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 as subsets of the strategy space that contain all best replies to all strategy profiles in the set. We here consider a more restrictive notion of closure under rational behavior: a subset of the strategy space is strongly closed under rational behavior, or sCURB, if it contains all best replies to all probabilistic beliefs over the set. We present an algorithm that computes all minimal sCURB sets in any given finite game. Runtime measurements on two-player games (where the concepts of CURB and sCURB coincide)

.

Introduction

Since the pioneering works of John von Neumann, Oskar Morgenstern and John Nash, noncooperative games have become the standard framework for analyses of a very wide range of strategic interactions in economics and other social and behavioral sciences. Despite the enormous range of applications of Nash equilibrium as a solution concept, its stability has been queried in the works of [START_REF] Selten | Reexamination of the perfectness concept for equilibrium points in extensive games[END_REF] and [START_REF] Myerson | Refinements of the Nash equilibrium concept[END_REF] and others, leading to a range of refinements such as perfect and proper equilibria. Any strict Nash equilibrium (one in which each player's strategy is her unique best reply) satisfies these refinements.

However, many games have no strict equilibria. A set-valued version of strict equilibrium was proposed by [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF]. They call a set of strategy profiles closed under rational behavior, or CURB for short, if it contains all best replies to itself. Minimal such sets exist in a large class of games, including all finite games. Also other set-valued solution concepts have been introduced in the game-theory literature, such as persistent retracts by [START_REF] Kalai | Persistent equilibria in strategic games[END_REF], strategically stable sets by 1 [START_REF] Kohlberg | [END_REF] and preparation sets by Voorneveld (2004). As shown in [START_REF] Voorneveld | Persistent retracts and preparation[END_REF], the unique product-set valued solution concept that satisfies nonemptiness, one-person rationality, consistency, nonnestedness, and satisfaction is the minimal CURB concept. Another reason to study minimal CURB sets is that they are attractors to several processes of social learning, see the works of [START_REF] Young | Individual Strategy and Social Structure: An Evolutionary Theory of Institutions[END_REF] and [START_REF] Hurkens | Learning by forgetful players[END_REF].

We here present an algorithm that identifies all minimal CURB sets in any given finite two-player game. It also finds all minimal strong CURB sets in any finite game at all.

The distinction between CURB and strong (or correlated) CURB is immaterial in twoplayer games but matters for games with more players. While CURB is based on the Nash paradigm of uncorrelated individual strategies, strong CURB allows a player to believe that other players' actions may be correlated (statistically dependent).

In the history of algorithmic work in game theory, that of Lemke and J. T. Howson is a land-mark. They proposed an algorithm that finds all Nash equilibria in any given finite two-player game. However, it was shown by [START_REF] Savani | Exponentially many steps for finding a nash equilibrium in a bimatrix game[END_REF] that there are such games for which the runtime of this algorithm is exponential in the size of the game (defined as the total number of pure strategies). Moreover, the problem of finding one Nash equilibrium in such games is known to be PPAD-complete, suggesting that no polynomial algorithm exists. This holds even when the payoffs received by the players are restricted to be binary, see [START_REF] Chen | Settling the complexity of two-player nash equilibrium[END_REF] and [START_REF] Abbott | On the complexity of two-player win-lose games[END_REF].

Concerning CURB sets, the first algorithm was provided by [START_REF] Pruzhansky | On finding curb sets in extensive games[END_REF], who proposed an algorithm that identifies CURB sets in finite games in extensive form of perfect information. Such games possess a unique minimal CURB set, and this can be computed in a relatively straightforward manner. Several algorithms to compute CURB sets in finite two-player games in normal (or strategic) form was developed by [START_REF] Benisch | Algorithms for rationalizability and CURB sets[END_REF]. The present algorithm builds in part on their work and we conclude by comparing the performance of their and our algorithms.

The first step in our analysis concerns the geometric structure of so-called stability sets, introduced by [START_REF] Harsanyi | A General Theory of Equilibrium Selection in Games[END_REF]. These are pre-images of the pure best-reply correspondence. We show that, in finite two-player games, all stability sets are polytopes.

For finite games with three or more players, the stability sets are not always polytopes. In fact, they are not even convex in general. This is due to the assumed statistical independence between different players' randomization. As a consequence, stability sets cannot be defined by linear inequalities, in general. For games with more than two players, we overcome this inconvenience by allowing each player to believe that others' actions are correlated (or dependent), and we modify the definition of stability sets accordingly, obtaining what we call strong stability sets. The strong stability set, for a given pure strategy of a player in a finite game, is the set of probability distributions over the others' pure-strategy combinations, under which the pure strategy in question is optimal. So defined, strong stability sets are polytopes, in all finite games. We use the notion of strong stability sets to define strong CURB sets, or sCURB sets for short, requiring that they contain all best replies to themselves, without the restriction that each player believes that the others' actions are statistically independent. The same approach is taken in [START_REF] Asheim | Epistemic robustness of sets closed under rational behavior[END_REF], who provide epistemic characterizations of sCURB sets in finite games. Sets of this nature were first introduced by [START_REF] Harsanyi | A General Theory of Equilibrium Selection in Games[END_REF], in their analysis of the agent normal form of finite extensive-form games. The called such sets primitive formations.

Our main results concern an algorithm that we propose. This algorithm computes all minimal sCURB sets in any given finite game. We show that this is possible to do by way of solving certain linear feasibility problems (LFPs). The algorithm starts out from a certain set of candidate sCURB configurations and checks the sCURB property iteratively. Each group of LFPs either approves the sCURB property for a particular candidate or, if not approved, increases the size of the candidate configuration by successively adding pure strategies. The algorithm terminates in finite time and identifies all sCURB sets.

As the concepts of CURB and sCURB coincide for two-player games, we are able to compare the performance of our algorithm with the one proposed by [START_REF] Benisch | Algorithms for rationalizability and CURB sets[END_REF].

We also compare our computer simulation results concerning the size distribtution of minimal sCURB sets with a theoretical result for Nash equilibria, due to [START_REF] Dresher | Probability of a pure equilibrium point in n-person games[END_REF]. In particular, an adaptation of that result to the present setting implies that the probability that a finite two-player game with randomly drawn payoffs will have a singleton sCURB set (a strict Nash equilibrium) converges to 1 -1/e as the number of pure strategies of both players tends to plus infinity.

Part of this work is based on a scientific internship report at École Polytechnique, see [START_REF] Klimm | Algorithms for curb sets[END_REF].

Preliminaries

Consider finite normal-form games G = (N, S, u), where N = {1, ..., n} is the non-empty and finite set of players, S i = {1, . . . , m i } the non-empty and finite set of pure strategies available to player i ∈ N , S = × i∈N S i the set of pure-strategy profiles s = (s 1 , ..., s n ), and u : S → R n is the combined payoff function that assigns a payoff u i (s) ∈ R to each pure-strategy profile s ∈ S and player i ∈ N . The total number of pure-strategy profiles in the game is m = m 1 • ... • m n .

To allow for randomizations, we identify each pure strategy h ∈ S i with the h:th unit vector in R m i , that is, with the mixed strategy that assigns unit probability to that pure strategy, and define the linear (or mixed-strategy) extension of the game G as the game G = (N, (S), ũ), where the product set (S) = × i∈N ∆(S i ) is the polyhedron of mixedstrategy profiles x = (x 1 , ..., x n ), with ∆(S i ) denoting the set of mixed strategies available to player i; the unit simplex in R m i spanned by player i's pure strategies (viewed as unit vectors). The combined mixed-strategy payoff function ũ : (S) → R n is defined by ũi (x) = s∈S i∈N x i (s i ) u i (s) ∀i ∈ N , where x i (s i ) is the probability that player i uses her pure strategy s i . We note that ũ(x) is multi-linear; for each j ∈ N it is linear in the mixed strategy x j ∈ R m j (the Euclidean space containing the simplex ∆(S j )).

For any player i and mixed-strategy profile x, let x -i ∈ (S -i ) = × j =i ∆(S j ) denote the strategy profile of all other players, and for any s i ∈ S i and x -i ∈ (S -i ) let x ′ = (s i , x -i ) denote the mixed-strategy profile in which player i assigns probability one to her pure strategy s i and the others play according to x. We denote by β i (x -i ) the set of pure best replies of player i to x -i , that is:

β i (x -i ) = {s i ∈ S i : ũi (s i , x -i ) ≥ ũi (s ′ i , x -i ) ∀s ′ i ∈ S i }.
This defines player i's (non-empty valued) best reply correspondence β i : (S -i ) ⇉ S i . For any subset X -i ⊂ S -i , let β i (X -i ) ⊂ S i be the direct image of X -i under β i . (Formally:

β i (X -i ) = ∪ x -i ∈X -i β i (x -i ).
) We view β i (X -i ) as a subset of ∆(S i ); the collection of unit vectors that correspond to pure best replies to profiles x -i in X -i .

3 Closure and strong closure under rational behavior [START_REF] Harsanyi | A General Theory of Equilibrium Selection in Games[END_REF] introduced the notion of stability sets. For any player i ∈ N and pure strategy s i = h ∈ S i , the stability set B ih is the pre-image of s i under i's pure-strategy best-reply correspondence. In other words, the set B ih consists of all those (mixed) strategy profiles x -i ∈ (S -i ) for which the pure strategy s i = h is a best reply for player i. Formally: [START_REF] Kalai | Persistent equilibria in strategic games[END_REF] developed an equilibrium refinement called persistent equilib-rium. They did this by way of studying set-valued properties of a class of strategy subsets called retracts. A retract is a product set X = × i∈N X i , where each set X i is a nonempty, closed and convex subset of mixed strategies for player i, X i ⊂ ∆ (S i ). [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF] call such a product set X closed under rational behavior (CURB) if it contains all its best replies, that is, if β i (X -i ) ⊂ X i for each player i.1 They call a CURB set X minimal if it does not contain any other CURB set.

B ih = {x -i ∈ (S -i ) : h ∈ β i (x -i )} .
As shown by [START_REF] Benisch | Algorithms for rationalizability and CURB sets[END_REF], for linear extensions of finite games, a minimal CURB set X is always a polyhedron, X = (T ) = × i∈N ∆ (T i ), for nonempty subsets T i ⊂ S i . To see this, suppose that X is a minimal CURB set. Then there exists a unique, nonempty and maximal subset

T i ⊂ S i for each player i such that ∆(T i ) ⊂ X i , namely T i = β i (X -i ). Each set X i , being convex, contains the convex hull X ′ i = ∆(T i ) of T i . Moreover, X ′ = × i∈N X ′ i is a CURB set: X ′ -i ⊂ X -i implies β i (X ′ -i ) ⊂ β i (X -i ).
Hence, minimality implies X = X ′ = (T ). [START_REF] Benisch | Algorithms for rationalizability and CURB sets[END_REF] also show that minimal CURB sets do not overlap. As noted by [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF], minimal CURB sets always exist.

However, although minimal CURB sets are mathematically "well-behaved", the defining property of CURB sets is hard to use directly for identification of such sets in games of moderate or large size, since the definition requires computation of all best replies β i (x -i ) to a continuum of mixed-strategy profiles, x -i ∈ X -i , for each player i. We base our algorithm on the following immediate characterization of CURB sets:

Proposition 1 Let G = (N, (S), ũ) be the linear extension of a finite game. A configuration T = × i∈N T i , T i ⊂ S i is a CURB configuration if and only if

B ih ∩ (T -i ) = ∅ ⇒ h ∈ T i (1)
for all i ∈ N and h ∈ S i .

Equivalently, a configuration

T = × i∈N T i , T i ⊂ S i , is not a CURB configuration if and only if there is a player i ∈ N and a pure strategy h ∈ S i \ T i such that B ih ∩ (T -i ) = ∅.
From this, it is possible to verify the CURB property of a configuration T by checking, for each player i ∈ N and pure strategy h ∈ S i \ T i , whether B ih ∩ (T -i ) is empty. Hence, the algorithmic challenge to verify the CURB property relies on the structure of the stability sets B ih . It is a useful observation -made already by Benisch et al. for the design of their algorithm -that stability sets in finite two-player games are polytopes, that is, they are bounded and convex sets that can be defined by the means of finitely many linear inequalities.

Proposition 2 In linear extensions G of finite two-player games for every player i ∈ N and pure strategy h ∈ S i the stability set B ih is a polytope in the space ∆(S -i ).

Proof. Let G = (N, (S), ũ) be the linear extension of a finite two-player game. We show the claimed result for the stability sets of of the row player, say player 1, only. To this end, let h ∈ S 1 be arbitrary. Now consider B 1h = {x 2 ∈ ∆(S 2 ) : h ∈ β 1 (x 2 )}. We may write

x 2 = σ = (σ 1 , . . . , σ m 2 )
where σ k denotes the probability that player 2 plays strategy her k:th strategy. Moreover let A ∈ R m 1 ×m 2 be defined as

A =       u i (1, 1) u i (1, 2) . . . u i (1, m 2 ) u i (2, 1) u i (2, 2) . . . u i (2, m 2 ) . . . . . . . . . u i (m 1 , 1) u i (m 1 , 2) . . . u i (m 1 , m 2 )      
.

Introducing the convention that A h,• denotes the h:th row of A, the stability set can be written as

B 1h = {σ ∈ ∆(S 2 ) : A h,• σ ≥ A k,• σ ∀k ∈ S 1 } =      σ ∈ R m 2 :    σ l ≥ 0 ∀l ∈ S 2 and l∈S 2 σ k = 1 and (A h,• -A k,• )σ ≥ 0 ∀k ∈ S 1         . ( 2 
)
The second term of Equation ( 2) is a system of linear equalities and inequalities on σ and thus defines a polytope in ∆(S j ).

As an immediate consequence for two-player games, we obtain that, for any configuration

T = × i∈N T i (for T i ⊂ S i ), any player i and pure strategy h ∈ T i , the intersection B ih ∩ (T -i )
is a polytope in ∆(S -i ). We note, however, that the result of Proposition 2 holds only for two-player games. In the three-player game in the following example, none of the stability sets B ih is even convex.

Example 1 (Non-convexity of stability sets) Consider the game G = (N, (S), ũ) with three players N = {1, 2, 3} and strategy spaces S 1 = {U, D}, S 2 = {T, B}, S 3 = {L, R} and with the payoff functions shown in Figure 1. This game can be interpreted as a matching pennies game between players 1 and 2 where player 3 acts as a referee deciding who will win when both pennies match.

T B U 1,-1,0 -1,1,0 D -1,1,0 1,-1,0 L T B U -1,1,0 1,-1,0 D 1,-1,0 -1,1,0 R Figure 1: Game with non-convex stability sets
As u 3 (s) = 0 for all strategy profiles s ∈ S, each of player 3's strategies h ∈ S 3 is a best reply to all strategy profiles x -3 ∈ (S -3 ) and thus B 3h = (S -3 ). We will show now that

(S -3 ) is not convex in ∆(S -3 ). For this, we calculate (S -3 ) = {γU + (1 -γ)D : γ ∈ [0, 1]} × {δT + (1 -δ)B : δ ∈ [0, 1]}.
In particular, (U, T ), (D, B) ∈ (S -3 ). However, it is easy to check that the mixed strategy profile (U, T )/2 + (D, B)/2 / ∈ (S -3 ). We derive that (S -3 ) is not convex. The projection of (S -3 ) to ∆(S -3 ) is depicted in Figure 2 and shows that (S -3 ) is not even linear. Moving to games with more than two players, we note the distinction between, on the one hand, mixed-strategy profiles x -i ∈ (S -i ) for all other players than i, and, on the other hand, arbitrary probabilistic beliefs µ i ∈ ∆(S -i ) that player i may hold over other players' pure strategy choices. This distinction is evidently immaterial for two-player games, but matters for games with more players. For while a strategy profile x -i assumes statistical independence between all other player's actions, µ i does not. Mathematically, while x -i is the product of probability distributions, one for each pure-strategy set S j (for each j = i),

(U, T ) (U, B) (D, T ) (D, B)
a belief µ i ∈ ∆(S -i
) is a probability distribution over the set S -i = × j =i S j of others' purestrategy profiles:

∆(S -i ) =    y ∈ × j =i R m j + : j =i k∈S j y jk = 1   
A point that was already made by [START_REF] Aumann | Subjectivity and correlation in randomized strategies[END_REF][START_REF] Aumann | Correlated equilibrium as an expression of Bayesian rationality[END_REF] is that, in many applications of game theory, the statistical independence of players' actions, assumed in the definition of Nash equilibrium, is not realistic. For instance, players may condition their action on the observation of some external signal, or on a signal that depends on past action profiles, actions taken by other players when playing the same game (as in dynamic social learning processes). Then players' current actions may be correlated. While we do not want to here model such signals explicitly, we do want to allow players to form arbitrary probabilistic beliefs over other players' actions. For this purpose, we introduce the notion of strong stability sets. For each player i and each of her pure strategies h ∈ S i , this is the subset of probabilistic beliefs µ i ∈ ∆(S -i ) under which strategy h is optimal.

Definition 1 (Strong stability set) Let G be the linear extension of a finite game. For a player i ∈ N and her pure strategy h ∈ S i we call Bih = {µ i ∈ ∆(S -i ) : h ∈ β i (µ i )} the strong stability set of player i and pure strategy h.

Clearly, for two-player games, this definition coincides with that for stability sets. The definition of strong stability sets essentially says that player i views all other players as a single player with pure-strategy set S -i . Thus, the strong stability sets of a player i in an arbitrary finite game coincide with the stability sets in a two-player game Ĝi = N , Ŝ, û where N = {i, 0}, Ŝ = Ŝi × Ŝ0 for Ŝi = S i and Ŝ0 = × j =i S j , with ûi = u i and an arbitrary payoff function u 0 . The strong stability sets of player i in the original game G is identical with the stability set of player i in the two-player game Ĝi . It follows from Proposition 2 that strong stability sets, Bih ⊂ ∆(S -i ), are polytopes. We define "strong closure under rational behavior," or sCURB, by means of these strong stability sets.2 Definition 2 (Strong closure under rational behavior) Let G = (N, (S), ũ) be the linear extension of a finite game. A configuration T = × i∈N T i , T i ⊂ S i is called strongly closed under rational behavior, mnemonic sCURB, if for all players i ∈ N and pure strategies

h ∈ S i \ T i it holds that Bih ∩ (T -i ) = ∅.
Clearly, minimal sCURB sets always exist in finite games. Moreover, a sCURB set is necessarily also a CURB set, and thus each minimal sCURB set contains at least one minimal CURB set. The following example shows that not all CURB sets are sCURB.

Example 2 (Minimal CURB sets and minimal sCURB sets) Consider the linear extension G = (N, (S), ũ) in Figure 2 where 3: Game where sCURB sets and CURB sets do not coincide the dependent belief of player 3 that player 1 and 2 play 1 2 {U, T } + 1 2 {D, B} the center strategy leads to a payoff equal to 2 as the other two strategies do. Thus the minimal sCURB set comprises the center strategy of player 3. In fact one can compute that the minimal sCURB set equals {U, D} × {T, B} × {L, C, R} In contrast, there is no independent strategy profile x -3 ∈ (S -3 ) such that C ∈ β 3 (x -3 ) and hence the minimal CURB set equals {U, D} × {T, B} × {L, R}.

S 1 = {U, D}, S 2 = {T, B}, S 3 = {L, C, R}. For T B U 2,2,2 2,2,0 D 2,2,0 2,2,0 L T B U 1,1,1 -1,-1,-1 D -1,-1,-1 1,1,1 C T B U 2,2,0 2,2,0 D 2,2,0 2,2,2 R Figure
Remark 1 Note the parallel with the distinction in game theory between rationalizability and correlated rationalizability. [START_REF] Pearce | Rationalizable strategic behavior and the problem of perfection[END_REF] showed that for pure strategies in finite twoplayer games, being a best reply to some probabilistic belief about the other player's action is equivalent to not being strictly dominated, while for games with more than two players, this equivalence holds only if players' are allowed to believe in correlation between the others' actions.

The algorithm

In this section we present our algorithm, that identifies all minimal sCURB sets in any given finite game. This is obtained in two steps. In the first step we construct a suitable family T of configurations T = × i∈N T i (for T i ⊂ S i ) that is large enough to contain all sCURB configurations. In force of Proposition 1, it is necessary and sufficient for a configuration to be sCURB that the polytope Bih ∩ ∆ (T -i ) is empty for all players i and all pure strategies h ∈ S i \ T i . Checking the emptiness of a polytope is a linear problem that can be solved in polynomial time of low order, see [START_REF] Ye | Improved complexity results on solving real-number linear feasibility problems[END_REF].

Given the family T of configurations, in the second step of the algorithm each candidate set T from the family T , is picked out and certain linear feasibility problems are solved in order to determine whether T is sCURB or not. If T is not sCURB, then T is enlarged until it becomes sCURB (recall that S is sCURB). For this procedure to work, the family T of initial configurations has to be complete in the following sense (P (S) denotes the power set of the set S):

Definition 3 (Sub-completeness with respect to sCURB sets) Let G = (N, (S), ũ) be the linear extension of a finite game. A family of non-empty subsets T ⊂ P(S) is called sub-complete with respect to sCURB sets if for every minimal non-empty sCURB set C there is a set T ∈ T such that T ⊂ C.

The family P (S) is itself sub-complete with respect to sCURB sets, since every nonempty sCURB set contains at least one pure strategy combination s ∈ S. We will take the family T to be those configurations T = × i∈N T i (for T i ⊂ S i ) that contain all pure best replies to all beliefs that place unit probability on some pure-strategy profile in T . We will call these configurations weak CURB, or wCURB. Formally: Definition 4 (Weak CURB configuration) Let G be the linear extension of a finite game and let

T = × i∈N T i , T i ⊂ S i be a configuration. T is called a weak CURB config- uration if for all players i ∈ N and h ∈ S i \ T i it holds that B ih ∩ T -i = ∅.
Clearly all sCURB configurations are CURB configurarions, and all these are wCURB configurations. It is not difficult to show that the set of minimal wCURB configurations is sub-complete with respect to sCURB: Proposition 3 Let G = (N, (S), ũ) be the linear extension of a finite game and let T be the set of minimal wCURB configurations in G. Then T is sub-complete with respect to sCURB sets.

Proof.

It is to show that every minimal sCURB set C contains a minimal wCURB configuration B. C can be written as C = (T ), T = × i∈N T i , T i ⊂ S i . As C is closed under best replies it is in particular closed under pure best replies and we may derive that T a wCURB configuration. Now consider the class T C of wCURB configurations within C.

They can be (partially) ordered by set-wise inclusion ⊂ establishing that there is at least one set-wise minimal element. This element is a minimal wCURB configuration.

The first step in our algorithm is to find all minimal wCURB configurations. We do so by using the so-called (pure-strategy) best-reply graph, a construction used by Young in his analysis of social learning processes, see [START_REF] Young | Individual Strategy and Social Structure: An Evolutionary Theory of Institutions[END_REF]. For any finite game G = (N, S, u),

this is a graph G(G) = (V, A) with all pure-strategy profiles as its vertices V . We call two such strategy profiles s, t ∈ S = V neighbors if there is a player i ∈ N such that s and t differ in the strategy of player i only, that is s j = t j for all j = i. For two such neighbor strategy profiles s and t we insert a directed arc (s, t), from s to t into A, if and only if t i ∈ β i (s -i ).

The so constructed directed graph G(G) is called the best-reply graph of the finite game G.

We note that, for any finite game G, a configuration T = × i∈N T i (for T i ⊂ S i ) is wCURB if and only if there is no arc in G(G) that leaves T .3 

Next, we show that the intersection of two wCURB sets forms a wCURB set. A similiar result has been shown by Benisch et al. for CURB sets.

Proposition 4 Let U = × i∈N U i and V = × i∈N V i with U i , V i ⊂ S i be two wCURB config- urations of the linear extension G of a finite game. Then T = × i∈N T i with T i = U i ∩ V i is also a wCURB configuration.
Proof. We fix an arbitrary player i ∈ N and consider β i (t) for a t ∈ T -i = U -i ∩ V -i . As t ∈ U -i and t ∈ V -i and by the wCURB property of U and V the best reply

β i (t) is in U -i and V -i and hence in T = U ∩ V .
As a consequence of Proposition 4 we obtain that minimal wCURB configurations do not intersect.

Step one: Finding all wCURB configurations

In this section we present the sub-algorithm that implements step one, that is, identifies all minimal wCURB configurations for any finite game. To this end, let P (s) denote the set of strategy profiles that can be reached by a directed path in G(G) starting in s. We identify these sets by way of computing, for each pair of strategy profiles s, t ∈ S the "directed distance" measured as the number of arcs in a shortest directed path from s to t. We assign the distance = ∞ if no such path exists. The computation of these distances can be made in O(m 3 ) with the algorithm of Floyd and Warshall, see [START_REF] Cormen | Introduction to Algorithms[END_REF] for a description.

Clearly, P (s) contains all vertices t within finite directed distance from s. While P (s)

need not to be of the product form × i∈N T i (for T i ⊂ S i ), the algorithm identifies the minimal wCURB configuration, T (s) = × i∈N T i (s), that contains P (s). This procedure is initialized by setting B 0 (s) = P (s) and letting T 0 (s) be the minimal product set, × i∈N T i , that contains B 0 (s). Then let B 1 (s) = t∈T 0 (s) P (t). If B 1 (s) = B 0 (s), then we have found a minimal wCURB configuration that contains P (s), namely T 0 (s). If B 1 (s) = B 0 (s), then let T 1 (s) be the minimal product set, × i∈N T i , that contains B 1 (s), and set B 2 (s) = t∈T 1 (s) P (t). If B 2 (s) = B 1 (s), then T 1 (s) is a minimal wCURB configuration that contains P (s). The algorithm proceeds in the same way until B k+1 (s) = B k (s) for a positive integer k. The game being finite, this procedure halts in a finite number of rounds. The pseudocode of this algorithm can be found in Algorithm 1.

Input: finite game G, sets of directedly reachable profiles (P (s)) s∈S Output: the family C of all minimal wCURB configurations in G foreach s ∈ S do Proof. The main loop is called once for each s ∈ S and thus m times. We remark that T (t) can be implemented by a vector of boolean values for each player. During the iteration of the while loop every T (t), t ∈ S is at most once tested and added to C s . This can be done in O(max i∈N m i n m) ⊂ O(m 2 ), delivering the result.

As a corollary of this result we obtain that all wCURB sets, of any finite game, can be computed in O(m 3 ).

The full algorithm

Having described the first step of the algorithm, we proceed to present the full algorithm, as applied to the linear extension G of any finite game G. It takes as input a family T of sets T = × i∈N T i (for T i ⊂ S i ) that is sub-complete with respect to sCURB sets, and gives as output all minimal sCURB sets of the game. The algorithm is general in the sense that the family T is arbitrary, provided that it satisfies sub-completeness. However, runtime comparisons show that the choice of T determines the performance of the algorithm considerably. If we would take as input the family T consisting of all sets T = × i∈N T i (for T i ⊂ S i ), then the algorithm would be equivalent to that of Benisch et al. So the main advantage of the present algorithm is to instead initiate it from the much smaller family of wCURB configurations, as described above. The pseudocode is shown in Algorithm.

Input: linear extension G of a finite game, a class of sets T that is sub-complete with respect to sCURB sets Output: the set of all CURB sets C while In order to prove the correctness of this algorithm, we need the following lemma. We denote by C the set of wCURB sets that have already been determined.

T = ∅ do 1 Choose a size-minimal T ∈ T ; 2 foreach i ∈ N do 3 foreach s i ∈ T i do 4 if Bis i ∩ (T ) = ∅ then
Lemma 6 During the run of the algorithm the candidate set T is sub-complete with respect to remaining sCURB sets, i.e. for every minimal CURB set C / ∈ C there is a candidate set

T ∈ T such that T ⊂ C.
Proof. By induction. Let k be the number of iterations of the while loop. "k = 0": The completeness property is required when the algorithm starts.

"k → k + 1": Let the completeness property be valid for the first k iterations. During the k + 1:st iteration one can distinguish between the two cases: First, suppose in the k + 1:st iteration a new sCURB set is found. Then, there can be no minimal sCURB set left that intersects with the sCURB set found and thus all candidate sets that intersect with the sCURB set found may be erased from the set of candidates T . Second, if a set T ∈ T that is minimal in size is chosen and it exists i ∈ N and s i ∈ S i such that B is i ∩ (T ) = ∅. Then there can be no sCURB set that contains the strategies in T -i but not strategy s i . Thus all candidate sets that contain the strategies in T -i can be extended by s i and hence the candidate set stays complete.

Proposition 7 Let G be the linear extension of a finite game. Algorithm 2 on page 13 terminates after finitely many steps and identifies all minimal sCURB sets of G.

Proof. In each iteration either a new constraint for the candidate sets or a new sCURB set is found. Every new sCURB set prohibits the played strategies to be included in further candidate sets. If a new constraint is found at least one candidate set, i.e. the candidate set that was checked to be sCURB is enlarged to s i . So in every iteration at least one set is removed from the set of candidates or at least one set is enlarged about at least one strategy.

Thus after finite time either the set of candidates is empty or each candidate is arbitrary large, i.e. the candidate sets are equal to S. As every strategy is played in S the set is recognized to be sCURB. Then every other set that is equal to S is removed from the set of candidates in line 14. Thus the algorithm terminates after finite time. Since the set of candidates T is complete in every iteration by Lemma 6 and T = ∅ after termination, all minimal sCURB sets have been computed.

Runtime

In the implementation of our algorithm, we use SCIP as LP Solver. SCIP is a framework for solving integer and mixed programs developed by [START_REF] Achterberg | Constraint Integer Programming[END_REF] in his Ph.D. thesis.

It is considered to be one of the fastest non-commercial frameworks to solve mixed integer problems. We use SoPlex in version 1.32 as the underlying simplex algorithm. SoPlex has been developed as part of the Ph.D. thesis of [START_REF] Wunderlich | Paralleler und objektorientierter Simplex-Algorithmus[END_REF]. The whole package can be found at http://scip.zib.de/.

For the sake of benchmark comparisons, we computed all minimal sCURB sets in games with random payoffs, generated by GAMUT. The GAMUT framework has become standard for testing game theoretic algorithms (for a detailed description, see [START_REF] Nudelman | Run the GAMUT: A comprehensive approach to evaluating game-theoretic algorithms[END_REF]).

As the two concepts of minimal CURB sets and sCURB sets coincide in two-player games our runtimes can be meaningfully compared with those of the Benisch-Davis algorithm. The results of the time measurements are shown in Figure 4. The dashed line for the Benisch-Davis-Sandholm algorithm is taken from [START_REF] Benisch | Algorithms for rationalizability and CURB sets[END_REF]. The solid line shows the median over 200 games of the time needed to compute all minimal CURB sets. In Figure 4 (a), we plot the average runtime as a function of the total number of pure strategies, m 1 +m 2 (as in [START_REF] Benisch | Algorithms for rationalizability and CURB sets[END_REF]). In Figure 4 (b), we plot the average runtime as a function of the number of pure-strategy profiles, m = m 1 m 2 . The latter graph shows more directly the "effort" of the algorithm, since this depends on the number of strategy profiles. This plot suggests that the average runtime for our algorithm is nearly linearly for games with up to 6000 strategy profiles, while the runtime of the Benisch et al. algorithm seems to increase exponentially in the number of strategy profiles. recorded the smallest size, so defined, of all its minimal CURB sets. They found that the smallest minimal CURB set in a random game, in the studied game lasses, is rarely of intermediate size. As shown in Figure 6, also we find that most games have a smallest minimal CURB set that is either a singleton, corresponding to a strict Nash equilibrium, or it takes up the whole strategy space. Moreover, the proportion of games in which the smallest minimal CURB set is a singleton seems to converge as the number of pure strategies increases. This observation is in agreement with a theoretical result due to [START_REF] Dresher | Probability of a pure equilibrium point in n-person games[END_REF], namely, that the probability that a random m 1 ×m 2 game will have at least one pure-strategy Nash equilibrium converges to 1 -1/e as min {m 1 , m 2 } → +∞. Then the probability for the existence of at least one pure-strategy Nash equilibrium converges to 1e -1 as min{m i , m j } → ∞ for at least two players i and j.

In the studied class of random games, a pure-strategy Nash equilibrium is strict with probability one, since payoff ties have zero probability. Hence, each pure-strategy Nash equilibrium, viewed as a singleton set, is, with probability one, a minimal CURB set. Thus, Dresher's theorem implies that we should expect the share of games with smallest minimal CURB set size 2 should converge to 1-e -1 as the number of pure strategies tends to infinity:

Corollary 9 In the linear extension of a finite random game as above the probability that the smallest minimal CURB set is a singleton converges to 1e -1 as min{m i , m j } → ∞ for at least two players i and j.

This theoretical result seems to fit well the empirical size distribution in Figure 6; see the thin horizontal line that indicates 1e -1 ≈ 0.632.

So far, we have studied only the size of the smallest CURB sets. What about the complete size distribution for minimal CURB sets? In Figure 7 we report some results. In panel (a), it is shown that about 90% of the minimal CURB sets in random 2 × 2-games are singletons.

In panel (b), we see that, in random 4 × 4-games, about 77% of the minimal CURB sets are singletons, while, for example, about 12% of the minimal CURB sets are of size 4 = 2 + 2, about 4% of size 6 = 3 + 3 and about 2.5% of size 5 = 2 + 3 = 3 + 2, etc. In panel (c), we see that minimal CURB sets of intermediate size are not frequent in random games of size 16 × 16, and in panel (d) we see that they are quite rare in random games of size 32 × 32. This tendency, towards singletons or the full strategy space, seem to hold for even larger games. 
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 2 Figure 2: Stability sets of player 3 in the game of Figure 1
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 45 Figure 4: Runtime of algorithms for the computation of all minimal CURB sets in random two-player games a) with respect to m 1 + m 2 , b) with respect to m = m 1 m 2
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 6 Figure 6: Distribution of smallest CURB set size among 200 randomly drawn games for different game sizes from 10 × 10 up to 70 × 70

  Distribution of the sizes of minimal sCURB sets a) in random 2 × 2 games, b) in random 4 × 4 games, c) in random 16 × 16 games, d) in random 32 × 32 games
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Note that a set X i ⊂ ∆ (S i ) contains all mixed best replies to a profile x -i if and only if it contains all pure best replies to x -i , since the set of mixed best replies is the subsimplex spanned by all pure best replies.

This route is also taken in[START_REF] Asheim | Epistemic robustness of sets closed under rational behavior[END_REF].

In graph theory, this condition writes as δ + (T ) = ∅.