.

This article is organized as follows. Section 2 contains some preliminaries, and a basic result which ensures that under [START_REF] Carmona | Random nonlinear wave equations: Smoothness of the solutions[END_REF], the stochastic integral of the fundamental solution G of the wave operator is well defined. In Section 3, we show that the solution of the wave equation exists if and only if (8) holds (Theorem 3.1). Moreover, the solution is L 2 (Ω)-continuous. Similar results are obtained in Section 4 for the heat equation, using [START_REF] Dalang | On Markov properties of Lévy waves in two dimensions[END_REF]. Appendix A contains some useful identities, which are needed in the sequel. Appendix B gives the spectral representation of the H(0, t)-norm of the function sin.

The Basics

We denote by C ∞ 0 (R d+1 ) the space of infinitely differentiable functions on R d+1 with compact support, and S(R d ) the Schwartz space of rapidly decreasing C ∞ functions in R d . For ϕ ∈ L 1 (R d ), we let F ϕ be the Fourier transform of ϕ:

F ϕ(ξ) = R d e -iξ•x ϕ(x)dx.
We begin by introducing the framework of [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF]. Let µ be a non-negative tempered measure on R d , i.e. a non-negative measure which satisfies:

R d 1 1 + |ξ| 2 l µ(dξ) < ∞, for some l > 0.
Since the integrand is non-increasing in l, we may assume that l ≥ 1 is an integer. Note that 1 + |ξ| 2 behaves as a constant around 0, and as |ξ| 2 at ∞, and hence [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF] is equivalent to:

|ξ|≤1 µ(dξ) < ∞, and |ξ|≥1 1 |ξ| 2l < ∞, for some integer l ≥ 1. (10) Let f : R d → R + be the Fourier transform of µ in S ′ (R d ), i.e. R d f (x)ϕ(x)dx = R d F ϕ(ξ)µ(dξ), ∀ϕ ∈ S(R d ).
Simple properties of the Fourier transform show that for any ϕ, ψ ∈ S(R d ),

R d R d ϕ(x)f (x -y)ψ(y)dxdy = R d F ϕ(ξ)F ψ(ξ)µ(dξ).
An approximation argument shows that the previous equality also holds for indicator functions ϕ

= 1 A , ψ = 1 B , with A, B ∈ B b (R d ), where B b (R d ) is the class of bounded Borel sets of R d : A B f (x -y)dxdy = R d F 1 A (ξ)F 1 B (ξ)µ(dξ). ( 11 
)
As in [START_REF] Balan | The stochastic heat equation with fractional-colored noise: existence of the solution[END_REF], [START_REF] Balan | Stochastic heat equation with multiplicative fractional-colored noise[END_REF], on a complete probability space (Ω, F , P ), we consider a zeromean Gaussian process W = {W t (A); t ≥ 0, A ∈ B b (R d )} with covariance:

E(W t (A)W s (B)) = R H (t, s) A B f (x -y)dxdy =: 1 [0,t]×A , 1 [0,s]×B HP .
Let E be the set of linear combinations of elementary functions 1 [0,t]×A , t ≥ 0, A ∈ B b (R d ), and HP be the Hilbert space defined as the closure of E with respect to the inner product •, • HP . (Alternatively, HP can be defined as the completion of C ∞ 0 (R d+1 ), with respect to the inner product •, • HP .) The map 1 [0,t]×A → W t (A) is an isometry between E and the Gaussian space H W of W , which can be extended to HP. We denote this extension by:

ϕ → W (ϕ) = ∞ 0 R d ϕ(t, x)W (dt, dx).
In the present work, we assume that H > 1/2. Hence, (5) holds. From (11) and [START_REF] Billingsley | Probability and Measure[END_REF], it follows that for any ϕ, ψ ∈ E,

ϕ, ψ HP = α H ∞ 0 ∞ 0 R d R d ϕ(u, x)ψ(v, y)f (x -y)|u -v| 2H-2 dxdydudv = α H ∞ 0 ∞ 0 R d F ϕ(u, •)(ξ)F ψ(v, •)(ξ)|u -v| 2H-2 µ(dξ)dudv.
Moreover, we can interchange the order of the integrals dudv and µ(dξ), since for indicator functions ϕ and ψ, the integrand is a product of a function of (u, v) and a function of ξ. Hence, for ϕ, ψ ∈ E, we have:

ϕ, ψ HP = α H R d ∞ 0 ∞ 0 F ϕ(u, •)(ξ)F ψ(v, •)(ξ)|u-v| 2H-2 dudvµ(dξ). (12)
The space HP may contain distributions, but contains the space |HP| of measurable functions ϕ :

R + × R d → R such that ϕ 2 |HP| := α H ∞ 0 ∞ 0 R d R d |ϕ(u, x)||ϕ(v, y)|f (x-y)|u-v| 2H-2 dxdydudv < ∞.
We recall now several facts related to the fBm (see e.g. [START_REF] Nualart | Stochastic integration with respect to fractional Brownian motion and applications[END_REF]).

Let B = (B t ) t≥0 be a fBm of index H > 1/2. For a fixed T > 0, let H(0, T ) be the Hilbert space defined as the closure of E(0, T ) (the set of step functions on [0, T ]), with respect to the inner product:

1 [0,t] , 1 [0,s] H(0,T ) = R H (t, s). One can prove that R H (t, s) = t∧s 0 K H (t, r)K H (s, r)dr, where K H (t, r) = c * H t r (u -r) H-3/2 u H-1/2 du and c * H = αH β(H-1/2,2-2H) 1/2 .
(Here β denotes the Beta function.) Therefore, the map K * H defined by:

(K * H 1 [0,t] )(s) = K H (t, s)1 [0,t] (s)
is an isometry between E(0, T ) and L 2 (0, T ). This isometry can be extended to H(0, T ), and is denoted by φ → B(φ) = T 0 φ(s)dB s . The transfer operator K * H can be expressed in terms of fractional integrals, as follows: for any φ ∈ E(0, T ),

(K * H φ)(s) = c * H Γ(H -1/2)s 1/2-H I H-1/2 T - (u H-1/2 φ(u))(s),
where

I α T -f (s) = 1 Γ(α) T s (u -s) α-1 f (u)du
denotes the fractional integral of f ∈ L 1 (0, T ), of order α ∈ (0, 1).

K * H can be extended to complex-valued functions, as follows. Let E C (0, T ) be the set of all complex linear combinations of functions 1 [0,t] , t ∈ [0, T ], and H C (0, T ) be the closure of E C (0, T ) with respect to the inner product: [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF] where 12) and ( 13), we obtain that for any ϕ ∈ E T ,

ϕ, ψ H C (0,T ) = α H T 0 T 0 ϕ(u)ψ(v)|u -v| 2H-2 dudv. The operator K * H is an isometry which maps H C (0, T ) onto L 2 C (0, T ) (the space of functions ϕ : [0, T ] → C, with T 0 |ϕ(t)| 2 dt < ∞): for any φ ∈ H C (0, T ), α H T 0 T 0 φ(u)φ(v)|u-v| 2H-2 dudv = d H T 0 |I H-1/2 T - (u H-1/2 φ(u))(s)| 2 λ H (ds),
d H = (c * H ) 2 Γ(H -1/2) 2 and λ H (ds) = s 1-2H ds. Let E T be the class of elementary functions on [0, T ] × R d . Note that for any ϕ ∈ E T , the function t → F ϕ(t, •)(ξ) belongs to H C (0, T ), for all ξ ∈ R d . Using (
ϕ 2 HP = d H R d T 0 |I H-1/2 T - (u H-1/2 F ϕ(u, •)(ξ))(s)| 2 λ H (ds)µ(dξ) =: ϕ 2 0 . (14) 
We are now ready to state our result. Note that, although the conclusion of this result resembles that of Theorem 3 of [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF] (for deterministic integrands), the hypothesis are different, since the proof uses techniques specific to the fBm.

Theorem 2.1 Let [0, T ] ∋ t → ϕ(t, •) ∈ S ′ (R d ) be a deterministic function such that F ϕ(t, •) is a function for all t ∈ [0, T ]. Suppose that: (i) the function t → F ϕ(t, •)(ξ) belongs to H C (0, T ) for all ξ ∈ R d ; (ii) the function (t, ξ) → F ϕ(t, •)(ξ) is measurable on (0, T ) × R d ; (iii) T s u H-1/2 (u -s) H-3/2 |Fϕ(u, •)(ξ)|du < ∞ for all (s, ξ) ∈ (0, T ) × R d (or F ϕ(s, •)(ξ) ≥ 0 for all (s, ξ) ∈ (0, T ) × R d ).
If

I T := α H R d T 0 T 0 F ϕ(u, •)(ξ)F ϕ(v, •)(ξ)|u -v| 2H-2 dudvµ(dξ) < ∞, ( 15 
)
then ϕ ∈ HP and ϕ 

→ F G(t, •)(ξ) belongs to L 2 C (0, T ), which is included in H C (0, T ).
Proof: The argument is a modified version of the proof of Theorem 3.8 of [START_REF] Balan | The stochastic heat equation with fractional-colored noise: existence of the solution[END_REF]. For any ξ ∈ R d fixed, we apply [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF] to the function φ ξ (t) = F ϕ(t, •)(ξ). We get:

α H T 0 T 0 F ϕ(u, •)(ξ)F ϕ(v, •)(ξ)|u -v| 2H-2 dudv = ( 16 
)
d H T 0 |I H-1/2 T - (u H-1/2 F ϕ(u, •)(ξ))(s)| 2 λ H (ds).
It will be shown later that:

(s, ξ) → a(s, ξ) := I H-1/2 T - (u H-1/2 F ϕ(u, •)(ξ))(s) is measurable on (0, T ) × R d . (17) 
Hence, we can integrate with respect to µ(dξ) in [START_REF] Gradinaru | Generalized covariations, local time and Stratonovich It's formula for fractional Brownian motion with Hurst index H ≥ 1 4[END_REF]. Using [START_REF] Dzhaparidze | A series expansion of fractional Brownian motion[END_REF], we obtain:

I T = d H R d T 0 |I H-1/2 T - (u H-1/2 F ϕ(u, •)(ξ))(s)| 2 λ H (ds)µ(dξ) =: ϕ 2 0 < ∞. (18) 
By the definition of HP and ( 14), it suffices to show that for any ε > 0, there exists a function l = l ε ∈ E T such that:

ϕ -l 0 < ε. ( 19 
)
Let ε > 0 be arbitrary. By [START_REF] Gubinelli | Young integrals and SPDEs[END_REF] and [START_REF] Hu | Heat equations with fractional white noise potentials[END_REF], it follows that a ∈ L 2 ((0, T ) × R d , λ H (ds) × µ(dξ)). Hence, there exists a simple function h(s, ξ) such that

R d T 0 |a(s, ξ) -h(s, ξ)| 2 λ H (ds)µ(dξ) < ε. ( 20 
)
Without loss of generality, we assume that h(s, ξ

) = 1 (c,d] (s)1 A (ξ), with c, d ∈ [0, T ], c < d and A ∈ B b (R d ).
By relation (8.1) of [START_REF] Pipiras | Are classes of deterimistic integrands for the fractional Brownian motion on a finite interval complete?[END_REF], we approximate the function 1

(c,d] (s) in L 2 ((0, T ), λ H (ds)) by I H-1/2 T - (u H-1/2 l 0 (u))(s) with l 0 ∈ E(0, T ), i.e. T 0 |1 (c,d] (s) -I H-1/2 T - (u H-1/2 l 0 (u))(s)| 2 λ H (ds) < ε. (21) 
By Lemma 3.7 of [START_REF] Balan | The stochastic heat equation with fractional-colored noise: existence of the solution[END_REF], we approximate the function 1

A (ξ) in L 2 (R d , µ(dξ)) by F l 1 (ξ) with l 1 ∈ E(R d ), i.e. R d |1 A (ξ) -Fl 1 (ξ)| 2 µ(dξ) < ε. ( 22 
)
We define l(u, x)

= l 0 (u)l 1 (x). Clearly l ∈ E T and F l(u, •)(ξ) = l 0 (u)F l 1 (ξ). Let b(s, ξ) := I H-1/2 T - (u H-1/2 F l(u, •)(ξ))(s) = I H-1/2 T - (u H-1/2 l 0 (u))(s) • Fl 1 (ξ).
Using ( 21) and ( 22), we obtain that:

R d T 0 |h(s, ξ) -b(s, ξ)| 2 λ H (ds)µ(dξ) ≤ 2 R d T 0 |1 (c,d] (s) -I H-1/2 T - (u H-1/2 l 0 (u))(s)| 2 1 A (ξ)λ H (ds)µ(dξ)+ R d T 0 |I H-1/2 T - (u H-1/2 l 0 (u))(s)| 2 |1 A (ξ) -Fl 1 (ξ)| 2 λ H (ds)µ(dξ) ≤ 2{εµ(A) + ε l 0 2 H(0,T ) /d H } := C 1 ε. (23) 
From ( 20) and [START_REF] Lyons | System Control and Rough Paths[END_REF], it follows that

ϕ -l 2 0 = d H R d T 0 |a(s, ξ) -b(s, ξ)| 2 λ H (ds)µ(dξ) < 2d H (ε + C 1 ε) := C 2 ε.
This concludes the proof of [START_REF] Hu | Stochastic heat equation driven by fractional noise and local time[END_REF]. We now return to the proof of [START_REF] Gubinelli | Young integrals and SPDEs[END_REF], which uses assumptions (ii) and (iii). If

F (u, •)(ξ) ≥ 0, then (u, s, ξ) → φ(u, s, ξ) = 1 {s≤u} u H-1/2 (u-s) H-3/2 F ϕ(u, •)(ξ)
is measurable and non-negative, and a(s, ξ) = T 0 φ(u, s, ξ)du is measurable, by Fubini's theorem.

Suppose next that

T s u H-1/2 (u -s) H-3/2 |Fϕ(u, •)(ξ)|du < ∞. If l(s, ξ) = 1 (c,d] (s)1 A (ξ) is an elementary function with c, d ∈ [0, T ], A ∈ B b (R d ), then a l (s, ξ) = I H-1/2 T - (u H-1/2 l(u, ξ))(s) = 1 A (ξ) T s u H-1/2 1 (c,d] (u)(u -s) H-3/2 du is clearly measurable. In general, since (u, ξ) → F ϕ(u, •)(ξ) is measurable, there exists a sequence (l n ) n of simple functions such that l n (u, ξ) → F ϕ(u, •)(ξ) for all (u, ξ) and |l n (u, ξ)| ≤ |Fϕ(u, •)(ξ)
| for all (u, ξ), n (see e.g. Theorem 13.5 of [START_REF] Billingsley | Probability and Measure[END_REF]). By the dominated convergence theorem, for every (s, ξ)

|a ln (s, ξ) -a(s, ξ)| ≤ T s u H-1/2 (u -s) H-3/2 |l n (s, ξ) -Fϕ(u, •)(ξ)|du → 0.
Since a ln (s, ξ) is measurable for every n, it follows that a(s, ξ) is measurable.

The wave equation

We consider the linear wave equation:

∂ 2 u ∂t 2 (t, x) = ∆u(t, x) + Ẇ (t, x), t > 0, x ∈ R d (24) u(0, x) = 0, x ∈ R d ∂u ∂t (0, x) = 0, x ∈ R d .
Let G 1 be the fundamental solution of u tt -∆u = 0. It is known that G 1 (t, •) is a distribution in S ′ (R d ) with rapid decrease, and

F G 1 (t, •)(ξ) = sin(t|ξ|) |ξ| , (25) 
for any ξ ∈ R d , t > 0, d ≥ 1 (see e.g. [START_REF] Treves | Basic Linear Partial Differential Equations[END_REF]). In particular,

G 1 (t, x) = 1 2 1 {|x|<t} , if d = 1 G 1 (t, x) = 1 2π 1 t 2 -|x| 2 1 {|x|<t} , if d = 2 G 1 (t, x) = c d 1 t σ t , if d = 3,
where σ t denotes the surface measure on the 3-dimensional sphere of radius t.

The solution of ( 24) is a square-integrable process u = {u(t, x); t ≥ 0, x ∈ R d } defined by:

u(t, x) = t 0 R d G 1 (t -s, x -y)W (ds, dy).
By definition, u(t, x) exists if and only if the stochastic integral above is welldefined, i.e.

g tx := G 1 (t -•, x -•) ∈ HP. In this case, E|u(t, x)| 2 = g tx 2 HP .
The following theorem is the main result of this article. 24) exists if and only if the measure µ satisfies [START_REF] Conus | The non-linear stochastic wave equation in high dimensions[END_REF]. In this case, for all p ≥ 2 and T > 0

Theorem 3.1 The solution u = {u(t, x); t ≥ 0, x ∈ R d } of (
sup t∈[0,T ] sup x∈R d E|u(t, x)| p < ∞, ( 26 
)
and the map

(t, x) → u(t, x) is continuous from R + × R d into L 2 (Ω). Example 3.2 Let f (x) = γ α,d |x| -(d-α)
be the Riesz kernel of order α ∈ (0, d).

Then µ(dξ) = |ξ| -α dξ and ( 8) is equivalent to α > d -2H -1.

Example 3.3 Let f (x) = γ α ∞ 0 w (α-d)/2
-1 e -w e -|x| 2 /(4w) dw be the Bessel kernel of order α > 0. Then µ(dξ) = (1 + |ξ| 2 ) -α/2 and ( 8) is equivalent to

α > d -2H -1. Example 3.4 Let f (x) = d i=1 (α Hi |x i | 2Hi-2 ) be the covariance function of a fractional Brownian field with H i > 1/2 for all i = 1, . . . , d. Then µ(dξ) = d i=1 (c Hi |ξ i | -(2Hi-1)
) and ( 8) is equivalent to

d i=1 (2H i -1) > d -2H -1.
(This can be seen using the change of variables to the polar coordinates.)

Remark 3.5 Condition (8) is equivalent to |ξ|≤1 µ(dξ) < ∞ and |ξ|≥1 1 |ξ| 2H+1 µ(dξ) < ∞.
Proof of Theorem 3.1: Note that g tx = G 1 (t -•, x -•) satisfies conditions (i)-(iii) of Theorem 2.1. Hence, g tx ∈ HP (i.e. the solution u of (24) exists) if and only if I t < ∞ for all t > 0, where

I t := α H R d t 0 t 0 F g tx (u, •)(ξ)F g tx (v, •)(ξ)|u -v| 2H-2 dudvµ(dξ),
and

E|u(t, x)| 2 = g tx 2 HP = I t . Since F g tx (u, •)(ξ) = e -iξ•x F G 1 (t -u, •)(ξ), I t = α H R d t 0 t 0 F G 1 (u, •)(ξ)F G 1 (v, •)(ξ)|u -v| 2H-2 dudvµ(dξ).
Using [START_REF] Millet | A stochastic wave equation in two space dimensions: Smoothness of the law[END_REF], we obtain:

I t = α H R d µ(dξ) |ξ| 2 t 0 t 0 sin(u|ξ|) sin(v|ξ|)|u -v| 2H-2 dudv.
We split the integral µ(dξ) into two parts, which correspond to the regions {|ξ| ≤ 1} and {|ξ| ≥ 1}. We denote the respective integrals by I (1) t and I

(2) t . Since the integrand is non-negative I t < ∞ if and only if

I (1) t < ∞ and I (2) t < ∞.
The fact that condition (8) is sufficient for I t < ∞ follows by Proposition 3.7 below. The necessity follows by Proposition 3.8 (using Remark 3.5).

Relation [START_REF] Mishura | Stochastic Calculus for Fractional Brownian Motion and Related Processes[END_REF] with p = 2 follows from the estimates obtained for I t = E|u(t, x)| 2 , using Proposition 3.7. For arbitrary p ≥ 2, we use the fact that

E|u(t, x)| p ≤ C p (E|u(t, x)| 2 ) p/2 , since u(t, x) is a Gaussian random variable. The L 2 (Ω)-continuity is proved in Proposition 3.10.
We begin with an auxiliary result. To simplify the notation, we introduce the following functions: for λ > 0, τ > 0, let

f t (λ, τ ) = sin τ λt -τ sin λt, g t (λ, τ ) = cos τ λt -cos λt. ( 27 
)
Lemma 3.6 For any λ > 0 and t > 0, c

t λ 3 1 + λ 2 ≤ R 1 (τ 2 -1) 2 [f 2 t (λ, τ ) + g 2 t (λ, τ )]dτ ≤ c (2) t λ 3 1 + λ 2 , (1) 
where c

(1) t = c 1 (t ∧ t 3 ) and c

(2) t = c 2 (t + t 3 ), for some positive constants c 1 , c 2 .

Proof: From the proof of Lemma B.1, we see that:

1 (τ 2 -1) 2 [f 2 t (λ, τ ) + g 2 t (λ, τ )] = |F 0,λt ϕ(τ )| 2 ,
where ϕ(x) = sin x. Using the Plancharel's identity [START_REF] Sanz-Solé | Path properties of a class of Gaussian processes with applications to spde's[END_REF], we obtain:

R 1 (τ 2 -1) 2 [f 2 t (λ, τ ) + g 2 t (λ, τ )]dτ = R |F 0,λt ϕ(τ )| 2 dτ = 2π λt 0 | sin x| 2 dx = 2πλ t 0 | sin λs| 2 ds = 2πλ 3 t 0 | sin λs| 2 λ 2 ds
The result follows using (3): (see e.g. Lemma 6.1.2) of [START_REF] Sanz-Solé | Malliavin Calculus with Applications to Stochastic Partial Differential Equations[END_REF])

c (1) t 1 1 + λ 2 ≤ t 0 | sin λs| 2 λ 2 ds ≤ c (2) t 1 1 + λ 2 . We denote by N t (ξ) the H(0, t)-norm of u → F G 1 (u, •)(ξ), i.e. N t (ξ) = α H |ξ| 2 t 0 t 0 sin(u|ξ|) sin(v|ξ|)|u -v| 2H-2 dudv. Proposition 3.7 For any t > 0, ξ ∈ R d N t (ξ) ≤ C H t 2H+2 1 1 + |ξ| 2 H+1/2 , if |ξ| ≤ 1 N t (ξ) ≤ c (3) t,H 1 1 + |ξ| 2 H+1/2 , if |ξ| ≥ 1 where C H = b 2 H 2 H+1/2 /3 and c (3) t,H = c H ( C 1-H + c (2) 
t )2 3H-1/2 . Here c

(2) t is the constant given by Lemma 3.6.

Proof: a) Suppose that |ξ| ≤ 1. We use the fact that ϕ 2

H(0,t) ≤ b 2 H ϕ 2 L 1/H (0,t) ≤ b 2 H t 2H-1 ϕ 2
L 2 (0,t) for any ϕ ∈ L 2 (0, t), and | sin x| ≤ x for any x > 0. Hence,

N t (ξ) ≤ b 2 H t 2H-1 1 |ξ| 2 t 0 sin 2 (u|ξ|)du ≤ b 2 H t 2H-1 t 0 u 2 du = b 2 H t 2H-1 t 3 3 ≤ 1 3 b 2 H t 2H+2 2 H+1/2 1 1 + |ξ| 2 H+1/2
, where for the last inequality we used the fact that

1 2 ≤ 1 1+|ξ| 2 if |ξ| ≤ 1. b) Suppose that |ξ| ≥ 1. Using the change of variable u ′ = u|ξ|, v ′ = v|ξ|, N t (ξ) = α H |ξ| 2H+2 t|ξ| 0 t|ξ| 0 sin(u ′ ) sin(v ′ )|u ′ -v ′ | 2H-2 dudv = 1 |ξ| 2H+2 sin(•) 2 H(0,t|ξ|) .
Using the expression of the H(0, t|ξ|)-norm of sin(•) given by Lemma B.1, we obtain:

N t (ξ) = c H |ξ| 2H+2 R |τ | -(2H-1) (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ. ( 28 
)
We split the integral into the regions |τ | ≤ 1/2 and |τ | ≥ 1/2, and we denote the two integrals by N

t (ξ) and N

t (ξ). Since |f t (λ, τ )| ≤ 1 + |τ | and |g t (λ, τ )| ≤ 2 for any λ > 0, τ > 0, we have:

N (1) t (ξ) ≤ c H 1 |ξ| 2H+2 |τ |≤1/2 |τ | -(2H-1) (1 -τ 2 ) 2 [(1 + |τ |) 2 + 4]dτ ≤ c H 1 |ξ| 2H+1 |τ |≤1/2 C|τ | -(2H-1) dτ = C c H 1 -H 1 2 2-2H 1 |ξ| 2H+1 .
We used the fact that |ξ| 2H+2 ≥ |ξ| 2H+1 if |ξ| ≥ 1, and

1 (1-τ 2 ) 2 [(1 + |τ |) 2 + 4] ≤ 1 (3/4) 2 [(3/2) 2 + 4] = C if |τ | ≤ 1/2.
Using the fact that |τ | -(2H-1) ≤ ( 1 2 ) -(2H-1) if |τ | ≥ 1 2 , Lemma 3.6, and the fact that |ξ| 2 /(1 + |ξ| 2 ) ≤ 1, we obtain: [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF] and m = 2l -2. For any t > 0,

N (2) t (ξ) ≤ c H 2 -(2H-1) 1 |ξ| 2H+2 |τ |≥1/2 1 (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ ≤ c H 2 -(2H-1) 1 |ξ| 2H+2 R 1 (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ ≤ c H 2 -(2H-1) c (2) t 1 |ξ| 2H+2 • |ξ| |ξ| 2 1 + |ξ| 2 ≤ c H 2 -(2H-1) c (2) t 1 |ξ| 2H+1 . Proposition 3.8 a) If I (1) t < ∞ for t = 1, then |ξ|≤1 µ(dξ) < ∞. b) Let l ≥ 1 be the integer from
|ξ|≥1 µ(dξ) |ξ| 2H+1 ≤ a H,t ( m i=0 b i t )I (2) t + b m+1 t |ξ|≥1 µ(dξ) |ξ| 2H+2+m , ( 29 
)
where a H,t = 2 2H /(c H c

(1) t ), b t = 2C/c

(1) t and c

(1) t

is the constant of Lemma 3.6. In particular, if

I (2) t < ∞ for some t > 0, then |ξ|≥1 |ξ| -(2H+1) µ(dξ) < ∞.
Proof: a) Using the fact that sin x/x ≥ sin 1 for all x ∈ [0, 1], we have:

I (1) 1 = |ξ|≤1 µ(dξ) |ξ| 2 1 0 1 0 sin(u|ξ|) sin(v|ξ|)|u -v| 2H-2 dudv ≥ sin 2 1 |ξ|≤1 µ(dξ) 1 0 1 0 uv|u -v| 2H-2 dudv.
b) According to [START_REF] Nualart | Stochastic integration with respect to fractional Brownian motion and applications[END_REF],

I (2) t = c H |ξ|≥1 µ(dξ) |ξ| 2H+2 R |τ | -(2H-1) (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ. ( 30 
)
For any k ∈ {-1, 0, . . . , m}, let

I(k) := |ξ|≥1 1 |ξ| 2H+2+k µ(dξ).
By [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF],

I(m) = |ξ|≥1 |ξ| -(2H+2+m) µ(dξ) ≤ |ξ|≥1 |ξ| -2l µ(dξ) < ∞.
We will prove that the integrals I(k) satisfy a certain recursive relation. By reverse induction, this will imply that all integrals I(k) with k ∈ {-1, 0, . . . , m} are finite. For this, for k ∈ {0, 1 . . . , m}, we let

A t (k) := |ξ|≥1 µ(dξ) |ξ| 2H+2+k R 1 (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ. ( 31 
)
We 

A ′ t (k) := |ξ|≥1 µ(dξ) |ξ| 2H+2+k |τ |≤2 1 (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ ≤ 2 2H-1 |ξ|≥1 µ(dξ) |ξ| 2H+2 |τ |≤2 |τ | -(2H-1) (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ ≤ 2 2H-1 1 c H I (2)
t , by [START_REF] Nualart | Existence and smoothness of the density for spatially homogenous SPDEs[END_REF].

For the region {|τ | ≥ 2}, we use the fact

|f t (λ, τ )| ≤ 1 + |τ | and |g t (λ, τ )| ≤ 2 for all λ > 0, τ > 0. Hence, A ′′ t (k) := |ξ|≥1 µ(dξ) |ξ| 2H+2+k |τ |≥2 1 (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ ≤ |ξ|≥1 µ(dξ) |ξ| 2H+2+k |τ |≥2 1 (τ 2 -1) 2 [(1 + |τ |) 2 + 4]dτ = CI(k).
Hence, for any k ∈ {0, 1, . . . , m}

A t (k) ≤ 2 2H-1 1 c H I (2) t + CI(k).
Using Lemma 3.6, and the fact that |ξ| 2 1+|ξ| 2 ≥ 1 2 if |ξ| ≥ 1, we obtain:

A t (k) ≥ c (1) t |ξ|≥1 µ(dξ) |ξ| 2H+2+k • |ξ| 3 1 + |ξ| 2 ≥ 1 2 c (1) t I(k -1),
for all k ∈ {0, 1, . . . , m}. From the last two relations, we conclude that:

1 2 c
(1)

t I(k -1) ≤ 2 2H-1 1 c H I (2) t + CI(k), ∀k ∈ {0, 1, . . . , m}, (32) 
or equivalently, I(k -1) ≤ a H,t I

(2) t + b t I(k), for all k ∈ {0, 1, . . . , m}. Relation (29) follows by recursion. Remark 3.9 In the previous argument, the recursion relation [START_REF] Nualart | The fractional stochastic heat equation on the circle: Time regularity and potential theory[END_REF] uses the fact that k is non-negative (see the estimate of A ′ t (k)). Therefore, the "last" index k for which this relation remains true (counting downwards from m) is k = 0, leading us to the conclusion that

|ξ|≥1 |ξ| -(2H+1) µ(dξ) < ∞, if I (2) t < ∞.
The next result shows that the map (t, x) → u(t, x) from R + ×R d into L 2 (Ω) is continuous. Proposition 3.10 Suppose that ( 8) holds, and let u = {u(t, x), t ≥ 0, x ∈ R d } be the solution of [START_REF] Maslovski | Evolution equations driven by a fractional Brownian motion[END_REF]. For any t ≥ 0,

E|u(t + h, x) -u(t, x)| 2 → 0 as |h| → 0, uniformly in x ∈ R d (33) 
and

E|u(t, x) -u(t, y)| 2 → 0 as |x -y| → 0. ( 34 
)
Proof: We use the same argument as in Lemma 19 of [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF] (see also the erratum to [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogenous s[END_REF]). We first show [START_REF] Øksendal | Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations[END_REF]. Suppose that h > 0. Splitting the interval [0, t + h] into the intervals [0, t] and [t, t + h], and using the inequality |a + b| 2 ≤ 2(a 2 + b 2 ), we obtain:

E|u(t + h, x) -u(t, x)| 2 ≤ 2{ (g t+h,x -g tx )1 [0,t] 2 HP + g t+h,x 1 [t,t+h] 2 HP } =: 2[E 1,t (h) + E 2 (h)]. Since F (g t+h,x -g tx )(u, •)(ξ) = e -iξ•x F G 1 (t + h -u, •)(ξ) -FG 1 (t -u, •)(ξ), E 1,t (h) = α H R d µ(dξ) t 0 t 0 dvdv|u -v| 2H-2 F (g t+h,x -g tx )(u, •)(ξ) F (g t+h,x -g tx )(v, •)(ξ) = α H R d µ(dξ) t 0 t 0 dudv|u -v| 2H-2 [F G 1 (u + h, •)(ξ) -FG 1 (u, •)(ξ)] F G 1 (v + h, •)(ξ) -FG 1 (v, •)(ξ) = R d µ(dξ) |ξ| 2 k t (h, |ξ|),
where

k t (h, |ξ|) = α H t 0 t 0 (sin((u + h)|ξ|) -sin(u|ξ|))(sin((v + h)|ξ|) -sin(v|ξ|)) |u -v| 2H-2 dudv = sin((• + h)|ξ|) -sin(• |ξ|) 2 H(0,t) .
By the Bounded Convergence Theorem, lim h↓0 k t (h, |ξ|) = 0, for any ξ ∈ R d . The fact that E 1,t (h) → 0 as h ↓ 0 will follow from the Dominated Convergence Theorem, once we prove that:

k t (h, |ξ|) ≤ k t (|ξ|), ∀h ∈ [0, 1], ∀ξ ∈ R d , and R d µ(dξ) |ξ| 2 k t (|ξ|) < ∞. (35) 
When |ξ| ≤ 1, using the same argument as in Proposition 3.7, we get:

k t (h, |ξ|) ≤ b 2 H t 2H-1 sin((• + h)|ξ|) -sin(• |ξ|) 2 L 2 (0,t) ≤ 2b 2 H t 2H-1 t 0 sin 2 ((u + h)|ξ|)du + t 0 sin 2 (u|ξ|)du ≤ 2b 2 H t 2H-1 |ξ| 2 t 0 2(u 2 + 1)du + t 0 u 2 du =: k t (|ξ|).
Suppose that |ξ| ≥ 1. We use the fact that:

k t (h, |ξ|) ≤ 2( sin((• + h)|ξ|) 2 H(0,t) + sin(• |ξ|) 2 H(0,t) ).
Using the change of variables u ′ = (u + h)|ξ|, v ′ = (v + h)|ξ|, and (40) (Appendix A) we obtain:

sin((• + h)|ξ|) 2 H(0,t) = α H t 0 t 0 sin((u + h)|ξ|) sin((v + h)|ξ|) |u -v| 2H-2 dudv = α H |ξ| 2H (t+h)|ξ| h|ξ| (t+h)|ξ| h|ξ| sin(u ′ ) sin(v ′ )|u ′ -v ′ | 2H-2 du ′ dv ′ = c H |ξ| 2H R |F h|ξ|,(t+h)|ξ| ϕ(τ )| 2 |τ | -(2H-1) dτ,
where ϕ(t) = sin t. Note that the square of the real part of F h|ξ|,(t+h)|ξ| ϕ(τ ) is: 

= 1 (τ 2 -1) 2 [(sin τ T -τ sin T ) 2 +(cos τ T -cos T ) 2 ].
From here, it follows that k t (h, |ξ|) is bounded by:

2c H |ξ| 2H R |τ | -(2H-1) (τ 2 -1) 2 [f 2 t+h (|ξ|, τ )+g 2 t+h (|ξ|, τ )+f 2 h (|ξ|, τ )+g 2 h (|ξ|, τ )+f 2 t (|ξ|, τ )+g 2 t (|ξ|, τ )]dτ,
where f t (λ, τ ) and g t (λ, τ ) are defined by [START_REF] Mueller | Long time existence for the wave equation with a noise term[END_REF]. The argument of Proposition 3.7 shows that for any t > 0 and |ξ| ≥ 1

R |τ | -(2H-1) (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ ≤ c (4) t,H |ξ| 3 1 + |ξ| 2 ≤ c (4) t,H |ξ|, where c (4) t,H = 2C 1-H 1 2 2-2H + 1 2 -(2H-1) c (2) t . Since c (4) t,H is non-decreasing in t and h ∈ [0, 1], k t (h, |ξ|) is bounded by 2c H |ξ| 2H-1 (c (4) t+h,H + c (4) h,H + c (4) t,H ) ≤ 2c H |ξ| 2H-1 (c (4) t+1,H + c (4) 1,H + c (4) t,H ) := k t (|ξ|).
This concludes the proof of [START_REF] Pipiras | Are classes of deterimistic integrands for the fractional Brownian motion on a finite interval complete?[END_REF].

A similar argument shows that E 2 (h) → 0 as h ↓ 0, since

E 2 (h) = α H R d t+h t t+h t F G 1 (t + h -u, •)(ξ)F G 1 (t + h -v, •)(ξ)|u -v| 2H-2 dudvµ(dξ) = α H R d µ(dξ) |ξ| 2 h 0 h 0 sin(u|ξ|) sin(v|ξ|)|u -v| 2H-2 dudv.
The case h < 0 is treated similarly. Using the same argument as above, it follows that for any h > 0,

E|u(t -h, x) -u(t, x)| 2 ≤ 2(E ′ 1,t (h) + E 2 (h))
, where

E ′ 1,t (h) = R d µ(dξ) |ξ| 2 k ′ t (h, |ξ|), and k ′ t (h, |ξ|) = sin(• |ξ|) -sin((• -h)|ξ|) 2 H(h,t) .
To prove [START_REF] Pipiras | Integrations questions related to fractional Brownian motion[END_REF], note that

E|u(t, x) -u(t, y)| 2 = g tx -g ty 2 HP = α H R d t 0 t 0 F (g tx -g ty )(u, •)(ξ)F (g tx -g ty )(v, •)(ξ)|u -v| 2H-2 dudvµ(dξ) = α H R d |e -iξ•x -e -iξ•y | 2 t 0 t 0 F G 1 (u, •)(ξ)F G 1 (v, •)(ξ)|u -v| 2H-2 dudvµ(dξ),
which converges to 0 as |x -y| → 0, by the Dominated Convergence Theorem.

Example 3.11 There exists an interesting connection between the solution of the wave equation with fractional noise in time and Riesz covariance in space and the odd and even parts of the fBm. Indeed, if f be the Riesz kernel of order α ∈ (0, d), then

I t = α H R d dξ|ξ| -α-2H-2 R |τ | -(2H-1) (τ 2 -1) 2 [f 2 t (|ξ|, τ ) + g 2 t (|ξ|, τ )]dτ = 2α H c d R |τ | -(2H-1) (τ 2 -1) 2 ∞ 0 (sin τ λt -τ sin λt) 2 λ 2 λ -θ dλ + ∞ 0 (cos τ λt -cos λt) 2 λ 2 λ -θ dλ ,
where θ = α + 1d + 2H > 0 under [START_REF] Conus | The non-linear stochastic wave equation in high dimensions[END_REF]. If θ < 1, the two integrals dλ can be expressed in terms of the covariance functions of the odd and even parts of the fBm (see [START_REF] Dzhaparidze | A series expansion of fractional Brownian motion[END_REF]).

The heat equation

In this section, we consider the the heat equation with additive noise:

∂u ∂t (t, x) = 1 2 ∆u(t, x) + Ẇ (t, x), t > 0, x ∈ R d (36) 
u(0, x) = 0, x ∈ R d .
Equation ( 36) was treated in [START_REF] Balan | The stochastic heat equation with fractional-colored noise: existence of the solution[END_REF], in the case of particular covariance kernels f . We give here an unitary approach which covers the case of any covariance kernel f , which satisfies [START_REF] Dalang | On Markov properties of Lévy waves in two dimensions[END_REF].

The case of the heat equation is actually much simpler than the case of the wave equation, since both the fundamental solution G and its Fourier transform are non-negative functions.

More precisely, let G 2 be the fundamental solution of u t -1 2 ∆u = 0. Then

G 2 (t, x) = 1 (2πt) d/2 exp - |x| 2 2t , t > 0, x ∈ R d and F G 2 (t, •)(ξ) = exp - t|ξ| 2 2 , t > 0, ξ ∈ R d . (37) 
We will prove the following result.

Theorem 4.1 The solution u = {u(t, x), t ≥ 0, x ∈ R d } of ( 36) exists if and only if the measure µ satisfies [START_REF] Dalang | On Markov properties of Lévy waves in two dimensions[END_REF]. In this case, [START_REF] Mishura | Stochastic Calculus for Fractional Brownian Motion and Related Processes[END_REF] holds for all p ≥ 2 and T > 0, and the solution is L 2 (Ω)-continuous. Note that this condition is weaker than the condition given in [START_REF] Øksendal | Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations[END_REF].

(ii) In Theorem 2.1 of the Erratum to [START_REF] Balan | The stochastic heat equation with fractional-colored noise: existence of the solution[END_REF] it has been proven that condition [START_REF] Dalang | On Markov properties of Lévy waves in two dimensions[END_REF] implies that g tx HP < ∞ for any t ≥ 0 and x ∈ R d .

Proof of Theorem 4.1: Note that g tx = G 2 (t -•, x -•) is non-negative. Hence, g tx ∈ HP if and only if g tx ∈ |HP|. This is equivalent to saying that J t := g tx 2 |HP| < ∞ for all t > 0. Note that

J t = α H t 0 t 0 R d R d g tx (u, y)g tx (v, z)f (y -z)|u -v| 2H-2 dydzdudv = α H t 0 t 0 R d F g tx (u, •)(ξ)F g tx (v, •)(ξ)|u -v| 2H-2 µ(dξ)dudv = α H t 0 t 0 R d F G 2 (t -u, •)(ξ)F G 2 (t -v, •)(ξ)|u -v| 2H-2 µ(dξ)dudv.
Using (37) and Fubini's theorem (whose application is justified since the integrand is non-negative), we obtain:

J t = α H R d t 0 t 0 exp - u|ξ| 2 2 exp - v|ξ| 2 2 |u -v| 2H-2 dudvµ(dξ).
The existence of the solution follows from Proposition 4.3 below, which also gives estimates for J t = E|u(t, x)| 2 (and hence for E|u(t, x)| p ). The L 2 (Ω)continuity is given by Proposition 4.4.

Let

A t (ξ) = α H t 0 t 0 exp - u|ξ| 2 2 exp - v|ξ| 2 2 |u -v| 2H-2 dudv
The next result is similar to Lemma 6.1.1) of [START_REF] Sanz-Solé | Malliavin Calculus with Applications to Stochastic Partial Differential Equations[END_REF].

Proposition 4.3 For any t > 0, ξ ∈ R d , 1 4 (t 2H ∧ 1) 1 1 + |ξ| 2 2H ≤ A t (ξ) ≤ C H (t 2H + 1) 1 1 + |ξ| 2 2H , where C H = b 2 H (4H) 2H . Proof: Suppose that |ξ| ≤ 1. Using the fact that ϕ 2 H(0,t) ≤ b 2 H t 2H-1 ϕ 2 L 2 (0,t)
for all ϕ ∈ L 2 (0, t), e -x ≤ 1 for any x > 0, and

1 2 ≤ 1 1+|ξ| 2 if |ξ| ≤ 1, A t (ξ) ≤ b 2 H t 2H-1 t 0 exp(-u|ξ| 2 )du ≤ b 2 H t 2H ≤ b 2 H 2 2H t 2H 1 1 + |ξ| 2 2H .
Suppose that |ξ| ≥ 1. Using the fact that ϕ 2 H(0,t) ≤ b 2 H ϕ 2 L 1/H (0,t) for any ϕ ∈ L 1/H (0, t), 1e -x ≤ 1 for all x > 0, and 1 |ξ| 2 ≤ 2 1+|ξ| 2 , we obtain:

A t (ξ) ≤ b 2 H t 0 exp - u|ξ| 2 2H du 2H = b 2 H 2H |ξ| 2 2H 1 -exp - t|ξ| 2 2H 2H ≤ b 2 H (4H) 2H 1 1 + |ξ| 2 2H .
This proves the upper bound.

Next, we show the lower bound. Suppose that t|ξ| 2 ≤ 1. For any u ∈ [0, t],

u|ξ| 2 2 ≤ t|ξ| 2 2 ≤ 1 2 .
Using the fact that e -x ≥ 1x for all x > 0, we conclude that:

exp - u|ξ| 2 2 ≥ 1 - u|ξ| 2 2 ≥ 1 2 , ∀u ∈ [0, t]. Hence A t (ξ) ≥ α H 1 2 2 t 0 t 0 |u -v| 2H-2 dudv = 1 4 t 2H ≥ 1 4 t 2H 1 1 + |ξ| 2 2H .
For the last inequality, we used the fact that 1 ≥ 1 1+|ξ| 2 . Suppose that t|ξ| 2 ≥ 1. Using the change of variables u ′ = u|ξ| 2 /2, v ′ = v|ξ| 2 /2, we obtain:

A t (ξ) = α H 2 2H |ξ| 4H t|ξ| 2 /2 0 t|ξ| 2 /2 0 e -u ′ e -v ′ |u ′ -v ′ | 2H-2 du ′ dv ′ .
Since the integrand is non-negative,

A t (ξ) ≥ α H 2 2H |ξ| 4H 1/2 0 1/2 0 e -u e -v |u -v| 2H-2 dudv = 2 2H e -u 2 
H(0,1/2) 1 |ξ| 4H ≥ 2 2H 1 2 2H+2 1 1 + |ξ| 2 2H
, where for the last inequality we used the fact that 1 |ξ| 2 ≥ 1 1+|ξ| 2 , and e -u 2 H(0,1/2) ≥ 1 2

2H+2 . (This follows since e -u ≥ 1u ≥ 1 2 for all u ∈ [0, 1 2 ].) Proposition 4.4 Suppose that ( 9) holds, and let u = {u(t, x), t ≥ 0, x ∈ R d } be the mild-sense solution of [START_REF] Quer-Sardanyons | Absolute continuity of the law of the solution of the 3-dimensional stochastic wave equation[END_REF]. Then the map

(t, x) → u(t, x) from R + × R d into L 2 (Ω) is continuous.
Proof: The argument is similar to that of Proposition 3.10. In this case, if h > 0,

E 1,t (h) = R d µ(dξ)k t (h, |ξ|),
where

k t (h, |ξ|) = exp - (• + h)|ξ| 2 2 -exp - • |ξ| 2 2 2 H(0,t)
, and

E 2 (h) = α H R d µ(dξ) h 0 h 0 exp - u|ξ| 2 2 exp - v|ξ| 2 2 |u -v| 2H-2 dudv.
We omit the details.

Remark 4.5 We consider the operator Lu

= ∂ t u- d i,j=1 a ij ∂ 2 xixj u- d i=1 b i ∂ xi u. Let G 3 (t,
x; s, y) be the fundamental solution of Lu = 0. We assume that:

(i) The functions a ij , b i : [0, T ] × R d → R, i, j = 1, . . . , d are α/2-Hölder continuous in t and α-Hölder continuous in x, for some α ∈ (0, 1).

(ii) There exist some k, K > 0 such that for all (t, x)

∈ [0, T ] × R d , ξ ∈ R d , k|ξ| 2 ≤ d i,j=1 a ij (t, x)ξ i ξ j ≤ K|ξ| 2 .
Under these assumptions, G 3 is a positive function defined on [0

, T ] × R d × [0, T ] × R d ∩ {(s, t); 0 ≤ s ≤ t ≤ T }, which satisfies: (see p. 376 of [21]) G 3 (t, x; s, y) ≤ c 1 (t -s) -d/2 exp -c 2 |x -y| 2 t -s := G ′ 2 (t -s, x -y). (38) 
Since G ′ 2 (t, x) is essentially the same as the heat kernel G 2 (t, x), the solution of Lu(t, x) = Ẇ (t, x) (with vanishing initial conditions) exists, if the measure µ satisfies condition [START_REF] Dalang | On Markov properties of Lévy waves in two dimensions[END_REF].

A Some useful identities

Recall that the Fourier transform of a function ϕ ∈ L 1 (R) is defined by: F ϕ(τ ) = R e -iτ x ϕ(x)dx. One can prove that F ϕ ∈ L 2 (R), for any ϕ ∈ L 1 (R) ∩ L 2 (R). By the Plancharel's identity, for any ϕ, ψ ∈ L 1 (R) ∩ L 2 (R), we have: The proof of Theorem 3.1 uses, in an essential way, a formula for the H(0, T )norm of sin (developed in Appendix B), which is in turn based on the following result. (This result can be derived using for instance, the results of [START_REF] Pipiras | Integrations questions related to fractional Brownian motion[END_REF].) We calculate I 1 first. Using integration by parts, we obtain:

I 1 = 1 -cos τ T cos T -τ I 2 ,
where I 2 = T 0 sin τ t cos tdt. On the other hand, Solving for I 1 and I 2 , we obtain: Solving for J 1 , we obtain:

I 1 = 1 1 -τ 2
J 1 = 1 1 -τ 2 (τ cos τ T sin T -sin τ T cos T ).
An elementary calculation shows that: 

I 2 1 + J 2 1 = 1 (1 -τ 2

  consider separately the regions {|τ | ≤ 2} and {|τ | ≥ 2}. For the region {|τ | ≤ 2}, we use the expression (30) of I (2) t . Using the fact that |ξ| 2H+2+k ≥ |ξ| 2H+2 (since k ≥ 0), and |τ | -(2H-1) ≥ 2 -(2H-1) if |τ | ≤ 2, we obtain:

(t+h)|ξ| h|ξ| cos τ t sin tdt 2 ≤ 2 (t+h)|ξ| 0 cos τ t sin tdt 2 + 2 h|ξ| 0 cos τ t sin tdt 2 ,sin τ t sin tdt 2 . 0 cos τ t sin tdt 2 + T 0 sin τ t sin tdt

 22022022020 and the square of the imaginary part of F h|ξ|,(t+h)|ξ| ϕ(τ ) is:We now use the following fact (see Appendix B): for any T > 0 T

2

 2 

Remark 4 . 2

 42 (i) When f is the Riesz kernel of order α, or the Bessel kernel of order α, condition (9) is equivalent to α > d -4H. When f is the covariance function of the fractional Brownian field with H i > 1/2 for all i = 1, . . . , d, condition (9) is equivalent to d i=1 (2H i -1) > d -4H.

For

  an interval (a, b) ⊂ R, we define the restricted Fourier transform of a function ϕ ∈ L 1 (a, b): F a,b ϕ(τ ) := b a e -iτ x ϕ(x)dx = F (ϕ1 [a,b] )(τ ).

R 1 RF 1 RF

 11 ϕ(x)ψ(x)dx = (2π) -ϕ(τ )F ψ(τ )dξ.In particular, for any ϕ, ψ ∈ L 2 (a, b), we have:b a ϕ(x)ψ(x)dx = (2π) -a,b ϕ(τ )F a,b ψ(τ )dξ. (39) (Consider φ = ϕ1 [a,b] . Then φ ∈ L 1 (R) ∩ L 2 (R) and F φ(ξ) = F a,b ϕ(ξ).)

Lemma A. 1

 1 Let H ∈ ( 1 2 , 1). For any ϕ, ψ ∈ L 1 (R) ∩ L 2 (R), α H R R ϕ(u)ψ(v)|u -v| 2H-2 dudv = c H R F ϕ(τ )F ψ(τ )|τ | -(2H-1) dτ,where α H = H(2H -1) and c H = Γ(2H + 1) sin(πH)/(2π).In particular, for any ϕ, ψ∈ L 2 (a, b), )ψ(v)|u -v| 2H-2 dudv = c H R F a,b ϕ(τ )F a,b ψ(τ )|τ | -(2H-1) dτ.

( 40 )I 1 =

 401 B The H(0, T )-norm of sinLemma B.1 Let ϕ(t) = sin t, t ∈ [0, T ]. Then ϕ 2 H(0,T ) = c H R (sin τ Tτ sin T ) 2 + (cos τ Tcos T ) 2 (τ 2 -1) 2 |τ | -(2H-1) dτ,where c H = Γ(2H + 1) sin(πH)/(2π).)ϕ(v)|u-v| 2H-2 dudv = c H R |F 0,T ϕ(τ )| 2 |τ | -(2H-1) dτ. Note that |F 0,T ϕ(τ )| 2 = T 0 e -iτ t ϕ(t)dt 2 Re[F 0,T ϕ(τ )] = T 0 cos τ t sin tdt, J 1 = Im[F 0,T ϕ(τ )] =T 0 sin τ t sin tdt.

I 1 + I 2

 12 

( 1 -

 1 cos τ T cos Tτ sin τ T sin T ).Similarly, letting J 2 = T 0 cos τ t cos tdt, obtain:τ J 2 -J 1 = sin τ T cos T and J 2 -J 1 = 1 τ + 1 sin[(τ + 1)T ].

( 1 -|J 1

 11 ) 2 [(sin τ Tτ sin T ) 2 + (cos τ Tcos T ) 2 ]. Remark B.2 Let B = (B t ) t∈R a fBm of index H (on the whole real line). Let B o = (B o t ) t∈R and B e = (B e t) t∈R be the odd and even parts of B (see[START_REF] Dzhaparidze | A series expansion of fractional Brownian motion[END_REF]). B o and B e are independent centered Gaussian processes with B t = B o t + B e t , andE(B o t B o s ) = 1 (0,t) , 1 (0,s) o := c H R sin τ t sin τ s τ 2 |τ | -(2H-1) dτ E(B e t B e s ) = 1 (0,t) , 1 (0,s) e := c H R cos τ t)(1cos τ s) τ 2 |τ | -(2H-1) dτ.In general, for ϕ ∈ L 1 (R) ∩ L 2 (R), we have:E[B o (ϕ) 2 ] = ϕ 2 o := c H R |Re[F ϕ(τ )]| 2 |τ | -(2H-1) dτ E[B e (ϕ) 2 ] = ϕ 2 e := c H R |Im[F ϕ(τ )]| 2 |τ | -(2H-1) dτIn the proof of Lemma B.1, I 1 = I 1 (τ ) and J 1 = J 1 (τ ) are the real and imaginary parts of F (ϕ1 [0,T ] )(τ ), where ϕ(t) = sin t. Hence E (τ )| 2 |τ | -(2H-1) dτ.
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