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Abstract. The Real-Time Calculus (RTC) [16] is a framework to ana-
lyze heterogeneous real-time systems that process event streams of data.
The streams are characterized by pairs of curves, called arrival curves,
that express upper and lower bounds on the number of events that may
arrive over any specified time interval. System properties may then be
computed using algebraic techniques in a compositional way. A well-
known limitation of RTC is that it cannot model systems with states and
recent works [7, 1, 13, 11] studied how to interface RTC curves with state-
based models. Doing so, while trying, for example to generate a stream
of events that satisfies some given pair of curves, we faced a causality
problem [14]: it can be the case that, once having generated a finite pre-
fix of an event stream, the generator deadlocks, since no extension of
the prefix can satisfy the curves anymore. When trying to express the
property of the curves with state-based models, one may face the same
problem. This paper formally defines the problem on arrival curves, and
gives algebraic ways to characterize causal pairs of curves, i.e. curves for
which the problem cannot occur. Then, we provide algorithms to com-
pute a causal pair of curves equivalent to a given curve, in several models.
These algorithms provide a canonical representation for a pair of curves,
which is the best pair of curves among the curves equivalent to the ones
they take as input.

1 Introduction

The increasing complexity of modern embedded systems makes their design more
and more difficult. Modeling and analysis techniques have been developed that
help taking or validating decisions on the conception of a system as early as
possible in the design process.

There exists many methods among which we can distinguish two families.
Computational approaches study fine-grain models of the system to represent
its complete behavior. The validation of the system using such a model may
involve simulation, testing and verification. As opposed, analytical techniques,
such as Real Time Scheduling (founded with [9]) and Real Time Calculus [16], use
purely analytical models, based on mathematical equations that can be solved
efficiently. These models can represent in a simple way the amount of events to
be processed and how fast they can be processed. Solving these equations can
give, for example, the best and worst cases for performances.



Both families of approaches have their advantages and drawbacks. Simulat-
ing precisely an embedded system gives very precise results, but only for one
simulation, and one instance of a system. Analytical approaches, on the other
hand, give strict worst case execution times, and usually give results very fast,
but do so only for cases that the theory can take into account. For example,
Real-Time Calculus cannot handle the notion of state in the modeling of a sys-
tem. Recent studies try to combine the approaches to take the best of both [7,
3, 10]. The work we present in this paper fully takes its root and motivation in
one of those studies, while trying to combine Real-Time Calculus, state-based
models and abstract interpretation, using synchronous languages [1].

The Real-Time Calculus (RTC) [16] is a framework to model and analyze
heterogeneous system in a compositional manner. It relies on the modeling of
timing properties of event streams with curves called arrival curves (and service
curves, which count available resources instead of events in a similar fashion). A
component can be described with curves for its input stream and available re-
sources and some other curves for the outputs. For already-modeled components,
RTC gives exact bounds on the output stream of a component as a function of
its input stream. This result can then be used as input for the next component.
Arrival curves are function of relative time that constrains the number of events
that can occur in an interval of time. For any sliding window of time of length
∆, the pair of arrival curves (αu, αl) gives explicitly the lower αl(∆) and upper
αu(∆) bounds on the number of events (see examples in Figure 1). But, arrival
curves may also contain implicit constraints indirectly deduced from explicit
ones. This paper studies those implicit constraints and provides algorithms to
make them explicit.

Motivation. Implicit constraints cause problems in several contexts. For
simulation purpose [6], it is typical to produce a stream of events that satisfies
some given arrival curves using a generator of events. Such generators are the
computational representation of a pair of curves, they are built to generate any
streams that satisfies the curves. There are multiple ways to write such genera-
tors [6, 10, 1, 3] but many faced the problem. For the explanation, let us consider
a straightforward one, in discrete time: it computes at each point in time the
lower and upper bounds on the number of events allowed to be emitted, based
on the events already emitted, and it emits a random number of events within
these bounds. Now, it may happen, due to implicit constraints, that some upper
bound is strictly lower than the lower bound, leading the generator to deadlock.

Another case where implicit constraints are problematic is the case of for-
mal verification of a system, with inputs and outputs characterized by arrival
curves. One may want to prove a property like “If the input complies with the
arrival curve pairs αI , then the output satisfies the arrival curve pairs αO”. But
verification tools based on reachability analysis (see, e.g. [5]) usually allow only
the expression of “If the input complies with αI up to time t, then the output
complies with the αO up to time t”. Then, the tool may find a counter-example
violating αO without violating αI up to time t, but it can be the case that this
finite counter-example cannot be extended into an infinite execution that satis-



fies αI . This would therefore be a spurious counter-example. Getting rid of these
counter-examples sometimes requires heavyweight state exploration techniques
(for example, the -causal option of lesar [15] does this for Boolean programs)
but not all tools are able to do it (nbac [5] cannot, for example, and the problem
is known to be undecidable for integer programs). The technique that translates
the constraints of arrival curves into a model to be analyzed by a verifier tool was
used for, e.g., timed automata [7, 3], event count automata [13] and synchronous
programs [1]. For each tool, one can pose the questions: “what is the behavior of
the tool when used on curves with forbidden regions?” and “do the tool output
curves with forbidden regions?”. Actually, except [1], the papers do not give an-
swer to them. We will see that [7, 3] do not create curves with forbidden regions
while [13] could at least in theory, and we explain why. Each of the tools would
badly behave in the presence of forbidden regions, and this paper gives a way to
get rid of them before using any tool.

Implicit constraints on arrival curves. We distinguish two kinds of im-
plicit constraints, that we call informally “unreachable regions” and “forbidden
regions”. The first one is a well-studied phenomenon within the Real-Time Cal-
culus community [8] and the second, which may produce deadlocks in generators
and spurious counter-examples in verification is the goal of this paper. Let us
discover those using a pair of arrival curves (αu, αl) (see Figure 1 for an example).

Firstly, by splitting some interval into smaller ones, we can get additional
constraints. As shown in Figure 1.(a), in an interval of size ∆ = 6, the curve
says explicitly that the lower bound on the number of events is 1, but splitting
this interval into three intervals of size 2, one can deduce a better bound, which
is 3. Although the curve explicitly specified the bounds αl(6) and αu(6) to be 1
and 7, the number of events in a window of size 6 can actually never be equal
to 1 (αl(6)). In other words, the actual implicit lower bound is greater than
αl(6): this means that the curve is equivalent to a tighter curve. A well-known
result [8] is that the upper (resp. lower) curve does not have this kind of implicit
constraints if it is sub-additive (resp. super-additive). The transformation of an
arbitrary curve into an equivalent sub-additive (resp. super-additive) curve mak-
ing those constraints explicit is called sub-additive closure (resp. super-additive
closure). In this paper, we call the region between the curves and its sub-additive
(resp. super-additive) closure unreachable regions. Unreachable regions are due
to constraints of a single curve on itself, and can be computed at some point by
looking only at the past, i.e. smaller ∆.

The second case of implicit constraints can be found by looking at both curves
towards the future. Figure 1.(b) gives an example of such a case: since αl(3) = 0,
the lower curve does not give a lower bound on the number of events that can
occur in a window of time of size 3, but if an execution has no event during such
a window, then the upper curve prevents it from emitting more than 3 events in
the next 2 units of time, while the lower curve will force it to emit at least 4. It
is therefore impossible to emit no events for 3 units of time. We call the regions
that contain such points forbidden regions. No execution can cross a forbidden
region unless it gets blocked some time latter, due to some contradiction between



lower and upper constraints. Borrowing the vocabulary used in [14], we call this
kind of implicit constraints causality constraints. A pair of curves for which the
beginning of an execution never prevents the execution from continuing is called
causal. Intuitively, this is the same as having no forbidden region (but we will
see that the relationship between absence of forbidden region and causality is
only an implication).
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Fig. 1. Implicit and explicit constraints on arrival curves

Surprisingly, this question has received very little attention and to the best
of our knowledge, no transformation has been published to make these implicit
constraints explicit. One may wonder if this is a “true” problem, i.e. if such non
causal curves can be encountered in practice. Indeed, a straightforward answer is
that they cannot come from a real system, since curves derived from execution or
simulation of real systems are always well-formed. The common practice is to use
such curves for the inputs of RTC models. As RTC computations preserve the
causality of the curves, non-causal curves were not considered as a problem so far.
This may explain why no studies have been published yet on the subject. Things
are different when instead of using RTC, one uses other tools for deriving output
arrival curves, given some input arrival curves. Those tools, among them model-
checking of timed automata [4] on abstracted models, abstract interpretation
of Lustre programs [5], may compute non-causal arrival curves, even when the
input is causal.

Additionally, non-causal curves contain implicit constraints that could be
made explicit. If the output of a computation gives the curve in Figure 1, then
making the implicit constraint explicit gives tighter bounds on the number of
events (for example, a tighter bound on the number of events in a window of size
4). We encountered the case, when merging the output of several computations
for the same set of flows of events [10] using different approximate methods. This
provides several pairs of curves, each of them being a valid over-approximation of
the expected result. The basic combination of these curves (point-wise minimum
and maximum) can contain implicit constraints, and making them explicit gives
more precise results from the same analysis.

Contributions. To solve these issues, this paper formally defines the causal-
ity problem and propose several solutions.



– We give a characterization of the notion of causal pairs of arrival curves.
– Combining this property with existing ones, we give a definition for a canoni-

cal representation of a pair of curves, which is causal and sub-additive/super-
additive. We show that it is also the tightest possible representation of the
original curve.

– We propose an algorithm that transforms a pair of arrival curves into its
equivalent causal representation.

All results in the paper are proven (Due to place limitations, the proofs only
appear in [12]) and may be applied to dense-time or discrete-time arrival curves
on the one hand, to discrete-event or fluid-event models on the other hand. The
implementation part has been developed for discrete-time discrete-event models,
since this was our context of use, but we believe it could be adapted to other
contexts. Furthermore, although all along the paper we talk about arrival curves,
the reader should be convinced that every results also apply to service curves.

The outline of this paper is as follows: Section 2 defines arrival curves and
some few algebraic operators; Section 3 defines causality and gives a character-
ization of it; Section 4 shows how to compute the tightest causal representation
of arrival curves; and Section 5 gives an algorithm for computing it for discrete
finite curves.

2 Arrival Curves

We now define the notion of arrival curves that characterize timing properties
on a set of event streams. A pair of lower and upper arrival curves defines
lower and upper bounds on the number of events allowed in a sliding window
of size δ. Event streams that satisfy the pair of arrival curves are abstracted
with cumulative curves that represent the number of events that occurs since
the beginning t = 0. In this paper, we do not focus on a particular model and
every results (except Section 5) apply to all of them. Namely, time can be either
continuous or discrete, and we consider both the fluid and discrete event-model.
Formally, functions we consider are from T , the time, to E = E ∪{∞}, the event
count; and T (resp. E) can be either R+, the set of non-negative reals, or N ,
the set of naturals. We note F the set of wide-sense increasing functions f from
T to E and such that f(0) = 0; Ffinite is the set of such functions from T to E .

Definition 1 (Arrival Curves and Cumulative Curves). R ∈ Ffinite can
model a cumulative curve: R(t) represents the (finite) amount of events that
occurred in the interval of time [0, t].

A pair of arrival curves is a pair of functions (αu, αl) in F × Ffinite, such
that αl ≤ αu.

Let R be a cumulative curve and (αu, αl) be a pair of arrival curves. R is
said to satisfy (αu, αl) noted R |= (αu, αl) iff(def) ∀x ∈ T ,∀δ ∈ T , R(x +
δ)−R(x) ∈ [αl(δ), αu(δ)]

We say that a pair of arrival curves (αu, αl) is satisfiable iff(def) there exists
a cumulative curve R that satisfies (αu, αl).



We note R |=≤T (αu, αl), meaning that R satisfies (αu, αl) up to T iff(def)
∀t ≤ T, ∀δ ≤ t, R(t)−R(t− δ) ∈ [αl(δ), αu(δ)]

Next, comes the deconvolution operators that will be intensively used in the
next sections. And then we briefly recall the notions of sub-additivity and super-
additivity, that are used to erase the unreachable regions from the curves. Details
on those notions can be find, e.g. in [8].

Definition 2 (Deconvolutions). Let f, g be functions from T to E and x ∈ T ,

(f ⊘ g)(x)
def

= sup
t≥0

{f(x+ t)− g(t)} ((min, +) deconvolution)

(f ⊘ g)(x)
def

= inf
t≥0
{f(x+ t)− g(t)} ((max, +) deconvolution)

Definition 3 (Sub/Super-Additivity and Closures). Let f ∈ F , f is said
to be sub-additive (resp. super-additive) iff ∀s, t ∈ T . f(t + s) ≤ f(t) + f(s)
(resp f(t+ s) ≥ f(t) + f(s)).

Let f ∈ F . Among all the sub-additive (resp. super-additive) functions g ∈ F
that are smaller (resp. greater) than f there exists an upper (resp. lower) bound
called the sub-additive (resp. super-additive) closure of f and denoted by f (resp.
f). A pair of arrival curves (αu, αl) is Sub-Additive-Super-Additive (denoted SA-

SA for short) iff(def) αu is sub-additive and αl is super-additive. We call (αu, αl)
the SA-SA closure of (αu, αl).

SA-SA closure makes explicit some of the implicit constraints of an arrival
curve. It makes explicit the unreachable regions (Figure 1.(a)), which are the
regions between αl and its super-additive closure αl in the one side, between
αu and its sub-additive closure αu on the other. Informally, they represents
the points between αu and αl that are not reachable by any finite or infinite
cumulative curves.

3 Causality: Definition and Characterization

We now define the notion of causality. The problem we are studying is the one of
an event stream that is correct up to a certain time T , but “can not be continued”
without violating the pair of curves. This can be seen as a deadlock of the flow,
which could then neither let time elapse nor emit an additional event. A pair
of arrival curves for which this problem can not happen is called causal. We
first give a formal definition for causality, and then give a characterization with
algebraic formulas.

Definition 4 (Causal Arrival Curves). Let (αu, αl) be a pair of arrival
curves. (αu, αl) is said to be causal iff any cumulative curve R that satisfies
(αu, αl) up to T can be extended indefinitely into a cumulative curve R′ that
also satisfies (αu, αl). In other words, (αu, αl) is causal iff(def) ∀T ≥ 0,
∀R,
(

R |=≤T (αu, αl)
)

=⇒
(

∃R′ | R′ |= (αu, αl) and ∀t ≤ T,R(t) = R′(t)
)



Unlike the sub-additivity and super-additivity properties, the causality is
really a property on a pair of curves; it does not make sense to say that αu

alone, or αl alone, is causal since the impossibility to extend a cumulative curve
can come only from a contradiction between an upper bound and a lower bound.

3.1 Characterization of Causality

Causality reveals new implicit constraints. Informally, we call forbidden regions
the points between αu and αl that are reachable by finite cumulative curves, but
for which the cumulative curves can trivially not be extended into infinite ones.

Let us consider the curve αl, and try to define αl
∗
, defined informally as “αl

without its forbidden regions”. αl
∗
(δ) is the smallest value for which a cumulative

curve R verifying R(t+δ)−R(t) ≥ αl
∗
(δ) is guaranteed to be extensible infinitely

by emitting the maximum amount of events allowed by αu, without violating
αl (this the same as saying that if R(t + δ) − R(t) < αl

∗
(δ) for some t, then

R cannot be extended without violating either αu or αl, which means that the
region below αl

∗
is forbidden). Computing the forbidden region of αl at abscissa

δ0 means therefore computing the lowest N for which αu(δ) + N would not
cross αl(δ0 + δ) for some δ ≥ 0. This is equivalent to finding the supremum of
the N for which the curves would intersect. Formally, this can be written as
αl
∗

= supδ≥0

{

αl(δ0 + δ)− αu(δ)
}

, which is the definition of the deconvolution:

αl ⊘ αu. A similar reasoning would lead to the curve αu⊘αl for the forbidden
regions of αu.

We can therefore define more formally forbidden region as the area between
a curve αu (resp. αl), and αu⊘αl (resp. αl⊘αu): intuitively, computing αu⊘αl

means “removing forbidden regions from αu”, and computing αl ⊘ αu means
“removing forbidden regions from αl”. When αu = αu⊘αl and αl = αl ⊘ αu,
we can say that the curves have no forbidden region. The contribution of this
paper is the study of these forbidden regions, giving a formal characterization
and algorithms to detect their presence and to eliminate them.

Theorem 1 (Characterization of Causality). Let (αu, αl) be a pair of ar-
rival curves. The following implications and equivalences hold:

αl = αl ⊘ αu

and
αu = αu⊘αl

(e)
=⇒ (αu, αl) is causal

⇐
=(d)

⇐
⇒(c)

⇐
⇒(b)

αl = αl ⊘ αu

and
αu = αu⊘αl

(a)
⇐⇒ (αu, αl) is causal

The main result is equivalence (c) which gives an algebraic characterization
of causality for any pair of arrival curves. Intuitively, it states that a pair of



curves is causal if and only if its SA-SA closure has no forbidden region. A
weaker version of this theorem is implication (e) which gives only a sufficient
condition: a pair of arrival curves having no forbidden region is causal.

One could have expected for the converse to be true, i.e. that a pair of arrival
curves is causal implies that it doesn’t have forbidden regions. This result is
indeed false in general: a pair of causal curves can have forbidden regions if they
are included in their unreachable regions. This is shown in the counter-example
of Figure 2. The vertically hatched region is a forbidden region, and we do not
have αl = αl⊘αu, but the curve is still causal. Actually, the forbidden region is
below αl, so it is not reachable. The causality implies the absence of forbidden
region for SA-SA curves though, since all unreachable regions have been erased
from them: this is equivalence (a). The remainders (b) and (d) are intermediate
results.

Indication for the proofs: all the proofs are detailed in [12], most of them being
relatively long and technical, using several intermediate lemmas. The following
gives the overall structure and the chronology of the proofs.
(a) The proof is completely skipped here due to space limitations.
(b) The proof is relatively straightforward and based on the fact that (αu, αl)

and (αu, αl) accept the same set of cumulative curves.
(c) This characterization is obtained by transitivity of (a) and (b).
(d) The proof is omitted due to space limitations.
(e) The sufficient condition is obtained by transitivity of (c) and (d).
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Fig. 2. Causal Curve with a Forbidden Region

4 Computing the Causality Closure

The goal of this section is to define the causality closure of a pair of curves
(αu, αl): it is a pair of arrival curves which is causal and equivalent to (αu, αl).
The first step is to define the C operator, which removes the forbidden regions
from a pair of curves.

Notice that removing forbidden regions is done on the pair of curves, globally.
As a result, while removing the forbidden regions on αl, one may introduce new
ones on αu and vice-versa. One natural way to solve this issue is to iterate the



forbidden region removal until one reaches the fix-point (assuming it is reached
in a finite number of steps, which is not always the case).

To illustrate this, an example is given in Figure 3. The original curve (a) has
both forbidden regions (vertically hatched) and an unreachable region (horizon-
tally hatched).

One region of interest is the little square between δ = 4 and δ = 5, marked
with a “?” in curve (a): if we consider the curves (αu, αl) before any transfor-
mation, it does not seem to be a forbidden region. An execution emitting only 1
event in 4 units of time seems to be able to continue by emitting 3 events right
after. Actually, this is impossible, and there are at least two ways to show it.
the first way to remove this “?”-region is to apply the forbidden regions removal
twice: emitting 3 events as suggested above is not possible given the leftmost for-
bidden region of αu. So, the “?”-region will have to be removed, as a consequence
of the forbidden region on αu. After the second iteration of the forbidden region
removal, we reached the fix-point, and implication (e) guarantees the causality.
This iterative approach will be detailed in Section 5.

However, an interesting property of the C operator is that it does not create
new forbidden regions when applied on SA-SA curves: its application on (αu, αl)
provides the causal canonical representative of (αu, αl) (this approach is further
discussed in this section). Back to the example in Figure 3, a second way to show
that the “?”-region should be removed from αl is to work on αl instead of αl:
since αl(10) = 8 and αu(6) = 6, an execution has to emit at least two events in 4
units of time. This illustrates the approach followed in this section: we eliminate
the forbidden regions with C (3.(c)) only after performing an SA-SA closure
(3.(b)). The iterative approach will be kept for cases where the SA-SA closure
cannot be applied due to algorithmic and coding limitations.
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Fig. 3. Step-by-step causality closure

4.1 Removing Forbidden Regions: the C Operator

We defined pairs of arrival curves as pairs (αu, αl) of functions for which αu ≥ αl.
In addition, we write ⊥AC the set of pairs of functions in F such that the former
constraint is false. To simplify notations, ⊥AC will be used as a single element



even if it represents an infinite set of objects. We note AC the set of all pairs of
arrival curves plus ⊥AC.

Definition 5. We define the C operator from AC to AC as:

C (⊥AC) = ⊥AC and C
(

αl, αu
)

=





let L = αl ⊘ αu, U = αu⊘αl

if L ≤ U then (L,U)
else ⊥AC

When (αu, αl) is a pair of arrival curves then L = αl ⊘ αu and U = αu⊘αl

are functions in F (i.e. wide-sense increasing and equal to zero at zero). But
they may cross each other (it may happen that L 6≤ U): in these cases, the C

operator computes the value ⊥AC. This means that the pair of arrival curves
was not satisfiable (i.e. no cumulative curve satisfies it).

4.2 C(αu, α
l): the Canonical Representative and its Properties

This section presents the main result of the paper. It basically states that
C(αu, αl) has all the desirable properties: SA-SA, causality, and it is indeed
the best possible pair of curves equivalent to (αu, αl).

Theorem 2. For any pair of arrival curves (αu, αl),
– C(αu, αl) = ⊥AC iff (αu, αl) is non-satisfiable;
– C(αu, αl) is causal, SA-SA and equivalent to (αu, αl), otherwise.
– when (αu, αl) is satisfiable, C(αu, αl) is the tightest pair of curves equivalent

to (αu, αl).

By tightest, we mean that C(αu, αl) is made of the smallest (resp. the great-
est) curve for the upper (resp. lower) part such that the properties are satisfied.
The proofs are given in [12]. This gives an interesting result: given any pair of
curves, one can compute C(αu, αl), and get either the information that the curves
are not satisfiable, or the best possible pair of curves equivalent to the original
one. In addition to this optimality, one also gets the desirable properties: causal-
ity and SA-SA. This result is implementable on top of any algorithmic toolbox
implementing the basic operators: convolution, deconvolution, sub-additive and
super-additive closure.

Theorem 2 also provides the existence and uniqueness of a tightest pair of
curves equivalent to a given one. As a result, the following theorem states that
it is causal.

Theorem 3. Let (αu, αl) be a pair of curves. If (αu, αl) is the tightest pair of
curves representing a set of cumulative curves, then (αu, αl) is causal.

Any computation giving the best possible pair of curves also gives a causal
pair of curves. Theorem 3 explains why, in practice, most pairs of arrival curves
usually manipulated in Real-Time Calculus are causal. Indeed, curves obtained
for example by measurements on a real system are causal by construction; fur-
thermore computations made in the RTC framework compute the optimal solu-
tion and thus preserve the causality property. It also probably explains why this
problem received so little attention up to now.



On the other side, non-causal pairs of curves may arise whenever a com-
putation is done in an inexact manner. This typically occurs using other tools
than RTC algebraic solutions. Indeed, the recent works that interfaces RTC with
state-based models face the problem. In [7], the authors get rid of it by constrain-
ing the class of curves they compute which are causal by definition (the extension
to arbitrary curves which is part of their future works will have to deal with it
though). But, in [10], the output curves are computed, one point at a time on an
abstract model: this does result into non causal curves, which are refined after
being computed. The CATS tool [3] relies on exact model-checking, so applied
on a causal pair of curves, the tool would output causal curves. [13] also uses ex-
act model-checking, but the long-term rate computation uses an approximation,
which could generate non-causal curves (see [12] for an example).

Finally, in ac2lus [1] we use the abstract interpreter nbac [5], which also
does some abstractions, and hence doesn’t guarantee the causality of the curves
computed.

5 Algorithms for Discrete Finite Curves

5.1 Definitions of Finite Arrival Curves

Up to this point, we dealt with infinite pairs of curves, but, as mentionned in
the introduction, the original work that brought us to studying causality was to
connect RTC curves to synchronous programming languages [1]. Our model uses
a simple computer representation of arrival curves: we work in discrete-time,
discrete-event model, and consider only finite curves, which makes them easy
to represent and manipulate algorithmically speaking. We consider the infinite
extension of the curves to remain in the theoretical framework presented in the
previous sections and to be able to apply the same theorems. Therefore, instead
of formalizing the notion of finite curves, we consider the restriction of infinite
curves on a finite interval.

Working with discrete-time (resp. discrete-event) models doesn’t change the
above results, since we considered time (resp. event count) as the set T (resp.
E), being either R+ or N . We now (in this chapter) set T = E = N . On the
other hand, working with finite curves will change the results a bit: the notion
of SA-SA-closure doesn’t fit well in the finite model, since the SA-SA-closure of
a finite curve could be infinite.

We first give some definitions for finite arrival curves and then an algorithm
to efficiently compute the causality closure using the C operator.

Definition 6 (Finite restriction of an arrival curve). We denote by (αu
∣

∣

T
, αl
∣

∣

T
)

the restriction of (αu, αl) to [0, T ] defined as:

∀t ≤ T, αu
∣

∣

T
(t)

def

= αu(t) and αl
∣

∣

T
(t)

def

= αl(t)

∀t > T, αu
∣

∣

T
(t)

def

= +∞ and αl
∣

∣

T
(t)

def

= αl(T )



(αu
∣

∣

T
, αl
∣

∣

T
) still applies to infinite event streams, but only gives constraints

for finite windows of time. Intuitively, it could be a pair of curves defined over
[0, T ]. But defining them as functions over N has the advantage of remaining
within the definition of arrival curves given above: αl

∣

∣

T
and αu

∣

∣

T
are still func-

tions in F , but they can be represented easily as finite arrays of naturals.
It should be noted that finite restrictions of arrival curves can not have

the SA-SA property (as far as ∃t > 0.αu(t) < +∞). However, one can define
the property SA-SA over [0, T ] and the associated closure (see [12] for details).
Additionally, [2], page 7, provides an efficient way to compute the sub-additive
closure in discrete events. It can easily be adapted to compute the SA-SA closure
over [0, T ] leading to a simple, quadratic algorithm.

5.2 Causality closure for Finite Discrete Curves

Unfortunately, the valid result for infinite curves, stating that C(αu, αl) was a
causal curve equivalent to (αu, αl) is helpless from the algorithmic point of view
with finite curves: computing it would require computing (αu, αl), which is an
infinite curve. But theorem 1(e) still holds (i.e. the fix-points of C are causal),
and it can easily be shown that applying the C operator doesn’t change the set
of accepted cumulative curves. So, we can compute the fix-point by iterating C.

We illustrate the process with an example in Figure 4. The original pair of
curves is (a), and one can see that although the curves are SA-SA on [0, 4] (but
clearly not SA-SA because of the curve αu with +∞ values), one application of
C is not sufficient: the curve (b) is not even SA-SA on interval [0, 4], and still
has forbidden regions. We iterate the C operator once more and get (c), which
is causal, but not SA-SA.

Another option which may speed up the algorithm, is to apply a finite SA-SA
closure before applying C again: this gives curves (d) and then (e) by applying C

again. Then, neither the SA-SA closure nor C would change the curve anymore:
we reached the fix-point. In this case, the final curve has both the causality and
the SA-SA properties on interval [0, 4].

Theorem 4. For any T > 0 and any pair of arrival curves (αu, αl) with ∀t ∈
[0, T ], αu(t) 6= +∞, the sequence Cn(αu

∣

∣

T
, αl
∣

∣

T
) admits a fix-point (denoted

C∞(αu
∣

∣

T
, αl
∣

∣

T
), which is either ⊥AC or a causal pair of arrival curves equiv-

alent to (αu
∣

∣

T
, αl
∣

∣

T
).

The above theorem states that, given an finite discrete pair of arrival curves,
one may iteratively compute, by application of the C operator, a causal finite
discrete pair of arrival curves which is equivalent to the original, if it is satisfiable;
otherwise, the computation leads to ⊥AC. The convergence of the iterations
can be accelerated by using, in addition to C, other tightening operators that
preserves the set of accepted cumulative curves like the SA-SA closure. This is
expressed in the following theorem and applied in the example in Figure 4.(d)
and 4.(e).
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(e) The curve after two full iterations.

Fig. 4. Step-by-step causality closure for finite curves

Theorem 5. For any T > 0 and any pair of arrival curves (αu, αl) with ∀t ∈
[0, T ], αu(t) 6= +∞, the sequence defined by (αu0, α

l
0) = (αu

∣

∣

T
, αl
∣

∣

T
) and ∀n ≥ 0,

(αun+1, α
l
n+1) = C(αun

∣
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T
, αln
∣

∣

T
) admits a fix-point, which is either ⊥AC or a

causal and SA-SA pair of arrival curves equivalent to (αu
∣

∣

T
, αl
∣

∣

T
).

The detailed proof appears in [12]. It is made simple by the fact that we work
in discrete time and events: this makes the set of possible curves finite. Since the
sequence (αun, α

l
n) becomes tighter and tighter, it has to reach a fix-point in a

finite number of steps.
We still need a way to compute C efficiently: the definition of C contains the

supremum of an infinite set, which as it is, would not be computable. Fortunately,
the operator C applied to finite restrictions of curves is indeed much simpler.
Since ∀t > T , αu(t) = +∞ and αl(t) = αl(T ), the values of (αu, αl) beyond T
do not have to be taken into account in the computation of the deconvolutions,
so C can be easily computed quadratically.

5.3 Algorithm

The full algorithm for computing the causal and SA-SA pair of curves equivalent
to the finite pair of arrival curves A0 defined on [0, T ] is given in Figure 5.

The loop terminates but finding a bound on the number of iterations other
than the brute-force (just knowing that the sequence is decreasing and that there
is a finite number of possible curves tighter that the original one) is still an open
question. In practice, however, the number of iterations required is low (one or
two in the examples we tried).



A← A0

repeat

A ← SA-SA-closure(A) /∗ Not mandatory, but speeds up convergence, and
ensures SA-SA ∗/
A′ ← A
A← C (A)

until A 6= ⊥AC or A′ = A

Fig. 5. Computation of causality closure for finite, discrete curves

After the loop, A is either ⊥AC or a causal pair of finite discrete curves; it
is equivalent to A0, the original pair of curves; and it is SA-SA on the interval
[0, T ] if the SA-SA closure was applied (first line within the loop). In this case,
it is the best pair of curves equivalent to the original A0.

6 Conclusion

We formally defined the notion of causality for RTC curves, and set up a formal
framework to study it. As already mentioned, and although all along the paper
we talk about arrival curves, the results are applicable to arrival curves as well as
to service curves. We started from the intuitive notion of forbidden region, and
the definition of causality based on the possibility to extend a curve, and stated
the equivalence (valid for SA-SA pairs of curves) between absence of forbidden
regions and the definition.

To the best we know, the phenomenon has received little attention and no
work has been yet on the subject. This is mainly due to the usual way arrival
curves were used within the RTC framework on the one hand and to the restric-
tions of the studies to some already causal class of arrival curves in the other
hand. We detailed in which conditions causality can appear and be problematic.
Dealing with general causal pairs of curves in a simulator or a formal verification
tool is very often mandatory (unless using, if at all possible, heavyweight round-
about computations). To avoid non-causal curves, we propose an algorithm that
turns a non-causal pair of curves into a causal one. After application of this al-
gorithm, event generators based on arrival curves cannot deadlock, and formal
verifiers do no more produce spurious counter-examples linked to causality.

The additional benefit of the transformation is that it gives the tightest pair
of curves equivalent to the original one, which is also a canonical representative of
all arrival curve pairs defining the same set of event streams. Indeed, compared to
the “mathematical refinement algorithm” proposed in [10], our algorithm is more
general and potentially more precise. It would be an improvement to replace this
refinement algorithm by the causality closure.

The theorems and algorithms work for discrete and fluid event model, discrete
and continuous time for infinite curves. Given any subset of these models, one
just has to implement the basic operators to be able to use them. They have
also been adapted to discrete time and event model for the case of finite arrival



curves, where the sub-additive and super-additive closure operators do not make
sense. The later was implemented in the ac2lus [1] toolbox.
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