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Finding all minimal CURB sets

Max Klimm and Jörgen W. Weibull

July 1, 2009

Abstract

Sets closed under rational behavior were introduced by Basu and Weibull (1991)

as subsets of the strategy space that contain all best replies to all strategy profiles in

the set. We here consider a more restrictive notion of closure under rational behavior:

a subset of the strategy space is strongly closed under rational behavior, or sCURB,

if it contains all best replies to all probabilistic beliefs over the set. We present an

algorithm that computes all minimal sCURB sets in any given finite game. Runtime

measurements on two-player games (where the concepts of CURB and sCURB coincide)

show that the algorithm is considerably faster than the earlier developed algorithm,

that of Benisch et al. (2006).

1 Introduction

Since the pioneering works of John von Neumann, Oskar Morgenstern and John Nash, non-

cooperative games have become the standard framework for analyses of a very wide range

of strategic interactions in economics and other social and behavioral sciences. Despite the

enormous range of applications of Nash equilibrium as a solution concept, its stability has

been queried in the works of Selten (1975) and Myerson (1978) and others, leading to a

range of refinements such as perfect and proper equilibria. Any strict Nash equilibrium

(one in which each player’s strategy is her unique best reply) satisfies these refinements.

However, many games have no strict equilibria. A set-valued version of strict equilibrium

was proposed by Basu and Weibull (1991). They call a set of strategy profiles closed under

rational behavior, or CURB for short, if it contains all best replies to itself. Minimal such

sets exist in a large class of games, including all finite games.

Also other set-valued solution concepts have been introduced in the game-theory liter-

ature, such as persistent retracts by Kalai and Samet (1984), strategically stable sets by
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Kohlberg and Mertens (1986) and preparation sets by Voorneveld (2004). As shown in

Voorneveld (2005), the unique product-set valued solution concept that satisfies nonempti-

ness, one-person rationality, consistency, nonnestedness, and satisfaction is the minimal

CURB concept. Another reason to study minimal CURB sets is that they are attractors to

several processes of social learning, see the works of Young (1998) and Hurkens (1995).

We here present an algorithm that identifies all minimal CURB sets in any given finite

two-player game. It also finds all minimal strong CURB sets in any finite game at all.

The distinction between CURB and strong (or correlated) CURB is immaterial in two-

player games but matters for games with more players. While CURB is based on the Nash

paradigm of uncorrelated individual strategies, strong CURB allows a player to believe that

other players’ actions may be correlated (statistically dependent).

In the history of algorithmic work in game theory, that of Lemke and J. T. Howson is

a land-mark. They proposed an algorithm that finds all Nash equilibria in any given finite

two-player game. However, it was shown by Savani and von Stengel (2004) that there are

such games for which the runtime of this algorithm is exponential in the size of the game

(defined as the total number of pure strategies). Moreover, the problem of finding one Nash

equilibrium in such games is known to be PPAD-complete, suggesting that no polynomial

algorithm exists. This holds even when the payoffs received by the players are restricted to

be binary, see Chen and Deng (2006) and Abbott et al. (2005).

Concerning CURB sets, the first algorithm was provided by Pruzhansky (2003), who

proposed an algorithm that identifies CURB sets in finite games in extensive form of perfect

information. Such games possess a unique minimal CURB set, and this can be computed

in a relatively straightforward manner. Several algorithms to compute CURB sets in finite

two-player games in normal (or strategic) form was developed by Benisch et al. (2006). The

present algorithm builds in part on their work and we conclude by comparing the performance

of their and our algorithms.

The first step in our analysis concerns the geometric structure of so-called stability sets,

introduced by Harsanyi and Selten (1988). These are pre-images of the pure best-reply

correspondence. We show that, in finite two-player games, all stability sets are polytopes.

For finite games with three or more players, the stability sets are not always polytopes. In

fact, they are not even convex in general. This is due to the assumed statistical independence

between different players’ randomization. As a consequence, stability sets cannot be defined

by linear inequalities, in general. For games with more than two players, we overcome

this inconvenience by allowing each player to believe that others’ actions are correlated (or

dependent), and we modify the definition of stability sets accordingly, obtaining what we call
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strong stability sets. The strong stability set, for a given pure strategy of a player in a finite

game, is the set of probability distributions over the others’ pure-strategy combinations,

under which the pure strategy in question is optimal. So defined, strong stability sets are

polytopes, in all finite games. We use the notion of strong stability sets to define strong CURB

sets, or sCURB sets for short, requiring that they contain all best replies to themselves,

without the restriction that each player believes that the others’ actions are statistically

independent. The same approach is taken in Asheim et al. (2009), who provide epistemic

characterizations of sCURB sets in finite games. Sets of this nature were first introduced by

Harsanyi and Selten (1988), in their analysis of the agent normal form of finite extensive-form

games. The called such sets primitive formations.

Our main results concern an algorithm that we propose. This algorithm computes all

minimal sCURB sets in any given finite game. We show that this is possible to do by way of

solving certain linear feasibility problems (LFPs). The algorithm starts out from a certain set

of candidate sCURB configurations and checks the sCURB property iteratively. Each group

of LFPs either approves the sCURB property for a particular candidate or, if not approved,

increases the size of the candidate configuration by successively adding pure strategies. The

algorithm terminates in finite time and identifies all sCURB sets.

As the concepts of CURB and sCURB coincide for two-player games, we are able to

compare the performance of our algorithm with the one proposed by Benisch et al. (2006).

We also compare our computer simulation results concerning the size distribtution of minimal

sCURB sets with a theoretical result for Nash equilibria, due to Dresher (1970). In particular,

an adaptation of that result to the present setting implies that the probability that a finite

two-player game with randomly drawn payoffs will have a singleton sCURB set (a strict Nash

equilibrium) converges to 1 − 1/e as the number of pure strategies of both players tends to

plus infinity.

Part of this work is based on a scientific internship report at École Polytechnique, see

Klimm (2008).

2 Preliminaries

Consider finite normal-form games G = (N,S, u), where N = {1, ..., n} is the non-empty

and finite set of players, Si = {1, . . . ,mi} the non-empty and finite set of pure strategies

available to player i ∈ N , S = ×i∈NSi the set of pure-strategy profiles s = (s1, ..., sn), and

u : S → Rn is the combined payoff function that assigns a payoff ui (s) ∈ R to each pure-
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strategy profile s ∈ S and player i ∈ N . The total number of pure-strategy profiles in the

game is m = m1 · ... · mn.

To allow for randomizations, we identify each pure strategy h ∈ Si with the h:th unit

vector in Rmi, that is, with the mixed strategy that assigns unit probability to that pure

strategy, and define the linear (or mixed-strategy) extension of the game G as the game

G̃ = (N,�(S), ũ), where the product set �(S) = ×i∈N∆(Si) is the polyhedron of mixed-

strategy profiles x = (x1, ..., xn), with ∆(Si) denoting the set of mixed strategies available

to player i; the unit simplex in Rmi spanned by player i’s pure strategies (viewed as unit

vectors). The combined mixed-strategy payoff function ũ : �(S) → Rn is defined by ũi(x) =
∑

s∈S

(
∏

i∈N xi(si)
)

ui(s) ∀i ∈ N , where xi(si) is the probability that player i uses her pure

strategy si. We note that ũ(x) is multi-linear; for each j ∈ N it is linear in the mixed

strategy xj ∈ Rmj (the Euclidean space containing the simplex ∆(Sj)).

For any player i and mixed-strategy profile x, let x−i ∈ �(S−i) = ×j 6=i∆(Sj) denote

the strategy profile of all other players, and for any si ∈ Si and x−i ∈ �(S−i) let x′ =

(si, x−i) denote the mixed-strategy profile in which player i assigns probability one to her

pure strategy si and the others play according to x. We denote by βi(x−i) the set of pure

best replies of player i to x−i, that is:

βi(x−i) = {si ∈ Si : ũi(si, x−i) ≥ ũi(s
′
i, x−i)∀s′i ∈ Si}.

This defines player i’s (non-empty valued) best reply correspondence βi : �(S−i) ⇉ Si. For

any subset X−i ⊂ S−i, let βi(X−i) ⊂ Si be the direct image of X−i under βi. (Formally:

βi(X−i) = ∪x
−i∈X

−i
βi(x−i).) We view βi(X−i) as a subset of ∆(Si); the collection of unit

vectors that correspond to pure best replies to profiles x−i in X−i.

3 Closure and strong closure under rational behavior

Harsanyi and Selten (1988) introduced the notion of stability sets. For any player i ∈ N and

pure strategy si = h ∈ Si, the stability set Bih is the pre-image of si under i’s pure-strategy

best-reply correspondence. In other words, the set Bih consists of all those (mixed) strategy

profiles x−i ∈ �(S−i) for which the pure strategy si = h is a best reply for player i. Formally:

Bih = {x−i ∈ �(S−i) : h ∈ βi(x−i)} .

Kalai and Samet (1984) developed an equilibrium refinement called persistent equilib-
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rium. They did this by way of studying set-valued properties of a class of strategy subsets

called retracts. A retract is a product set X = ×i∈NXi, where each set Xi is a nonempty,

closed and convex subset of mixed strategies for player i, Xi ⊂ ∆ (Si). Basu and Weibull

(1991) call such a product set X closed under rational behavior (CURB) if it contains all its

best replies, that is, if βi(X−i) ⊂ Xi for each player i.1 They call a CURB set X minimal if

it does not contain any other CURB set.

As shown by Benisch et al. (2006), for linear extensions of finite games, a minimal CURB

set X is always a polyhedron, X = �(T ) = ×i∈N∆ (Ti), for nonempty subsets Ti ⊂ Si. To

see this, suppose that X is a minimal CURB set. Then there exists a unique, nonempty and

maximal subset Ti ⊂ Si for each player i such that ∆(Ti) ⊂ Xi, namely Ti = βi(X−i). Each

set Xi, being convex, contains the convex hull X ′
i = ∆(Ti) of Ti. Moreover, X ′ = ×i∈NX ′

i is

a CURB set: X ′
−i ⊂ X−i implies βi(X

′
−i) ⊂ βi(X−i). Hence, minimality implies X = X ′ =

�(T ). Benisch et al. (2006) also show that minimal CURB sets do not overlap. As noted by

Basu and Weibull (1991), minimal CURB sets always exist.

However, although minimal CURB sets are mathematically “well-behaved”, the defining

property of CURB sets is hard to use directly for identification of such sets in games of

moderate or large size, since the definition requires computation of all best replies βi(x−i) to

a continuum of mixed-strategy profiles, x−i ∈ X−i, for each player i. We base our algorithm

on the following immediate characterization of CURB sets:

Proposition 1 Let G̃ = (N,�(S), ũ) be the linear extension of a finite game. A configura-

tion T = ×i∈NTi, Ti ⊂ Si is a CURB configuration if and only if

Bih ∩ �(T−i) 6= ∅ ⇒ h ∈ Ti (1)

for all i ∈ N and h ∈ Si.

Equivalently, a configuration T = ×i∈NTi, Ti ⊂ Si, is not a CURB configuration if and

only if there is a player i ∈ N and a pure strategy h ∈ Si \ Ti such that Bih ∩ �(T−i) 6= ∅.

From this, it is possible to verify the CURB property of a configuration T by checking, for

each player i ∈ N and pure strategy h ∈ Si \ Ti, whether Bih ∩�(T−i) is empty. Hence, the

algorithmic challenge to verify the CURB property relies on the structure of the stability

sets Bih. It is a useful observation — made already by Benisch et al. for the design of their

1Note that a set Xi ⊂ ∆(Si) contains all mixed best replies to a profile x
−i if and only if it contains

all pure best replies to x
−i, since the set of mixed best replies is the subsimplex spanned by all pure best

replies.
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algorithm — that stability sets in finite two-player games are polytopes, that is, they are

bounded and convex sets that can be defined by the means of finitely many linear inequalities.

Proposition 2 In linear extensions G̃ of finite two-player games for every player i ∈ N

and pure strategy h ∈ Si the stability set Bih is a polytope in the space ∆(S−i).

Proof. Let G̃ = (N,�(S), ũ) be the linear extension of a finite two-player game. We show

the claimed result for the stability sets of of the row player, say player 1, only. To this end,

let h ∈ S1 be arbitrary. Now consider B1h = {x2 ∈ ∆(S2) : h ∈ β1(x2)}. We may write

x2 = σ = (σ1, . . . , σm2
) where σk denotes the probability that player 2 plays strategy her

k:th strategy. Moreover let A ∈ Rm1×m2 be defined as

A =













ui(1, 1) ui(1, 2) . . . ui(1,m2)

ui(2, 1) ui(2, 2) . . . ui(2,m2)
...

...
...

ui(m1, 1) ui(m1, 2) . . . ui(m1,m2)













.

Introducing the convention that Ah,· denotes the h:th row of A, the stability set can be

written as

B1h = {σ ∈ ∆(S2) : Ah,·σ ≥ Ak,·σ ∀k ∈ S1}

=











σ ∈ Rm2 :







σl ≥ 0 ∀l ∈ S2 and
∑

l∈S2
σk = 1 and

(Ah,· − Ak,·)σ ≥ 0 ∀k ∈ S1

















. (2)

The second term of Equation (2) is a system of linear equalities and inequalities on σ and

thus defines a polytope in ∆(Sj).

As an immediate consequence for two-player games, we obtain that, for any configuration

T = ×i∈NTi (for Ti ⊂ Si), any player i and pure strategy h ∈ Ti, the intersection Bih∩�(T−i)

is a polytope in ∆(S−i). We note, however, that the result of Proposition 2 holds only for

two-player games. In the three-player game in the following example, none of the stability

sets Bih is even convex.

Example 1 (Non-convexity of stability sets) Consider the game G̃ = (N,�(S), ũ) with

three players N = {1, 2, 3} and strategy spaces S1 = {U,D}, S2 = {T,B}, S3 = {L,R} and

with the payoff functions shown in Figure 1. This game can be interpreted as a matching

pennies game between players 1 and 2 where player 3 acts as a referee deciding who will win

when both pennies match.
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T B
U 1,-1,0 -1,1,0
D -1,1,0 1,-1,0

L

T B
U -1,1,0 1,-1,0
D 1,-1,0 -1,1,0

R

Figure 1: Game with non-convex stability sets

As u3(s) = 0 for all strategy profiles s ∈ S, each of player 3’s strategies h ∈ S3 is a best

reply to all strategy profiles x−3 ∈ �(S−3) and thus B3h = �(S−3). We will show now that

�(S−3) is not convex in ∆(S−3). For this, we calculate �(S−3) = {γU + (1 − γ)D : γ ∈

[0, 1]} × {δT + (1 − δ)B : δ ∈ [0, 1]}. In particular, (U, T ), (D,B) ∈ �(S−3). However, it is

easy to check that the mixed strategy profile (U, T )/2 + (D,B)/2 /∈ �(S−3). We derive that

�(S−3) is not convex. The projection of �(S−3) to ∆(S−3) is depicted in Figure 2 and shows

that �(S−3) is not even linear.

(U, T )

(U,B)

(D,T )

(D,B)

Figure 2: Stability sets of player 3 in the game of Figure 1

Moving to games with more than two players, we note the distinction between, on the

one hand, mixed-strategy profiles x−i ∈ �(S−i) for all other players than i, and, on the other

hand, arbitrary probabilistic beliefs µi ∈ ∆(S−i) that player i may hold over other players’

pure strategy choices. This distinction is evidently immaterial for two-player games, but

matters for games with more players. For while a strategy profile x−i assumes statistical

independence between all other player’s actions, µi does not. Mathematically, while x−i is

the product of probability distributions, one for each pure-strategy set Sj (for each j 6= i),

a belief µi ∈ ∆(S−i) is a probability distribution over the set S−i = ×j 6=iSj of others’ pure-

strategy profiles:

∆(S−i) =







y ∈ ×j 6=iR
mj

+ :
∑

j 6=i

∑

k∈Sj

yjk = 1
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A point that was already made by Aumann (1974, 1987) is that, in many applications

of game theory, the statistical independence of players’ actions, assumed in the definition

of Nash equilibrium, is not realistic. For instance, players may condition their action on

the observation of some external signal, or on a signal that depends on past action profiles,

actions taken by other players when playing the same game (as in dynamic social learning

processes). Then players’ current actions may be correlated. While we do not want to here

model such signals explicitly, we do want to allow players to form arbitrary probabilistic

beliefs over other players’ actions. For this purpose, we introduce the notion of strong

stability sets. For each player i and each of her pure strategies h ∈ Si, this is the subset of

probabilistic beliefs µi ∈ ∆(S−i) under which strategy h is optimal.

Definition 1 (Strong stability set) Let G̃ be the linear extension of a finite game. For

a player i ∈ N and her pure strategy h ∈ Si we call B̂ih = {µi ∈ ∆(S−i) : h ∈ βi(µ
i)} the

strong stability set of player i and pure strategy h.

Clearly, for two-player games, this definition coincides with that for stability sets. The

definition of strong stability sets essentially says that player i views all other players as a

single player with pure-strategy set S−i. Thus, the strong stability sets of a player i in an

arbitrary finite game coincide with the stability sets in a two-player game Ĝi =
(

N̂ , Ŝ, û
)

where N̂ = {i, 0}, Ŝ = Ŝi × Ŝ0 for Ŝi = Si and Ŝ0 = ×j 6=iSj, with ûi = ui and an arbitrary

payoff function u0. The strong stability sets of player i in the original game G is identical

with the stability set of player i in the two-player game Ĝi. It follows from Proposition 2

that strong stability sets, B̂ih ⊂ ∆(S−i), are polytopes. We define “strong closure under

rational behavior,” or sCURB, by means of these strong stability sets.2

Definition 2 (Strong closure under rational behavior) Let G̃ = (N,�(S), ũ) be the

linear extension of a finite game. A configuration T = ×i∈NTi, Ti ⊂ Si is called strongly

closed under rational behavior, mnemonic sCURB, if for all players i ∈ N and pure strategies

h ∈ Si \ Ti it holds that B̂ih ∩ �(T−i) = ∅.

Clearly, minimal sCURB sets always exist in finite games. Moreover, a sCURB set is

necessarily also a CURB set, and thus each minimal sCURB set contains at least one minimal

CURB set. The following example shows that not all CURB sets are sCURB.

Example 2 (Minimal CURB sets and minimal sCURB sets) Consider the linear ex-

tension G̃ = (N,�(S), ũ) in Figure 2 where S1 = {U,D}, S2 = {T,B}, S3 = {L,C,R}. For

2This route is also taken in Asheim et al. (2009).
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T B
U 2,2,2 2,2,0
D 2,2,0 2,2,0

L

T B
U 1,1,1 -1,-1,-1
D -1,-1,-1 1,1,1

C

T B
U 2,2,0 2,2,0
D 2,2,0 2,2,2

R

Figure 3: Game where sCURB sets and CURB sets do not coincide

the dependent belief of player 3 that player 1 and 2 play 1
2
{U, T}+ 1

2
{D,B} the center strat-

egy leads to a payoff equal to 2 as the other two strategies do. Thus the minimal sCURB

set comprises the center strategy of player 3. In fact one can compute that the minimal

sCURB set equals {U,D} × {T,B} × {L,C,R} In contrast, there is no independent strat-

egy profile x−3 ∈ �(S−3) such that C ∈ β3(x−3) and hence the minimal CURB set equals

{U,D} × {T,B} × {L,R}.

Remark 1 Note the parallel with the distinction in game theory between rationalizability

and correlated rationalizability. Pearce (1984) showed that for pure strategies in finite two-

player games, being a best reply to some probabilistic belief about the other player’s action

is equivalent to not being strictly dominated, while for games with more than two players,

this equivalence holds only if players’ are allowed to believe in correlation between the others’

actions.

4 The algorithm

In this section we present our algorithm, that identifies all minimal sCURB sets in any given

finite game. This is obtained in two steps. In the first step we construct a suitable family

T of configurations T = ×i∈NTi (for Ti ⊂ Si) that is large enough to contain all sCURB

configurations. In force of Proposition 1, it is necessary and sufficient for a configuration to

be sCURB that the polytope B̂ih ∩ ∆ (T−i) is empty for all players i and all pure strategies

h ∈ Si \ Ti. Checking the emptiness of a polytope is a linear problem that can be solved in

polynomial time of low order, see Ye (2006).

Given the family T of configurations, in the second step of the algorithm each candidate

set T from the family T , is picked out and certain linear feasibility problems are solved in

order to determine whether T is sCURB or not. If T is not sCURB, then T is enlarged until

it becomes sCURB (recall that S is sCURB). For this procedure to work, the family T of
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initial configurations has to be complete in the following sense (P (S) denotes the power set

of the set S):

Definition 3 (Sub-completeness with respect to sCURB sets) Let G̃ = (N,�(S), ũ)

be the linear extension of a finite game. A family of non-empty subsets T ⊂ P(S) is called

sub-complete with respect to sCURB sets if for every minimal non-empty sCURB set C

there is a set T ∈ T such that T ⊂ C.

The family P (S) is itself sub-complete with respect to sCURB sets, since every non-

empty sCURB set contains at least one pure strategy combination s ∈ S. We will take the

family T to be those configurations T = ×i∈NTi (for Ti ⊂ Si) that contain all pure best

replies to all beliefs that place unit probability on some pure-strategy profile in T . We will

call these configurations weak CURB, or wCURB. Formally:

Definition 4 (Weak CURB configuration) Let G̃ be the linear extension of a finite

game and let T = ×i∈NTi, Ti ⊂ Si be a configuration. T is called a weak CURB config-

uration if for all players i ∈ N and h ∈ Si \ Ti it holds that Bih ∩ T−i = ∅.

Clearly all sCURB configurations are CURB configurarions, and all these are wCURB

configurations. It is not difficult to show that the set of minimal wCURB configurations is

sub-complete with respect to sCURB:

Proposition 3 Let G̃ = (N,�(S), ũ) be the linear extension of a finite game and let T be

the set of minimal wCURB configurations in G̃. Then T is sub-complete with respect to

sCURB sets.

Proof. It is to show that every minimal sCURB set C contains a minimal wCURB

configuration B. C can be written as C = �(T ), T = ×i∈NTi, Ti ⊂ Si. As C is closed

under best replies it is in particular closed under pure best replies and we may derive that

T a wCURB configuration. Now consider the class T C of wCURB configurations within C.

They can be (partially) ordered by set-wise inclusion ⊂ establishing that there is at least

one set-wise minimal element. This element is a minimal wCURB configuration.

The first step in our algorithm is to find all minimal wCURB configurations. We do so

by using the so-called (pure-strategy) best-reply graph, a construction used by Young in his

analysis of social learning processes, see Young (1998). For any finite game G = (N,S, u),

this is a graph G(G) = (V,A) with all pure-strategy profiles as its vertices V . We call two

such strategy profiles s, t ∈ S = V neighbors if there is a player i ∈ N such that s and t differ
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in the strategy of player i only, that is sj = tj for all j 6= i. For two such neighbor strategy

profiles s and t we insert a directed arc (s, t), from s to t into A, if and only if ti ∈ βi(s−i).

The so constructed directed graph G(G) is called the best-reply graph of the finite game G.

We note that, for any finite game G, a configuration T = ×i∈NTi (for Ti ⊂ Si) is wCURB if

and only if there is no arc in G(G) that leaves T .3

Next, we show that the intersection of two wCURB sets forms a wCURB set. A similiar

result has been shown by Benisch et al. for CURB sets.

Proposition 4 Let U = ×i∈NUi and V = ×i∈NVi with Ui, Vi ⊂ Si be two wCURB config-

urations of the linear extension G̃ of a finite game. Then T = ×i∈NTi with Ti = Ui ∩ Vi is

also a wCURB configuration.

Proof. We fix an arbitrary player i ∈ N and consider βi(t) for a t ∈ T−i = U−i ∩ V−i. As

t ∈ U−i and t ∈ V−i and by the wCURB property of U and V the best reply βi(t) is in U−i

and V−i and hence in T = U ∩ V .

As a consequence of Proposition 4 we obtain that minimal wCURB configurations do not

intersect.

4.1 Step one: Finding all wCURB configurations

In this section we present the sub-algorithm that implements step one, that is, identifies all

minimal wCURB configurations for any finite game. To this end, let P (s) denote the set of

strategy profiles that can be reached by a directed path in G(G) starting in s. We identify

these sets by way of computing, for each pair of strategy profiles s, t ∈ S the “directed

distance” measured as the number of arcs in a shortest directed path from s to t. We assign

the distance = ∞ if no such path exists. The computation of these distances can be made in

O(m3) with the algorithm of Floyd and Warshall, see Cormen et al. (2001) for a description.

Clearly, P (s) contains all vertices t within finite directed distance from s. While P (s)

need not to be of the product form ×i∈NTi (for Ti ⊂ Si), the algorithm identifies the minimal

wCURB configuration, T (s) = ×i∈NTi (s), that contains P (s). This procedure is initialized

by setting B0(s) = P (s) and letting T 0(s) be the minimal product set, ×i∈NTi, that contains

B0(s). Then let B1(s) =
⋃

t∈T 0(s) P (t). If B1(s) = B0(s), then we have found a minimal

wCURB configuration that contains P (s), namely T 0(s). If B1(s) 6= B0(s), then let T 1(s)

3In graph theory, this condition writes as δ+(T ) = ∅.
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be the minimal product set, ×i∈NTi, that contains B1(s), and set B2(s) =
⋃

t∈T 1(s) P (t).

If B2(s) = B1(s), then T 1(s) is a minimal wCURB configuration that contains P (s). The

algorithm proceeds in the same way until Bk+1(s) = Bk(s) for a positive integer k. The

game being finite, this procedure halts in a finite number of rounds. The pseudocode of this

algorithm can be found in Algorithm 1.

Input: finite game G, sets of directedly reachable profiles (P (s))s∈S

Output: the family C of all minimal wCURB configurations in G
foreach s ∈ S do1

T (s) := ×i∈N

⋃

t∈P (s) supp(t) ;2

end3

foreach s ∈ S do4

Cs := T (s) ;5

converged := false ;6

while ¬ converged do7

converged := true ;8

foreach t ∈ Cs do9

if ¬(T (t) ⊂ Cs) then10

Cs := Cs ∪ T (t) ;11

converged := false ;12

end13

end14

end15

if 6 ∃C ′ ∈ C : C ′ ⊂ Cs then16

C := C ∪ {Cs} ;17

if ∃C ′ ∈ C : Cs ( C ′ then18

C := C \ {C ′} ;19

end20

end21

end22

Algorithm 1: Computation of all minimal pure CURB configurations

Proposition 5 Let a finite game G = (N,S, u) and the sets (P (s))s∈S be given. Algorithm

1 computes all minimal wCURB configurations of G in O(m3).

Proof. The main loop is called once for each s ∈ S and thus m times. We remark that

T (t) can be implemented by a vector of boolean values for each player. During the iteration

of the while loop every T (t), t ∈ S is at most once tested and added to Cs. This can be done

in O(maxi∈N mi nm) ⊂ O(m2), delivering the result.

As a corollary of this result we obtain that all wCURB sets, of any finite game, can be

computed in O(m3).

12



4.2 The full algorithm

Having described the first step of the algorithm, we proceed to present the full algorithm,

as applied to the linear extension G̃ of any finite game G. It takes as input a family T

of sets T = ×i∈NTi (for Ti ⊂ Si) that is sub-complete with respect to sCURB sets, and

gives as output all minimal sCURB sets of the game. The algorithm is general in the

sense that the family T is arbitrary, provided that it satisfies sub-completeness. However,

runtime comparisons show that the choice of T determines the performance of the algorithm

considerably. If we would take as input the family T consisting of all sets T = ×i∈NTi (for

Ti ⊂ Si), then the algorithm would be equivalent to that of Benisch et al. So the main

advantage of the present algorithm is to instead initiate it from the much smaller family of

wCURB configurations, as described above. The pseudocode is shown in Algorithm.

Input: linear extension G̃ of a finite game, a class of sets T that is sub-complete with
respect to sCURB sets

Output: the set of all CURB sets C
while T 6= ∅ do1

Choose a size-minimal T ∈ T ;2

foreach i ∈ N do3

foreach si 6∈ Ti do4

if B̂isi
∩ �(T ) 6= ∅ then5

Update all T ∈ T ;6

Goto line 2 ;7

end8

end9

end10

T := T \ {T} ;11

C := C ∪ {C} ;12

Update all T ∈ T ;13

end14

Algorithm 2: An generic algorithm for sCURB sets in linear extensions of finite games

In order to prove the correctness of this algorithm, we need the following lemma. We

denote by C the set of wCURB sets that have already been determined.

Lemma 6 During the run of the algorithm the candidate set T is sub-complete with respect

to remaining sCURB sets, i.e. for every minimal CURB set C /∈ C there is a candidate set

T ∈ T such that T ⊂ C.
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Proof. By induction. Let k be the number of iterations of the while loop.

”k = 0”: The completeness property is required when the algorithm starts.

”k → k + 1”: Let the completeness property be valid for the first k iterations. During the

k + 1:st iteration one can distinguish between the two cases: First, suppose in the k + 1:st

iteration a new sCURB set is found. Then, there can be no minimal sCURB set left that

intersects with the sCURB set found and thus all candidate sets that intersect with the

sCURB set found may be erased from the set of candidates T . Second, if a set T ∈ T that

is minimal in size is chosen and it exists i ∈ N and si ∈ Si such that Bisi
∩�(T ) 6= ∅. Then

there can be no sCURB set that contains the strategies in T−i but not strategy si. Thus

all candidate sets that contain the strategies in T−i can be extended by si and hence the

candidate set stays complete.

Proposition 7 Let G̃ be the linear extension of a finite game. Algorithm 2 on page 13

terminates after finitely many steps and identifies all minimal sCURB sets of G̃.

Proof. In each iteration either a new constraint for the candidate sets or a new sCURB

set is found. Every new sCURB set prohibits the played strategies to be included in further

candidate sets. If a new constraint is found at least one candidate set, i.e. the candidate

set that was checked to be sCURB is enlarged to si. So in every iteration at least one set is

removed from the set of candidates or at least one set is enlarged about at least one strategy.

Thus after finite time either the set of candidates is empty or each candidate is arbitrary

large, i.e. the candidate sets are equal to S. As every strategy is played in S the set is

recognized to be sCURB. Then every other set that is equal to S is removed from the set

of candidates in line 14. Thus the algorithm terminates after finite time. Since the set of

candidates T is complete in every iteration by Lemma 6 and T = ∅ after termination, all

minimal sCURB sets have been computed.

5 Runtime

In the implementation of our algorithm, we use SCIP as LP Solver. SCIP is a framework

for solving integer and mixed programs developed by Achterberg (2007) in his Ph.D. thesis.

It is considered to be one of the fastest non-commercial frameworks to solve mixed integer

problems. We use SoPlex in version 1.32 as the underlying simplex algorithm. SoPlex has

been developed as part of the Ph.D. thesis of Wunderlich (1996). The whole package can be

found at http://scip.zib.de/.
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For the sake of benchmark comparisons, we computed all minimal sCURB sets in games

with random payoffs, generated by GAMUT. The GAMUT framework has become standard

for testing game theoretic algorithms (for a detailed description, see Nudelman et al. (2004)).

As the two concepts of minimal CURB sets and sCURB sets coincide in two-player games

our runtimes can be meaningfully compared with those of the Benisch-Davis algorithm. The

results of the time measurements are shown in Figure 4. The dashed line for the Benisch-

Davis-Sandholm algorithm is taken from Benisch et al. (2006). The solid line shows the

median over 200 games of the time needed to compute all minimal CURB sets. In Figure 4

(a), we plot the average runtime as a function of the total number of pure strategies, m1+m2

(as in Benisch et al. (2006)). In Figure 4 (b), we plot the average runtime as a function of

the number of pure-strategy profiles, m = m1m2. The latter graph shows more directly the

“effort” of the algorithm, since this depends on the number of strategy profiles. This plot

suggests that the average runtime for our algorithm is nearly linearly for games with up to

6000 strategy profiles, while the runtime of the Benisch et al. algorithm seems to increase

exponentially in the number of strategy profiles.
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Figure 4: Runtime of algorithms for the computation of all minimal CURB sets in random
two-player games a) with respect to m1 + m2, b) with respect to m = m1 m2

To study the performance of our algorithm when solving games with more than two

players, we applied it to games with n players, for n = 2, 3, ..., in which each player has

only two pure strategies. The average runtime of the algorithm is shown in Figure 5 (a) as

a function of the number n of players and in Figure 5 (b) as a function of the number of

pure-strategy profiles. These plots show that the time needed to identify all minimal sCURB

sets is “affordable” up to n = 10 players. In games with more players, the algorithm does
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not terminate within reasonable time.
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Figure 5: Runtime of our algorithm to compute all minimal sCURB sets in random games
with n players and two strategies per player a) with respect n, b) with respect to 2n

6 Size distribution of minimal CURB sets

Some games have small CURB sets, even singletons, while others have only large CURB

sets. For the purpose of prediction, the typical size of CURB sets is of importance. Benisch

et al. (2006) analyze the size distribution of minimal CURB sets in certain classes of random

two-player games, generated by GAMUT. They define the size of a minimal CURB set

X = ∆ (T1) × ∆ (T2) as the sum of pure strategies involved, |T1| + |T2|. Hence, for an

m1 × m2-game, minimal CURB sets range in size from 2 (singletons) to m1 + m2 (the full

strategy space). For each of the randomly generated games in their study, Benisch et al.

recorded the smallest size, so defined, of all its minimal CURB sets. They found that the

smallest minimal CURB set in a random game, in the studied game lasses, is rarely of

intermediate size. As shown in Figure 6, also we find that most games have a smallest

minimal CURB set that is either a singleton, corresponding to a strict Nash equilibrium,

or it takes up the whole strategy space. Moreover, the proportion of games in which the

smallest minimal CURB set is a singleton seems to converge as the number of pure strategies

increases. This observation is in agreement with a theoretical result due to Dresher (1970),

namely, that the probability that a random m1×m2 game will have at least one pure-strategy

Nash equilibrium converges to 1 − 1/e as min {m1,m2} → +∞. Formally:
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Figure 6: Distribution of smallest CURB set size among 200 randomly drawn games for
different game sizes from 10 × 10 up to 70 × 70

Theorem 8 (Dresher (1979)) Let G = (N,S, u) be a finite game where payoff is drawn

with the following rules:

1. The n · m payoffs are independent random variables

2. For each player i ∈ N the m payoffs ui(s) have the same continuous probability distri-

bution.

Then the probability for the existence of at least one pure-strategy Nash equilibrium converges

to 1 − e−1 as min{mi,mj} → ∞ for at least two players i and j.

In the studied class of random games, a pure-strategy Nash equilibrium is strict with

probability one, since payoff ties have zero probability. Hence, each pure-strategy Nash

equilibrium, viewed as a singleton set, is, with probability one, a minimal CURB set. Thus,

Dresher’s theorem implies that we should expect the share of games with smallest minimal

CURB set size 2 should converge to 1−e−1 as the number of pure strategies tends to infinity:

Corollary 9 In the linear extension of a finite random game as above the probability that

the smallest minimal CURB set is a singleton converges to 1− e−1 as min{mi,mj} → ∞ for

at least two players i and j.
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This theoretical result seems to fit well the empirical size distribution in Figure 6; see

the thin horizontal line that indicates 1 − e−1 ≈ 0.632.

So far, we have studied only the size of the smallest CURB sets. What about the complete

size distribution for minimal CURB sets? In Figure 7 we report some results. In panel (a),

it is shown that about 90% of the minimal CURB sets in random 2×2-games are singletons.

In panel (b), we see that, in random 4× 4-games, about 77% of the minimal CURB sets are

singletons, while, for example, about 12% of the minimal CURB sets are of size 4 = 2 + 2,

about 4% of size 6 = 3 + 3 and about 2.5% of size 5 = 2 + 3 = 3 + 2, etc. In panel (c), we

see that minimal CURB sets of intermediate size are not frequent in random games of size

16 × 16, and in panel (d) we see that they are quite rare in random games of size 32 × 32.

This tendency, towards singletons or the full strategy space, seem to hold for even larger

games.
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Figure 7: Distribution of the sizes of minimal sCURB sets a) in random 2 × 2 games, b) in
random 4 × 4 games, c) in random 16 × 16 games, d) in random 32 × 32 games
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