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Abstract

Our purpose in this paper is to provide a new and unifying approach to construct
s-convex stochastic extrema for distributions that are known to be t-monotone. A key
point is that such a monotonicity property on the distributions can be removed by having
recourse to the stationary-excess operator and its iterates. Both discrete and continuous
cases are investigated. Several extremal distributions under monotonicity conditions are
obtained in explicit form. Their use is illustrated with some applications to insurance.
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1 Introduction

The problem of stochastic extrema (with respect to some ordering) inside a particular set of
distributions has a wide field of applications. This is especially true in insurance and finance
when the extremal risks represent the less and more dangerous risks (in a specific sense) and can
thus provide useful information on the possible risk scenarios. Applications arise, for instance,
in life insurance, ruin theory and portfolio analysis.

The present work falls in this framework. In short, our purpose is to derive convex-type
extremal distributions among nonincreasing-type probability distributions with bounded non-
negative support. Both discrete and continuous distributions will be examined, with special
emphasis on the less standard discrete case.

The class of stochastic orders under consideration is the class of s-convex orders, where
s ∈ IN0 (IN0 = {1, 2, . . .}). For s = 1, this order corresponds to the classical stochastic
dominance. For s = 2, it is the well-known convex order and corresponds, in actuarial sciences,
to the stop-loss order with fixed mean. For an arbitrary s, the s-convex order compares the s-th
right-tail distribution functions of random variables that have the same first s−1 moments. For
discrete distributions, this class of orders was studied in Lefèvre and Picard (1993), Fishburn
and Lavalle (1995), Lefèvre and Utev (1996), Denuit and Lefèvre (1997) and Denuit el al.
(1999a), (1999c), among others. The case, more traditional, of real-valued random variables
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was investigated by Rolski (1976), Levy (1992), Denuit et al. (1998), (1999b) and in many
other works. For a theory on stochastic orders, the reader is referred to the books by Goovaerts
et al. (1990), Kaas et al. (1994), Ross (1996), Müller and Stoyan (2002) and Shaked and
Shanthikumar (2007).

The s-convex optimization problem corresponds to a traditional moment problem; see, e.g.,
Hoeffding (1955), Karlin and Studden (1966), Kemperman (1968), Utev (1985), Prékopa (1990)
and Hürlimann (1999). In the discrete case, explicit extremal distributions are known for
s = 1, 2, 3, 4 and were derived by Denuit and Lefèvre (1997), Denuit et al. (1999c) and Courtois
et al. (2006). In the real case, explicit extrema were obtained by Jansen et al. (1986), De Vylder
(1996) and Denuit et al. (1998), (1999b), inter alia.

As already pointed out in several papers, the s-convex extrema can be improved when the
distributions of interest are known to be nonincreasing (and, more generally, unimodal); see,
e.g., Denuit et al. (1998), (1999b), (1999c). Such a distributional assumption is often met in
actuarial theory with the number or the severity of risks in insurance or finance.

Motivated by these situations, we want to investigate the s-convex optimization problem
within the subset of t-monotone probability distributions, where t ∈ IN0. For t = 1, this
property corresponds to the usual nonincreasingness of the distributions, and for t = 2, to
both nonincreasingness and convexity of the distributions. For an arbitrary t, that property
means that in the discrete (resp. continuous) case, the first t differences of the probability mass
function (resp. derivatives of the density function) are assumed to be of alternating signs with
the sequence {−,+, . . . , (−1)t}.

Our key result states that a problem of s-convex optimization among t-monotone distri-
butions is (almost) equivalent, up to a remarkable transform, to a problem of s + t-convex
optimization without monotonicity constraints. To establish this equivalence, we propose a
new and unifying approach that has recourse to the stationary-excess operator and its iterates.

More precisely, the paper is organized as follows. In Section 2, we present the stationary-
excess operator, under its usual definition and in a non-standard version specific to discrete
distributions. In Section 3, we show that this operator essentially transforms any s+ 1-convex
order to an s-convex order for nonincreasing distributions. The result is extended in Section
4 where the t-th iterate of the operator allows us to transform an s + t-convex order in an
s-convex order for t-monotone distributions. In Section 5, we use this property, together with
known convex extrema (recalled in the Appendix), to derive several explicit convex extrema for
nonincreasing, possibly convex, distributions. Finally, the interest of these extrema is illustrated
in Section 6 with some applications to insurance.

This work has been presented at the ”2b) or not 2b) Conference” organized in June 2009 at
the Université of Lausanne, in honor to Professor Hans U. Gerber. It gives us an opportunity to
point out a nice paper by Keilson and Gerber (1971) on a related notion of discrete unimodality.
We also thank Professor F. Dufresne for the excellent organization of the Conference.

2 Stationary-excess operator

The stationary-excess operator, denoted by H, has an important role in renewal theory and
survival analysis (Cox (1972)). In its classical version (see Definition 2.3 below), this opera-
tor is built for any non-negative random variable X with distribution function FX and mean
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E(X) > 0. It is worth recalling that in a renewal process, if an interval between points is
of distribution function FX , then the associated stationary-excess mapping H(FX) gives the
distribution function of the interval to the next point from an arbitrary time in equilibrium.
Hereafter, we start by introducing a similar operator H that is specific to discrete distributions.

2.1 Discrete version

Let us assume that X is a discrete non-negative random variable with probability mass function
PX = {P (X = j), j ∈ IN} and mean E(X) > 0 (IN = {0, 1, . . .}). Obviously, the classical
stationary-excess operator may be applied here too. As explained by Whitt (1985), however, it
is more appropriate to work with a discrete version that is directly applicable to discrete-time
renewal processes. We propose to adopt the following definition.

Definition 2.1 A discrete stationary-excess operator H maps any such random variable X to
an associated discrete non-negative random variable XH whose probability mass function H(PX)
is defined by

H(PX)(j) ≡ P (XH = j) =
P (X ≥ j + 1)

E(X)
, j ∈ IN. (2.1)

Let us notice that a similar, but different, operator was investigated by Whitt (1985) for a
discrete positive random variable X (i.e. valued on IN0). Specifically, the associated random
variable XH is of probability mass function defined by

P (XH = j) =
P (X ≥ j)

E(X)
, j ∈ IN0, (2.2)

which thus slightly differs from our definition (2.1).
Contrary to (2.2), H defined by (2.1) does not yield a one-to-one correspondence on the

set of probability measures on IN. Indeed, it is directly checked that XH and (νX)H are
equidistributed if ν is an indicator independent of X. Nevertheless, when E(X) is fixed, H
gives a one-to-one correspondence since

P (X = 0) = 1− E(X) P (XH = 0), and (2.3)

P (X = j) = E(X) [P (XH = j − 1)− P (XH = j)], j = 1, 2, . . . (2.4)

The definition (2.1) has the advantage to lead to a simple relationship between the binomial
moments of XH and X. We make the convention

(
x
y

)
if x < y.

Lemma 2.2

E

(
XH

i

)
=

1

E(X)
E

(
X

i+ 1

)
, i ∈ IN. (2.5)

Proof. To show this, we consider the iterated right-tail distribution functions of X:

F̄0(X, j) = P (X = j), j ∈ IN, (2.6)
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and for i = 0, 1, . . .,

F̄i+1(X, j) =
∞∑
k=j

F̄i(X, k), j ∈ IN. (2.7)

As proved in Lefèvre and Utev (1996), an equivalent expression for (2.6), (2.7) is

F̄i+1(X, j) = E

(
X − j + i

i

)
, i, j ∈ IN. (2.8)

Let us turn to the iterated right-tail distribution functions of XH . By (2.1), we have

F̄0(XH , j) = P (XH = j) =
F̄1(X, j + 1)

E(X)
, j ∈ IN.

Arguing by induction, we then find from (2.7) that

F̄i+1(XH , j) =
F̄i+2(X, j + 1)

E(X)
, i, j ∈ IN. (2.9)

Finally, taking j = i in (2.8) and (2.9), we obtain the identity (2.5). �

2.2 Continuous version

Let X be any non-negative random variable with distribution function FX and mean E(X) > 0.
The usual stationary-exces operator is defined as follows (Cox (1972)). For easiness, it will be
named continuous subsequently.

Definition 2.3 A continuous stationary-excess operator H maps any such random variable X
to an associated non-negative random variable XH whose distribution function H(FX) is defined
by

H(FX)(x) ≡ P (XH ≤ x) =
1

E(X)

∫ x

0

[1− FX(y)]dy, x ≥ 0. (2.10)

An equivalent expression for (2.10) is

P (XH > x) =
1

E(X)

∫ ∞
x

P (X > y)dy, x ≥ 0. (2.11)

This definition of H guarantees a one-to-one correspondence. Indeed, denoting the density
function of XH by dXH

, one has

P (X > x) = E(X) dXH
(x), x ≥ 0, (2.12)

and E(X) then follows as a consequence.
The moments of XH and X are linked through a simple identity, known but rederived below

for comparison with Lemma 2.2.
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Lemma 2.4

E(X i
H) =

E(X i+1)

(i+ 1)E(X)
, i ∈ IN. (2.13)

Proof. The result is related to the i-th stop-loss transform of X, defined as

Π(i)(X, x) = E[(X − x)i+], x ≥ 0; (2.14)

see, e.g., Cheng and Pai (2003). Indeed, considering again the iterated right-tail distribution
functions of X, i.e.

F̄1(X, x) = P (X > x), x ≥ 0, (2.15)

and for i = 1, 2, . . .,

F̄i+1(X, x) =

∫ ∞
x

F̄i(X, y)dy, x ≥ 0, (2.16)

one can directly see that

F̄i+1(X, x) =
Π(i)(X, x)

i!
, x ≥ 0, i ∈ IN. (2.17)

Now, for the transformed random variable XH , (2.15) and (2.11) yield

F̄1(XH , x) = P (XH > x) =
1

E(X)

∫ ∞
x

[1− FX(y)]dy

=
F̄2(X, x)

E(X)
, x ≥ 0,

so that by (2.16) and using induction, we get

F̄i+1(XH , x) =
F̄i+2(X, x)

E(X)
, x ≥ 0, i ∈ IN. (2.18)

From (2.18) and (2.17), (2.14), we deduce that

E[(XH − x)i+] =
E[(X − x)i+1

+ ]

(i+ 1)E(X)
, x ≥ 0,

which yields (2.13) when x = 0. �

3 H-transform and convex orderings

To begin with, we give a brief presentation of the s-convex stochastic orders and the associated
moment spaces. Applying the stationary-excess operator, we then identify the image of these
moment spaces and the corresponding stochastic orders. Both discrete and continuous cases
will be examined.
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3.1 Discrete problem

For any s ∈ IN0, let Fs denote the set of s-convex real functions f defined on IN, i.e.

Fs = {f : ∆sf(j) ≥ 0, j ∈ IN}, (3.1)

∆ being the usual forward difference operator [∆f(j) = f(j + 1) − f(j), j ∈ IN], and ∆s the
s-th iterate of ∆.

Definition 3.1 Given any two probability mass functions P1 and P2 on IN, one says that P1

is smaller than P2 in the s-convex sense, written P1 �s P2, when

< f, P1 >≡ EP1(f) ≤ EP2(f) ≡< f, P2 > for all functions f ∈ Fs. (3.2)

As the functions f(j) = ji and f(j) = −ji, j ∈ IN, belong to Fs for all i = 1, . . . , s− 1, the
ordering P1 �s P2 necessarily implies that P1 and P2 have the same s − 1 first moments. In
fact, if X1 and X2 are two random variables with probability mass functions P1 and P2, then
an equivalent characterization of (3.2), written as X1 �s X2, is that

E(X i
1) = E(X i

2), i = 1, . . . , s− 1, and (3.3)

F̄s(X1, j) ≤ F̄s(X2, j), j ≥ s. (3.4)


Now, let us consider the set of probability mass functions on IN with prescribed first s

moments, where s ∈ IN0. For the moment, it will be more convenient to work on the basis of
the combinatorial moments. So, we introduce a set

Bs+1 =

{
PX : E

(
X

i

)
= ci, i = 1, . . . , s

}
, (3.5)

where c1, . . . , cs represent s given (admissible) constants. By (3.3), one knows that the distri-
butions in the set Bs+1 are susceptible to be ordered with respect to �s+1, the (s + 1)-convex
order.

Let us take the discrete stationary-excess operator H defined by (2.1). We have seen before
that H yields a one-to-one correspondence on the set of distributions with fixed mean. Thus,
this property holds true on the previous set Bs+1. Let us then apply the operator H to Bs+1,
i.e. consider the set H(Bs+1). On this set, it is natural to define a transformed order �H as
follows.

Definition 3.2 Given any two probability mass functions Q1 and Q2 in H(Bs+1), one says that
Q1 �H Q2 when

H−1(Q1) ≡ P1 �s+1 P2 ≡ H−1(Q2). (3.6)

We are now in a position to identify the set H(Bs+1) and the transformed order �H . Let
QY = {QY (j), j ∈ IN} denote the probability mass function of a discrete random variable Y .
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Proposition 3.3

H(Bs+1) =

{
QY : E

(
Y

i

)
=
ci+1

c1
, i = 1, . . . , s− 1, and (3.7)

∆QY (j) ≤ 0, j ∈ IN, with c1QY(0) ≤ 1} , (3.8)

and the order �H corresponds to the s-convex order �s.

Proof. Let us first obtain H(Bs+1). From (2.5) and (3.5), we find that the s− 1 first binomial
moments of Y are provided by the formula (3.7). The remaining restrictions stipulated in (3.8)
are straightforward from the relations (2.4) and (2.3).

Let us identify �H . By virtue of (3.2) and (3.6), Q1 �H Q2 when

< f,H−1(Q1) > ≤ < f,H−1(Q2) > for all f ∈ Fs+1. (3.9)

Given any Q = QY in H(Bs+1), the expansion of < f,H−1(Q) > yields, after insertion of (2.3),
(2.4),

< f,H−1(Q) > =
∞∑
j=0

f(j) [H−1(Q)](j)

= f(0) [1− c1P (Y = 0)] + c1

∞∑
j=1

f(j) [P (Y = j)− P (Y = j − 1)]

= f(0) + c1

∞∑
j=1

P (Y = j) [f(j + 1)− f(j)].

Thus, < f,H−1(Q) > can be rewritten as

< f,H−1(Q) > = < (δ0 + c1∆)(f), Q >, (3.10)

where δ0 is the operator such that δ0(f) = f(0). In fact, the equivalence

< f,H−1(Q) > = < [(H−1)∗](f), Q > (3.11)

holds in general if (H−1)∗ is the conjugate operator of H−1; thus, in our case,

(H−1)∗ = δ0 + c1∆. (3.12)

Substituting (3.10) in (3.9), we find that Q1 �H Q2 when

< ∆(f), Q1 > ≤ < ∆(f), Q2 > for all f ∈ Fs+1. (3.13)

As ∆s+1 = ∆s(∆), the condition (3.13) means by (3.2) that Q1 �s Q2, hence the orders �H
and �s are quite identical. ♦

Note that the image set H(Bs+1) contains s−1 moment relations and the nonincreasingness
property, as well as an additional technical constraint. Reciprocally, returning to Bs+1 through
the operator H−1 has the effect of removing the nonincreasingness condition. To put it speaking,
if for instance, all the combinatorial moments are equal to 1, then Proposition 3.3 yields the
following simple result.
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Corollary 3.4 The s-convex extremal distributions in the set{
QY : E

(
Y

i

)
= 1, i = 1, . . . , s− 1, and ∆QY (j) ≤ 0, j ∈ IN

}
(3.14)

correspond to the H-transform of the s+ 1-convex extremal distributions in the set{
PX : E

(
X

i

)
= 1, i = 1, . . . , s

}
. (3.15)

3.2 Continuous problem

A similar approach is applicable to random variables valued in IR+. Given any s ∈ IN0, the set
Fs of s-convex real functions f is defined as

Fs = {f : Dsf(x) ≥ 0, x ≥ 0}, (3.16)

D being the usual derivative operator (to be compared with (3.1)). For two probability distri-
butions P1 and P2 on IR+, P1 �s P2 when the condition (3.2) is again satisfied. Here too, an
equivalent characterization is given by the conditions (3.3), (3.4).

We still work on the set of distributions with prescribed first s moments, i.e.

Bs+1 =
{
PX : E(X i) = µi, i = 1, . . . , s

}
. (3.17)

Let us apply to Bs+1 the continuous stationary-excess operator H defined by (2.10). This
yields a one-to-one correspondence with the image set H(Bs+1). A transformed order �H may
be defined on H(Bs+1) exactly as by (3.6). The continuous analogue of Proposition 3.3 is then
the following. Let QY denote the probability distribution of a continuous random variable Y
with density function {dY (y), y ≥ 0}.

Proposition 3.5

H(Bs+1) =

{
QY : E(Y i) =

µi+1

(i+ 1)µ1

, i = 1, . . . , s− 1, and (3.18)

DdY (y) ≤ 0, y ≥ 0, with µ1dY (0) ≤ 1} , (3.19)

and the order �H corresponds to the continuous s-convex order �s.

Proof. The derivation of the set H(Bs+1) is straightforward from (2.12) and (2.13). To identify
the order �H , we have still recourse to the conjugate operator of H−1. From (2.12), one finds
that

(H−1)∗ = δ0 + µ1D, (3.20)

in place of (3.12). Thus, �H corresponds to the order �s. �

4 Extension to H t-transforms

At this point, a natural step is to apply successively the operator H and then investigate the
effects on the s-convex orders and the associated moment spaces. So, given t ∈ IN0, let H t

denote the t-th iterate of H. The construction of H t is simple, although not totally immediate.
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4.1 Discrete problem

Given s ∈ IN0, we start by introducing, similarly to (3.5), a set Bs+t of all probability mass
functions PX on IN with prescribed s+ t− 1 first combinatorial moments:

Bs+t =

{
PX : E

(
X

i

)
= ci, i = 1, . . . , s+ t− 1

}
. (4.1)

This set may be ordered with respect to the (s+ t) convex order.

Now, at step 1, consider the set D1 = D
(c1)
1 of all probability mass functions on IN with fixed

mean c1. By construction, the operator H ≡ H1 = H
(c1)
1 is a one-to-one mapping from D1 into

a new set H1(D1) ≡ D2. By (3.7), the mean in D2 is equal to c2/c1; put D2 = D
(c2/c1)
2 . At step

2, the operator H2 = H
(c2/c1)
2 maps D2 into H2(D2) ≡ D3, and again by (3.7), D3 = D

(c3/c2)
3 .

Finally, at step t, Ht = H
(ct/ct−1)
t maps Dt into Ht(Dt) ≡ Dt+1. The operator H t is then the

product of the successive operators H1, . . . , Ht, i.e.

H t = Ht ◦ . . . ◦H2 ◦H1 : D1 →H1 D2 →H2 . . .→Ht−1 Dt →Ht Dt+1. (4.2)

Let us apply H t to the set to any random variable X in Bs+t. Note that the moments
c1, . . . , ct are well fixed within Bs+t. From (2.1) and (4.2), we see that X is mapped to an
associated discrete non-negative random variable XHt defined as follows.

Definition 4.1 XHt has a probability mass function H t(PX) given by

H t(PX)(j) ≡ P (XHt = j) =
F̄t(X, j + t)

ct
, j ∈ IN. (4.3)

By (2.8), an equivalent expression is

P (XHt = j) =
E
(
X−j−1
t−1

)
ct

, j ∈ IN. (4.4)

We underline that each Hk being one-to-one from Dk to Dk+1, H
t provides a one-to-one corre-

spondence on Bs+t. Furthermore, let us introduce, as with (3.6), an order �tH on H t(Bs+t).

Definition 4.2 Two probability mass functions Q1, Q2 ∈ H t(Bs+t) satisfy Q1 �Ht Q2 when

(H t)−1(Q1) �s+t (H t)−1(Q2). (4.5)

We are now in a position to generalize Proposition 3.3 to that transform by H t. The previous
notation QY will be adopted here too, and it is convenient to put c0 = 1.

Proposition 4.3

H t(Bs+t) =

{
QY : E

(
Y

i

)
=
ci+t
ct
, i = 1, . . . , s− 1, and (4.6)

(−1)k ∆kQY (j) ≥ 0, j ∈ IN, k = 1, . . . , t, with (4.7)

(−1)t−kctQY (0) ≤
t−1∑
l=k−1

(−1)l−k+1cl, k = 1, . . . , t

}
, (4.8)

and the order �Ht corresponds to the s-convex order �s.
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Proof. The key tool is the conjugate operator of (H t)−1, built from the conjugate operators of
(H1)

−1, . . . , (Ht)
−1. By arguing as with (3.12), we see that

[(Hk)
−1]∗ = δ0 + (ck/ck−1)∆, k = 1, . . . , t.

From (4.2), we then obtain

[(H t)−1]∗ = [(H1)
−1]∗ ◦ [(H2)

−1]∗ ◦ . . . ◦ [(Ht)
−1]∗

= [c1∆ + δ0] ◦ [(c2/c1)∆ + δ0] ◦ . . . ◦ [(ct/ct−1)∆ + δ0]. (4.9)

Note that, for t = 2 for example,

[a∆ + δ0] ◦ [b∆ + δ0] = ab∆2 + δ0b∆ + δ0,

as ∆δ0 = 0 and δ2
0 = δ0. So, we get from (4.9) that

[(H t)−1]∗ =
t∑

k=0

δk0

t∏
l=k+1

[(cl/cl−1)∆]

= ct∆
t + δ0

t∑
k=1

(ct/ck)∆
t−k. (4.10)

Applying (4.10) to any function f on IN thus gives

[(H t)−1]∗(f) = ct∆
tf +

t∑
k=1

(ct/ck) (∆t−kf)(0). (4.11)

Let us first identify the order �Ht . By (4.5) and (3.11), Q1 �Ht Q2 when

< [(H−1)∗](f), Q1 > ≤ < [(H−1)∗](f), Q2 > for all f ∈ Fs+t.

From (4.11), this means that

< ∆tf,Q1 > ≤ < ∆tf,Q2 > for all f ∈ Fs+t, (4.12)

which shows the equivalence with the order �s.
We now determine the set H t(Bs+t). Let us choose the function f(j) =

(
j
i+t

)
, j ∈ IN, for

any fixed i, t ∈ IN. Since

∆t

(
j

i+ t

)
=

(
j

i

)
, j ∈ IN,

we have by (4.11) that

[(H t)−1]∗
(

j

i+ t

)
= ct

(
j

i

)
, j ∈ IN. (4.13)

Thus, applying (3.11), we deduce from (4.13) the relations

E

(
X

i+ t

)
= ct E

(
XHt

i

)
, i ∈ IN, (4.14)
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which generalizes (2.5). The binomial moments in (4.6) then follow. Moreover, from (4.2) and
using (3.8), we find that a probability mass function QY necessarily satisfies the restrictions
(4.7). This can also be seen from (4.4) as for k = 1, . . . , t− 1,

∆kE

(
X − j − 1

t− 1

)
= (−1)kE

(
X − j − 1− k
t− 1− k

)
, j ∈ IN.

So, QY is a t-monotone function in the sense given in the Introduction. Finally, the t conditions
(4.8) guarantee that the t successive transforms of PX are true probability mass functions.
Indeed, writing XHk = Hk(XHk−1), k ≥ 1, with XH0 = X, one gets (see (2.3))

P (XHk−1 = 0) = 1− (ck/ck−1)P (XHk = 0),

that is
ck−1P (XHk−1 = 0) = ck−1 − ckP (XHk = 0), k = 1, . . . , t. (4.15)

Note that for each k, P (XHk−1 = 0) ≤ 1 but the non-negativity is not guaranteed so far. By
iterating (4.15) t− k times, we then obtain

ck−1P (XHk−1 = 0) =
t−1∑
l=k−1

(−1)l−k+1cl + (−1)t−k+1ctP (XHt = 0), k = 1, . . . , t.

Thus, the constraints P (XHk−1 = 0) ≥ 0 provide the restrictions (4.8). �
Observe that the image set H t(Bs+t) contains s−1 moment relations and the t-monotonicity

property, as well as t other technical conditions. Going back to Bs+t through the operator H−t

would allow us to remove the monotonicity condition.

4.2 Continuous problem

For s, t ∈ IN0, consider now the set of distributions

Bs+t =
{
PX : E(X i) = µi, i = 1, . . . , s+ t− 1

}
, (4.16)

We construct the operator H t, the t-th iterate of the operator H defined by (2.10), by

following a similar argument as for (4.2). Let D1 = D
(µ1)
1 the set of all continuous distributions

on IR+ with fixed mean µ1. Then, H t is defined as H t = Ht ◦ . . . ◦ H2 ◦ H1 where, for each
k = 1, . . . , t, Hk is an operator mapping the set Dk into the set Hk(Dk) = Dk+1. From (2.13),

one easily checks the mean in Dk+1 is equal to µk/kµk−1. So, Hk = H
(µk/kµk−1)
k and it provides

a one-to-one correspondence.
By definition of H t and using (2.11), we see that any random variable X in Bs+t is mapped

to an associated non-negative random variable XHt whose survival function is given by

P (XHt > x) =
t! F̄t+1(X, x)

µt
, x ≥ 0. (4.17)

By (2.14) and (2.17), it can be rewitten as

P (XHt > x) =
E[(X − x)t+]

µt
, x ≥ 0, (4.18)

11



which generalizes (2.11). Here too, H t is one-to-one on Bs+t. A transformed order �Ht is then
defined on H t(Bs+t) by stipulating again the condition (4.5).

Proposition 4.4

H t(Bs+t) =

{
QY : E(Y i) =

µi+t(
i+t
t

)
µt
, i = 1, . . . , s− 1, and (4.19)

(−1)k D(k)dY (y) ≥ 0, y ≥ 0, k = 1, . . . , t, with (4.20)

(−1)t−k D(t−k)dY (0) ≤ t! µk−1

(k − 1)!µt
, k = 1, . . . , t

}
, (4.21)

and the order �Ht corresponds to the s-convex order �s.

Proof. Working with conjugate operators, one gets (see (3.20)) that

[(Hk)
−1]∗ = δ0 + (µk/kµk−1)D, k = 1, . . . , t.

Therefore,

[(H t)−1]∗ = [µ1D + δ0] ◦ [(µ2/2µ1)D + δ0] ◦ . . . ◦ [(µt/kµt−1)D + δ0]

=
µt
t!
Dt + δ0

t∑
k=1

k!µt
t! µk

Dt−k. (4.22)

First, consider the function f(x) = xi+t, x ∈ IR+, for fixed i, t ∈ IN. Applying (4.22) to this
function and using (3.11), we find that

E(X i+t) =

(
i+ t

t

)
µt E(X i

Ht), i ∈ IN,

hence (4.19). Now, as for (2.12), one has

P (XHk−1 > x) = (µk/kµk−1) dHk(x), k = 1, . . . , t, (4.23)

which gives by differentiation

µk−1dHk−1(x) = (−1/k) D{µkdHk(x)}, k = 1, . . . , t. (4.24)

By iterating (4.24) t− k more times, we get

µk−1dHk−1(x) =
µt

k . . . t
(−1)t−k+1 D(t−k+1)dHt(x), k = 1, . . . , t. (4.25)

Thus, the conditions dHk−1 ≥ 0 in (4.25) yield the constraints (4.20). Moreover, (4.23) implies
that

µkdHk(0) ≤ kµk−1, k = 1, . . . , t,

and inserting (4.25) with x = 0 and k instead of k − 1 then leads to the restrictions (4.21). �
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5 Convex extrema under monotonicity conditions

A further interest of Propositions 4.3 and 4.4 is to point out that the s-convex extrema fo t-
monotone distributions may be constructed from the simple s+ t-convex extrema (i.e. without
monotonicity restriction).

Hereafter, we are going to derive the explicit expression of a few extrema for monotone
distibutions that are defined on a bounded non-negative support. In the discrete case, the
random variables are valued in a set {0, . . . , n}, n ∈ IN0; in the continuous case, the random
variables are valued on an interval [0, b], b > 0. We first obtain the s = 1, 2, 3-convex extrema
when t = 1 (nonincreasing distributions). These were found earlier by Denuit et al. (1999b)
in the discrete case and Denuit et al. (1998) in the continuous case. The method of proof
used there, however, is quite different as it relies on a Khinchine representation for unimodal
distributions. Then, we examine the s = 1, 2-convex extrema when t = 2 (convex nonincreasing
distributions). These are seen to be the same as when t = 1 except for the minimum in the
discrete case.

Let us introduce the class Bs,t(n) of all discrete random variables Y that have prescribed
first s − 1 moments νi = E(Y i), i = 1, . . . , s − 1, and possess a t-monotone probability mass
function QY , i.e. for k = 1, . . . , t, (−1)k∆kQY (j) ≥ 0, j = 0, . . . , n− k. The s-convex extrema

in this set are denoted by Y
(s,t)
min (n) and Y

(s,t)
max (n). Similarly, Bs,t(b) is the class of all continuous

random variables Y with prescribed first s− 1 moments νi and a t-monotone density function
dY , i.e. for k = 1, . . . , t, (−1)kD(k)dY (y) ≥ 0, y ∈ [0, b]. The s-convex extrema in the set are

written Y
(s,t)
min (b) and Y

(s,t)
max (b).

For the discrete case, we observe that by the definition (2.1) of H, a random variable Y
valued on {0, . . . , n} is obtained as the transform of a random variable X that is valued on
{0, . . . , n+ 1}. This remark will be used in the sequel.

Let us recall that the usual s-convex extrema (i.e. when t = 0, inside Bs(n) or Bs(b)) are

explicitly known for s = 1, 2, 3, 4. They are given in the Appendix and denoted by X
(s)
min(n),

X
(s)
max(n) and X

(s)
min(b), X

(s)
max(b).

(i) 1-convex extrema for nonincreasing distributions. This is the problem of extrema
when s = 1 and t = 1. Let us write U(n) [U(b)] for a uniform distribution on {0, . . . , n} ([0, b]).

Corollary 5.1 For the discrete [continuous] case (inside B1,1(n) [B1,1(b)]),

Y
(1,1)
min (n) [Y

(1,1)
min (b)] = 0 a.s., (5.1)

and

Y (1,1)
max (n) [Y (1,1)

max (b)] =d U(n) [U(b)]. (5.2)

Proof. For the discrete case, consider the set H[B2(n + 1)] defined by (3.7), (3.8), with n + 1
substituted for n (see the remark above). We want to keep only the restriction of nonincreasing
distributions (i.e. ∆QY (j) ≤ 0, j = 0, . . . , n − 1). Note that as s = 1, there is no moment
specification. Moreover, the condition c1QY (0) ≤ 1 will be satisfied by choosing c1 = 1, for
instance. Now, by Proposition 3.3, the associated 1-convex extrema are provided by the H-
transform (2.1) of the 2-convex extrema in B2(n + 1). Using (7.3) and (7.4) where ξ = 0, we
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then get

P [Y
(1,1)
min (n) = j] = P [X

(2)
min(n+ 1) ≥ j + 1] = δj,0, j = 0, . . . , n,

where δj,0 = 1 (resp. 0) if j = 0 (resp. > 0), and

P [Y (1,1)
max (n) = j] = P [X(2)

max(n+ 1) ≥ j + 1] = 1/(n+ 1), j = 0, . . . , n,

hence the extrema specified above.
For the continuous case, H[B2(b)] defined by (3.18), (3.19) contains now an undesired con-

dition µ1dY (0) ≤ 1. It can be satisfied, however, by choosing µ1 → 0. Then, applying the
operator H given by (2.10) to the 2-convex minimum (7.5) gives

P [Y
(1,1)
min (b) ≤ x] =

1

µ1

∫ x

0

[1− F
X

(2)
min(b)

(y)]dy =
x

µ1

, 0 ≤ x ≤ µ1,

i.e. Y
(1,1)
min (b) is uniform on [0, µ1]. As µ1 tends to 0, this minimum degenerates to the single

point 0. Using the 2-convex maximum (7.6), we find that

P [Y (1,1)
max (b) ≤ x] =

1

µ1

∫ x

0

[1− F
X

(2)
max(b)

(y)]dy =
x

b
, 0 ≤ x ≤ b,

(independently of µ1), i.e. Y
(1,1)
max (b) is uniform on [0, b] as announced. �

(ii) 2-convex extrema for nonincreasing distributions. This time, we work with s = 2
and t = 1. Denote by ν1 = E(Y ) the fixed mean in B2,1(n) (and H[B3(n+ 1)]) or B2,1(b) (and
H[B3(b)]).

Corollary 5.2 For the discrete case (inside B2,1(n)), put ξ̃ for the integer in [0, n − 1] such
that ξ̃ < 2ν1 ≤ ξ̃ + 1. Then,

Y
(2,1)
min (n) =

{
0, . . . , ξ̃ with equal probabilities 2(ξ̃ + 1− ν1)/(ξ̃ + 1)(ξ̃ + 2),

ξ̃ + 1 with probability (2ν1 − ξ̃)/(ξ̃ + 2),
(5.3)

and

Y (2,1)
max (n) =

{
0 with probability 1− 2ν1/(n+ 1),
1, . . . , n with equal probabilities 2ν1/n(n+ 1).

(5.4)

For the continuous case (inside B2,1(b)),

Y
(2,1)
min (b) =d U(2ν1), (5.5)

and putting I0 for a distribution degenerated in 0,

Y (2,1)
max (b) =d (1− 2ν1/b) I0 + (2ν1/b) U(b). (5.6)
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Proof. As indicated in the Appendix, the unsconstrained 3-convex extrema are given in terms
of the moments µi = E(X i), i = 1, 2. Let us start with the discrete case. By (3.7), ν1 = c2/c1
which implies that µ2 = µ1(2ν1 + 1). For X

(3)
min(n+ 1) given by (7.7), we have ξ1−1 < 2ν1 ≤ ξ1,

i.e. ξ̃ < 2ν1 ≤ ξ̃ + 1 by putting ξ̃ = ξ1 − 1. Moreover,

X
(3)
min(n+ 1) =


0 with probability p1 = 1− p2 − p3,

ξ̃ + 1 with probability p2 = µ1(ξ̃ − 2ν1 + 1)/(ξ̃ + 1),

ξ̃ + 2 with probability p3 = µ1(2ν1 − ξ̃)/(ξ̃ + 2).

For X
(3)
max(n + 1) given by (7.8), we have ξ2 < (n − 2ν)/[(n + 1)/µ1 − 1] ≤ ξ2 + 1, so that

ξ2 = 0 as µ1 → 0. Then,

X(3)
max(n+ 1) =


0 with probability p1 = 1− p2 − p3,
1 with probability p2 = µ1(n− 2ν1)/n,
n+ 1 with probability p3 = µ12ν1/n(n+ 1).

Applying the discrete operator H then leads to the extrema (5.3) and (5.4).
Let us now discuss the continuous case. By (3.18), ν1 = µ2/2µ1. We may let µ1 → 0 and

choose µ2 = 2µ1ν1 accordingly. For the minimum, we get from (7.9) that

P [Y
(2,1)
min (b) ≤ x] = (µ1/µ2)x, 0 ≤ x ≤ µ2/µ1,

i.e. the result (5.5).
For the maximum, (7.10) gives as µ1 → 0

X(3)
max(b) =

{
µ1(1− 2ν1/b) with probability 1− 2ν1µ1/b

2,
b with probability 2ν1µ1/b

2,

so that

P [Y (2,1)
max (b) ≤ x] = 1− 2ν1/b+ 2ν1x/b

2, 0 ≤ x ≤ b,

i.e. the maximum (5.6). �
(iii) 3-convex extrema for nonincreasing distributions. We have now s = 3 and

t = 1. Let ν1 = E(Y ) and ν2 = E(Y 2) be the first two moments in B3,1(n) (and H[B4(n+ 1)])
or B3,1(b) (and H[B4(b)]).

Corollary 5.3 For the discrete case (inside B3,1(n)), put ξ̃1 and ξ̃2 for the integers in [0, n−1]
such that

ξ̃1 < (3ν2 − ν1)/2ν1 ≤ ξ̃1 + 1, and ξ̃2 < (2nν1 − 3ν2 + ν1)/(n− 2ν1) ≤ ξ̃2 + 1.

Then,

Y
(3,1)
min (n) =


0 with probability q3

ξ̃1+2
+ q2

ξ̃1+1
+ q1,

1, . . . , ξ̃1 with equal probabilities q3
ξ̃1+2

+ q2
ξ̃1+1

,

ξ̃1 + 1 with probability q3
ξ̃1+2

,

(5.7)
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where q1 + q2 + q3 = 1 and

q2 =
−3ν2 + 3ν1 + 2ξ̃1ν1

ξ̃1
, q3 =

3ν2 − ν1 − 2ξ̃1ν1

ξ̃1 + 1
,

and

Y (3,1)
max (n) =


0, . . . , ξ̃2 with equal probabilities χ3

n+1
+ χ2

ξ̃2+2
+ χ1

ξ̃2+1
,

ξ̃2 + 1 with probability χ3

n+1
+ χ2

ξ̃2+2
,

ξ̃2 + 2, . . . , n with equal probabilities χ3

n+1
,

(5.8)

where χ1 + χ2 + χ3 = 1 and

χ1 =
(ξ̃2 + 1)(n− 2ν1) + 3ν2 − ν1 − 2nν1

n− ξ̃2
, χ2 =

2ν1(ξ̃2 + n)− 3ν2 + ν1 − nξ̃2
n− 1− ξ̃2

.

For the continuous case (inside B3,1(b)),

Y
(3,1)
min (b) =d

3ν2 − 4ν2
1

3ν2

I0 +
4ν2

1

3ν2

U
(

3ν2

2ν1

)
, (5.9)

and

Y (3,1)
max (b) =d

3ν2 − 4ν2
1

b2 − 4bν1 + 3ν2

U(b) +
b2 − 4bν1 + 4ν2

1

b2 − 4bν1 + 3ν2

U
(

2bν1 − 3ν2

b− 2ν1

)
. (5.10)

Proof. In the discrete case, we have, by (3.7), ν1 = c2/c1 which yields µ2 = µ1(2ν1 + 1), and

(ν2 − ν1)/2 = c3/c2 which implies that µ3 = µ1(3ν2 + 3ν1 + 1). Applying (2.1) to X
(4)
min(n + 1)

given by (7.11) yields

Y
(3,1)
min (n) =


0, . . . , θ − 1 with equal probabilities 1/µ1,
θ with probability (p2 + p3 + p4)/µ1,
θ + 1, . . . , η − 1 with equal probabilities (p3 + p4)/µ1,
η with probability p4/µ1.

Let us choose µ1 → 0. To avoid absurdity, we must have θ = 0. Moreover, we then find, after
some simplifications, that

p2/µ1 = (3ν2 + ν1 − 4ν1η + η(η − 1))/η(η + 1),
p3/µ1 = (−3ν2 + ν1 + 2ν1η)/η(η − 1),
p4/µ1 = (3ν2 + ν1 − 2ν1η)/η(η − 1).

The condition p4 > 0 implies that η < 1 + (3ν2− ν1)/2ν1, and p3 ≥ 0 yields η ≥ (3ν2− ν1)/2ν1.
Putting η = 1 + ξ̃1, we then obtain for ξ̃1 the value announced above.

Note that the condition p2 ≥ 0 is always verified. Indeed, this condition means that 3ν2 −
3ν1 − 4ξ̃1ν1 + ξ̃1(ξ̃1 + 1) ≥ 0. It can be rewritten as ν̃2 − (2ξ̃1 + 1)ν̃1 + ξ̃1(ξ̃1 + 1) ≥ 0 where
ν̃1 = 2ν1 and ν̃2 = 3ν2 − ν1. This is verified if ν̃1 and ν̃2 are the first two moments of some
random variable on {0, . . . , n}, since i2 − (2ξ̃1 + 1)i + ξ̃1(ξ̃1 + 1) ≥ 0 for all 0 ≤ i ≤ n. In fact,
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the random variable Z in Denuit et al. (1999c) has precisely its first two moments equal to
these ν̃1 and ν̃2; see formula (5.7) in that paper. So, we finally get the above result (5.7).

Consider X
(4)
max(n + 1) given by (7.12). First, we observe that (µ2n − µ3)/(µ1n − µ2) =

1 + (2nν1 − 3ν2 + ν1)/(n − 2ν1); thus, ζ = ξ̃2 + 1 where ξ̃2 is defined through (5.8) above.
Applying (2.1), we then get that

Y (3,1)
max (n) =


0, . . . , ξ̃2 with equal probabilities (p2 + p3 + p4)/µ1,

ξ̃2 + 1 with probability (p3 + p4)/µ1,

ξ̃2 + 2, . . . , n with equal probabilities p4/µ1.

Finally, one can check that p2/µ1 = χ1/(ξ̃2 + 1), p3/µ1 = χ2/(ξ̃2 + 2) and p4/µ1 = χ3/(n + 1),
hence the result (5.8).

In the continuous case, (3.18) gives ν1 = µ2/2µ1 and ν2 = µ3/3µ1. So, we choose µ2 = 2µ1ν1

and µ3 = 3µ1ν2, with µ1 → 0. For the mininimum, we see from (7.13) that

X
(4)
min(b) =

{
r− → 0 with probability (r+ − µ1)/(r+ − r−)→ 1,
r+ → 3ν2/ν1 with probability (µ1 − r−)/(r+ − r−)→ 0.

Moreover, one can check that
r−/µ1 → (3ν2 − 4ν2

1)/3ν2,

implying also that (µ1−r−)/(r+−r−)µ1 → (4ν2
1/3ν2)(2ν1/3ν2). All this then leads to the result

(5.9) for Y
(3,1)
min (b).

For the maximum, we have by (7.14) that

X(4)
max(b) =


0 with probability p1 = 1− p2 − p3,
2bν1−3ν2
b−2ν1

with probability p2 = µ1
b−2ν1

2bν1−3ν2

(b−2ν1)2

b2−4bν1+3ν2
,

b with probability p3 = µ1
1
b

3ν2−4ν2
1

b2−4bν1+3ν2
.

The result (5.10) for Y
(3,1)
max (b) then easily follows. �

(iv) 1-convex extrema for nonincreasing convex distributions. Here, s = 1 and
t = 2. We observe that the 1-convex extrema obtained before for nonincreasing distributions
are convex. As a consequence, they are extremal too for nonincreasing convex distributions.

(v) 2-convex extrema for nonincreasing convex distributions. This time, s = 2
and t = 2. The 2-convex extrema for nonincreasing distributions are again convex, except the
minimum in the discrete case. Thus, apart this case which is discussed below, they remain
extremal for nonincreasing convex distributions. Let ν1 = E(Y ) be the fixed mean in the set
B2,2(n) (and H2[B4(n+ 1)]).

Corollary 5.4 For the minimum in the discrete case (inside B2,2(n)), put η̃ for the integer in
[2, n] such that η̃ < 2 + 3ν1 ≤ η̃ + 1. Then,

Y
(2,2)
min (n) = j with probability (η̃ − j − 1)π1 + (η̃ − j)π2, j = 0, . . . , η̃ − 1, (5.11)

where

π1 =
2(η̃ − 1− 3ν1)

η̃(η̃ − 1)
, and π2 =

2(2 + 3ν1 − η̃)

η̃(η̃ + 1)
.
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Proof. In (4.8), the two constraints (for k = 1, 2) yield the condition 0 ≤ c1−c2Q(0) ≤ 1. From
now, we assume that µ1 → 0. To satisfy the previous condition, one may choose, for instance,
E(X2) = 2µ1. Moreover, by (4.6), ν1 = c3/c2, i.e. 3(1 + ν1) = E(X3 −X)/E(X2 −X). Given
our choice of E(X2), one then gets E(X3) = (4 + 3ν1)µ1. Finally, as µ1 → 0, we use the
approximations µ2 ' E(X2) and µ3 ' E(X3).

Consider the 4-convex minimum given by (7.11). Under the first three moments above, one
sees that θ = 0 and the minimum then becomes

X
(4)
min(n+ 1) =


0 with probability p1 = 1− (η2 − η + 3ν1 + 1)µ1/η(η + 1),
1 with probability p2 = (η2 − 3η + 2 + 3ν1)µ1/η(η − 1),
η with probability p3 = (η − 1− 3ν1)µ1/η(η − 1),
η + 1 with probability p4 = (2 + 3ν1 − η)µ1/η(η + 1).

Furthermore, p1 ≥ 0 (as µ1 → 0), p3 ≥ 0 means 1 + 3ν1 ≤ η, and p4 > 0 requires η < 2 + 3ν1,
which implies p2 > 0 (since η ≥ 2). All this leads to the announced value η̃.

By (4.4), the operator H2 provides the distribution P (Y = j) = [P (X = j + 2) + 2P (X =

j+3)+ . . .+(n−j)P (X = n+1)]/c2, j = 0, . . . , n. Applied to X
(4)
min(n+1), it gives, as µ1 → 0,

P [Y
(2,2)
min (n) = η̃ − 1] = p4/c2, P [Y

(2,2)
min (n) = η̃ − 2] = (p3 + 2p4)/c2, P [Y

(2,2)
min (n) = η̃ − 3] =

(2p3 + 3p4)/c2 and in general,

P [Y
(2,2)
min (n) = j] = (η̃ − j − 1) p3/c2 + (η̃ − j) p4/c2, j = 0, . . . , η̃ − 1.

By construction one knows that c2 = µ1/2, thus p3/c2 = π1 and p3/c2π2 as stated in (5.11). �

6 Some numerical illustrations

We present hereafter three applications, somewhat non-standard, in insurance and biostatistics.
More traditional illustrations in ruin theory and life insurance (as in Denuit and Lefèvre (1997)
and Denuit et al. (1998), (1999b)) could be considered too.

Solvency Capital Requirements for large claims. The new European regulation,
Solvency II, to be in force in October 2012, imposes insurance companies to hold enough
capital to deal with unfavorable events. The Directive was voted in April 2009 but many
implementation measures are still being discussed currently. Some stakeholders recommend
the creation of a so-called large loss module in order to cover claim amounts that are larger
than attritional ones (but not of catastrophic type). First, for each risk, some buffer capital
called Solvency Capital Requirement (SCR) has to be held. Then, at the company or group
level, some aggregation formula takes diversification into account and defines the Basic Solvency
Capital Requirement that the company must satisfy as√∑

i

∑
j

ρij SCRi SCRj,

where SCRi represents the Solvency Capital Requirement for the business line i and ρij is a
correlation-type parameter (without precise statistical meaning) between the lines i and j.
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For each risk, the Solvency Capital Requirement is generally defined as the difference be-
tween a certain Value-at-Risk of the random loss and the expected loss. In most cases, a
simplification is used and the SCR is defined by SCR = qσ, where σ is the standard error of
the random loss and q > 0 is called a quantile factor. So, q = 3 is usually chosen for claim
amounts with a moderate tail distribution (as it is in many Solvency II modules). For heavy-
tailed risks, a more relevant value is q = 5 or 6; hereafter, we will take q = 6. A collective risk
model is often adopted to describe the occurrence of large claims. Thus, the number of claims
is a counting random variable N , and the large claim amounts are independent identically
distributed random variables (distributed as W , say), independently of N . By the variance
decomposition formula, the variance of the large loss aggregated claim amount is given by

σ2 = Var(W )E(N) + [E(W )]2 Var(N).

Various specialized softwares or internal models provide an estimation of the distribution of
W and the mean E(N). As only limited information is available, N is usually assumed to have
a Poisson distribution. For example, with respect to some French data, one could use a Poisson
distribution with parameter λ(C27) = 0.37 for the business line C27 (Drought and earthquake)
and λ(C35) = 0.69 for the business line C35 (Construction - damages to building). The Poisson
assumption is partially satisfying as, in practice, N is usually over-dispersed (V ar(N) is signif-
icantly larger than E(N)) and only a bounded number of large claims are susceptible to occur
(practitioners consider that observing more than a certain number n claims corresponds to a
catastrophe). So, for the two previous business lines, one could set, for instance, n(C27) = 10
and n(C35) = 20.

A property of the Poisson distribution (with parameter λ) is that its probability mass
function is nonincreasing convex if λ ≤ 2−

√
2 ' 0.5858, and nonincreasing but not convex if

2−
√

2 < λ ≤ 1. Note that for our illustration, λ(C27) = 0.37 < 2−
√

2 < λ(C35) = 0.69 < 1.
In fact, this shape for a counting distribution is quite frequent for standard (non-catastrophic)
risks. Instead of a Poisson distribution, one could prefer to use a distribution with the same
mean that is nonincreasing (convex) and has a bounded support {0, . . . , n}. The choice of such
a distribution, however, is not an easy task. It is thus interesting to dispose of upper and lower
bounds for the Solvency Capital Requirement.

The bounds for SCR = qσ are simply given by

SCR(N
(2,2)
min ) = q

√
Var(W )E(N) + [E(W )]2 Var(N

(2,2)
min ),

and

SCR(N (2,2)
max ) = q

√
Var(W )E(N) + [E(W )]2 Var(N

(2,2)
max ).

These provide a prudent version of the SCR and allow us to situate any particular choice for
the distribution of N (within the class of interest). Let us fix the mean ν1 = E(N) = λ. From
(7.3), (7.4), one gets (writing N (2,0) ≡ N (2))

Var(N
(2,0)
min ) = ν1 − ξ(1− 2ν1 + ξ)− ν2

1 ,

Var(N (2,0)
max ) = nν1 − ν2

1 .
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From (5.3), (5.4),

Var(N
(2,1)
min ) = [−ξ̃3 + ξ̃2(−3 + 4ν1) + ξ̃(−2 + 11ν1 − 3ν2

1) + 6ν1(1− ν1)]/3(ξ̃ + 2),

Var(N (2,1)
max ) = ν1(2n+ 1)/3− ν2

1 ,

and from (5.11) with the remark before Corollary 5.4,

Var(N
(2,2)
min ) = (η̃ − 1)(6ν1 + 2− η̃)/6− ν2

1 ,

Var(N (2,2)
max ) = Var(N (2,1)

max ),

(as 1 + 22 + . . .+ n2 = n(n+ 1)(2n+ 1)/6 and 1 + 23 + . . .+ n3 = n2(n+ 1)2/4).

For n(C27) = 10, λ(C27) = 0.37, one has ξ = 0, ξ̃ = 0, η̃ = 3 and Var(N
(2,1)
min ) = Var(N

(2,0)
min ).

For n(C35) = 20, λ(C35) = 0.69, then ξ = 0, ξ̃ = 1, η̃ = 4 and Var(N
(2,1)
min ) > Var(N

(2,0)
min ).

Concerning the associated claim amounts, let us choose, for instance, E[W (C27)] = 1000,
Var[W (C27)] = 25002 and E[W (C35)] = 2000, Var[W (C35)] = 70002 (in thousands of euros).
We present some numerical results in Tables 1 and 2 below. Table 1 shows that the Poisson
case is much closer to the lower bounds than the upper bounds. This means that the Poisson
assumption may lead to serious underestimations if one uses it by default. Besides, the upper
bound is significantly improved when the distribution is known to be nonincreasing. The ?

indicates that the corresponding Poisson distribution is not convex; so, the bound given there
is questionable if the Poisson distribution shape is taken for granted. From Table 2, one observes
that, as expected, the choice of the maximal value n influences considerably the value of the
variance of N ; its effect on the value of the SCR is, however, less important by comparison.
Note that the lower bound does not depend on n.

Residual lifetime at high ages. Yearly mortality rates at high ages (larger than 100)
are difficult to estimate. Nowadays, mortality rates at age 100 in France are close to 0.36.
Until age 105, they slightly increase at a rate of around 0.015 per year; they tend to become
stable after age 105. There is still some uncertainty about the pattern of mortality rates at
high ages. Concerning, however, the residual lifetime floor at age 100, denoted by T100, its
distribution is observed to have a nonincreasing convex form whatever the pattern of mortality
rates. This is shown in Figure 1 (resp. Figure 2) where the annual mortality rates increase
of 0.015 -Hypothesis H1- (resp. remain constant -Hypothesis H2-); the life expectancy is then
1.68 (resp. 1.86) years. Note that at a lower age of 95, the mortality rate is of 0.20 with an
increase of 0.03 per year up to age 105 say, after which the rate is taken constant -Hypothesis
H3-; then, the residual lifetime floor T95 has a nonincreasing distribution which is no longer
convex (see Figure 3).

Provided the residual lifetime floor has a nonincreasing (convex) distribution, its variance
can be bounded by using again the previous extrema. Considering T100, we choose n = 15 as
the probability to live more than 115 years is extremely small (positive of course). Results are
presented in Table 3 for both Hypotheses 1 and 2. We observe that the lower bounds are not
very far from the empirical case, especially when information on the shape of the distribution
is provided.

Number of asthma exacerbations. Asthma exacerbation is another term for an asthma
attack in which the bronchial tubes through which air flows to the lungs suddenly tighten
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Line C27 Line C35

λ λ(C27) = 0.37 λ(C35) = 0.69
n n(C27) = 10 n(C35) = 20

Var(N
(2,0)
min ) 0.2331 0.2139

Var(N
(2,1)
min ) 0.2331 0.4672

Var(N
(2,2)
min ) 0.2698 0.5939?

Var(N) (Poisson case) 0.37 0.69

Var(N
(2,2)
max ) 2.4531 8.9539?

Var(N
(2,1)
max ) 2.4531 8.9539

Var(N
(2,0)
max ) 3.5631 13.3239

SCR(N
(2,0)
min ) 9573.0 35326.5

SCR(N
(2,1)
min ) 9573.0 35839.0

SCR(N
(2,2)
min ) 9641.7 36092.7?

SCR (Poisson case) 9827.0 36283.9

SCR(N
(2,2)
max ) 13098.2 50065.2?

SCR(N
(2,1)
max ) 13098.2 50065.2

SCR(N
(2,0)
max ) 14543.8 55998.2

Table 1: Bounds on Var(N) and SCR for C27 and C35 when s = 2 and t = 0, 1, 2.

n(C27) Var(N
(2,2)
max ) SCR(N

(2,2)
max )

5 1.220 11276.6
10 2.453 13098.2
20 4.920 16135.7
30 7.386 18685.9
40 9.853 20927.5

Table 2: Bounds on Var(N) and SCR for C27 in function of n when s = t = 2.

Figure 1: Probability mass function of T100 under H1.
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Figure 2: Probability mass function of T100 under H2.

Figure 3: Probability mass function of T95 under H3.

Hypothesis H1 H2
E(T100) 1.68 1.86

Var(T
(2,0)
100,min) 0.22 0.22

Var(T
(2,1)
100,min) 1.58 1.83

Var(T
(2,2)
100,min) 2.26 2.69

Var(T100) (empirical case) 3.77 5.27

Var(T
(2,2)
100,max) 14.54 15.73

Var(T
(2,1)
100,max) 14.54 15.73

Var(T
(2,0)
100,max) 22.38 24.39

Table 3: Bounds on Var(T100) when s = 2 and t = 0, 1, 2.
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and become constricted. This makes it extremely difficult to breathe, resulting in an asthma
exacerbation. There are many things that can trigger an asthma exacerbation and a quick
treatment is necessary to prevent a medical emergency. A study involving 202 patients during
one year has given the following empirical distribution (Table 4) for the number N of asthma
exacerbations. This distribution is nonincreasing but is easily seen to be non-convex. There is
almost no overdispersion as E(N) ' 1.1832 and V ar(N) ' 1.1852.

Given the observed mean of N , we computed the probability mass functions of the extrema
for arbitrary or nonincreasing distributions valued on {0, . . . , n = 5} (using (7.3),(7.4) and
(5.3),(5.4), respectively). The results are presented in Table 5. Moreover, bounds for the
variance of N are provided in Table 6: for n = 5, the bounds are rather narrow and for n = 10,
the upper bound becomes much higher (as expected).

Values j of N Frequencies Proportions
0 67 0.33168
1 60 0.29703
2 53 0.26238
3 16 0.07921
4 5 0.02475
5 1 0.00495

Table 4: Empirical distribution for N .

j N
(2,0)
min N

(2,0)
max N

(2,1)
min N

(2,1)
max

0 0 0.7634 0.3028 0.60560
1 0.8168 0 0.3028 0.07888
2 0.1832 0 0.3028 0.07888
3 0 0 0.0916 0.07888
4 0 0 0 0.07888
5 0 0.2360 0 0.07888

Table 5: Probability mass functions of the extrema when s = 2 and t = 0, 1, with n = 5.

n = 5 n = 10

Var(N
(2,0)
min ) 0.1496 0.1496

Var(N
(2,1)
min ) 0.6942 0.6942

Var(N) (empirical case) 1.1852 1.1852

Var(N
(2,1)
max ) 2.9384 6.8823

Var(N
(2,0)
max ) 5.9259 11.8519

Table 6: Bounds on Var(N) for s = 2 and t = 0, 1, with n = 5 or 10.
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7 Appendix: convex extrema

The s-convex extrema are known under explicit form when s = 1, 2, 3, 4 (see the references
given in the Introduction). They are recalled below, for discrete random variables valued in a
set {0, . . . , n}, n ∈ IN, and for real-valued random variables with support in an interval [0, b],
b > 0. We denote by Bs(n) and Bs(b) the classes of all such discrete and real-valued random
variables X that have prescribed first s− 1 moments µi = E(X i), i = 1, . . . , s− 1.

1-convex extrema. For the discrete [real-valued] case (inside B1(n) [B1(b)]),

X
(2)
min(n) = 0 [X

(2)
min(b) = 0] a.s., (7.1)

and
X(2)
max(n) = n [X(2)

max(b) = b] a.s. (7.2)

2-convex extrema. For the discrete case (inside B2(n)), let ξ be the integer in [0, n − 1]
such that ξ < µ1 ≤ ξ + 1. Then, the minimum is given by

X
(2)
min(n) =

{
ξ with probability ξ + 1− µ1,
ξ + 1 with probability µ1 − ξ.

(7.3)

and the maximum by

X(2)
max(n) =

{
0 with probability 1− µ1/n,
n with probability µ1/n.

(7.4)

For the real-valued case (inside B2(b)), the extrema are

X
(2)
min(b) = µ1 a.s., (7.5)

and

X(2)
max(b) =

{
0 with probability 1− µ1/b,
b with probability µ1/b.

(7.6)

3-convex extrema. For the discrete case (inside B3(n)), let ξ1 and ξ2 be the integers in
[0, n− 1] such that

ξ1 < µ2/µ1 ≤ ξ1 + 1, and ξ2 < (nµ1 − µ2)/(n− µ1) ≤ ξ2 + 1.

Then,

X
(3)
min(n) =


0 with probability p1 = 1− p2 − p3,
ξ1 with probability p2 = [(ξ1 + 1)µ1 − µ2]/ξ1,
ξ1 + 1 with probability p3 = (µ2 − ξ1µ1)/(1 + ξ1).

(7.7)

and

X(3)
max(n) =


ξ2 with probability p1 = 1− p2 − p3,

ξ2 + 1 with probability p2 = (n+ξ2)µ1−µ2−nξ2
n−1−ξ2 ,

n with probability p3 = (1+ξ2)(ξ2−µ1)+µ2−µ1ξ2
(n−ξ2)(n−1−ξ2)

.

(7.8)

24



For the real-valued case (inside B3(b)), the extrema are

X
(3)
min(b) =

{
0 with probability (µ2 − µ2

1)/µ2,
µ2/µ1 with probability µ2

1/µ2,
(7.9)

and

X(3)
max(b) =

{
bµ1−µ2

b−µ1
with probability (b−µ1)2

(b−µ1)2+µ2−µ2
1
,

b with probability
µ2−µ2

1

(b−µ1)2+µ2−µ2
1
.

(7.10)

4-convex extrema. For the discrete case (inside B4(n)), let θ and η be integers in [0, n−1]
with θ + 1 < η such that α(θ, η) ≥ 0 where

α(θ, η) ≡ −µ3 + µ2(θ + 2 + 2η)− µ1[(θ + 1)η + (θ + 1)(η + 1) + η(η + 1)] + (θ + 1)η(η + 1),

as well as α(η, θ), −α(θ − 1, η) and −α(η − 1, θ) ≥ 0. Then,

X
(4)
min(n) =


θ with probability p1 = α(θ, η)/(η − θ)(η − θ + 1),
θ + 1 with probability p2 = −α(θ − 1, η)/(η − θ)(η − θ − 1),
η with probability p3 = α(η, θ)/(η − θ)(η − θ − 1),
η + 1 with probability p4 = −α(η − 1, θ)/(η − θ)(η − θ + 1).

(7.11)

Let ζ be the integer in [1, n− 2] such that

ζ < (µ2n− µ3)/(µ1n− µ2) ≤ ζ + 1.

Then,

X(4)
max(n) =


0 with probability p1 = 1− p2 − p3 − p4,

ζ with probability p2 = nµ1(ζ+1)−µ2(ζ+1+n)+µ3

ζ(n−ζ) ,

ζ + 1 with probability p3 = µ2(ζ+n)−nµ1ζ−µ3

(ζ+1)(n−ζ−1)
,

n with probability p4 = µ3−µ2(2ζ+1)+µ1ζ(ζ+1)
n(n−ζ)(n−ζ−1)

.

(7.12)

For the real-valued case (inside B4(b)), putting

r− (resp. r+) =
µ3 − µ1µ2 − (+) [(µ3 − µ1µ2)

2 − 4(µ2 − µ2
1)(µ1µ3 − µ2

2)]
1/2

2(µ2 − µ2
1)

,

then,

X
(4)
min(b) =

{
r− with probability (r+ − µ1)/(r+ − r−),
r+ with probability (µ1 − r−)/(r+ − r−),

(7.13)

and

X(4)
max(b) =


0 with probability p1 = 1− p2 − p3,
bµ2−µ3

bµ1−µ2
with probability p2 = (bµ1−µ2)3

(bµ2−µ3)(b2µ1−2bµ2+µ3)
,

b with probability p3 =
µ1µ3−µ2

2

b(b2µ1−2bµ2+µ3)
.

(7.14)
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