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and Performance Analysis of Color Filter Arrays
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Abstract— We propose a novel method for image demosaick-
ing from samples obtained with a completely arbitrary color
filter array (CFA). We adopt a variational approach where
the reconstructed image has maximal smoothness under the
constraint of consistency with the available measurements. This
optimization problem boils down to a large, sparse system of
linear equations to solve, for which we propose an iterative
algorithm. Although the proposed approach is linear, it yields
visually pleasing demosaicked images and provides a robust
framework for comparing the performances of CFAs.

Index Terms— Demosaicking, color filter array, variational
reconstruction, regularized inverse problem

I. INTRODUCTION

At the heart of color imaging systems like digital cameras

is a sensor on which a color filter array (CFA) is overlaid [1].

A CFA is a mosaic of color filters sensitive to only a portion

of the visible light spectrum. The most popular CFA, used in a

majority of digital cameras, is the Bayer CFA [2], that consists

in red (R), green (G) and blue (B) filters arranged periodically.

Given the mosaicked image acquired by the sensor, some

processing is required to reconstruct a full color image with

its three complete R,G,B channels. There is an extensive

literature proposing solutions to this interpolation problem,

called demosaicking—see e.g. [1], [3]–[10] and references

therein—but in almost all works, acquisition with the Bayer

CFA is assumed. In comparison, the design of other CFAs

that would overcome the limitations of the latter—especially

the aliasing effects in regions with horizontal or vertical high

frequency content—has received little attention. Yet, the CFA

is the most crucial element in a color imaging pipeline and

even the best demosaicking algorithm can not recover the

information lost because of the intrinsic limitations of the

CFA. Although the design of new CFAs can be based on a

theoretical analysis of their spectral properties [3], [4], [11],

the need exists for a generic demosaicking method, in order to

concretely compare them and to evaluate their performances.

Such a method should be robust, applicable to all CFAs, while

being independent of their specificities for a fair comparison

between them. To our knowledge, only the demosaicking

approach of Lukac et al. can be used to compare different
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CFAs, under the important limitation that they consist of R,G,

and B filters [12]. Recently, new promising CFA designs with

filters having arbitrary colors were proposed [11]. In this work,

we present a new demosaicking method which can be applied

to arbitrary CFAs, without any constraint on the colors of their

filters or their arrangement—periodic or on a random pattern.

This method is linear, hence simple to implement, robust, and

insensitive to biases due to the choice of ad hoc heuristics

in non-linear methods. It also yields visually pleasant images,

although it does not reach the quality of the best non-linear

methods in the specific case of the Bayer pattern. However,

we show that the image quality depends more on the CFA

than on the demosaicking method used, which indicates that

alternatives to the Bayer CFA should be considered seriously

for use in the consumer market digital cameras.

Demosaicking is basically an ill-posed inverse problem,

since only one linear measurement is available instead of three

at every pixel. In this work, we regularize the demosaicking

problem by adopting a variational approach and formulating

the reconstruction as an optimization problem. Thus, we

seek a solution that is consistent with the measurements,

while minimizing a regularization term that penalizes the lack

of smoothness. This way, the information contained in the

available measurements is automatically filled in smoothly to

surrounding pixels where information is missing. Although

such a versatile formalism is classical in image processing

and has been used for several problems, like interpolation [13]

or reconstruction from non-uniform samples [14]–[16], its

application to color images is new. The key point to exploit

the statistical dependencies between the R, G and B chan-

nels in natural images is to express the smoothness term in

the luminance-chrominance basis and to impose a smaller

penalty to the energy of the luminance than to the one of

the chrominance. This formulation naturally encompasses the

hypothesis of locally constant hue, which is at the heart of

several proposed demosaicking methods [6], [9], [10]. We

define the reconstruction problem in the continuous domain,

where the regularization is well posed, with all the correspond-

ing advantages: the demosaicked image is simply obtained

by resampling the reconstructed function, but the function

may be eventually used for other tasks, or resampled at a

different resolution. We seek a function lying in some uniform

linear shift-invariariant space, so that is is parameterized by

discrete coefficients. Hence, the optimization problem boils

down to a purely discrete problem, under the form of a large
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and sparse system of linear equations to solve. To this end,

we propose a simple iterative algorithm that converges to a

visually satisfying demosaicked image after a few number of

iterations.

The paper is organized as follows. In Section II, we set

up the variational reconstruction problem in the continuous

domain and derive its solution, under the form of a system

of linear equations. We propose in Section III an iterative

algorithm for solving it and discuss the choice of the tuning

parameters. We then give experimental results in Section IV,

in order to establish a comparison between several CFAs.

A. Notations and Other Preliminaries

In this article, boldface letters denote vectors, e.g. k =
[k1, k2]

T ∈ Z
2. A color is a vector of R

3 and we define the

canonical R,G,B basis of the color space by R = [1, 0, 0]T,

G = [0, 1, 0]T, B = [0, 0, 1]T.

A color image is denoted by g = (g[k])k∈Z2 , where

g[k] ∈ R
3 is the color of the pixel centered at location k ∈ Z

2.

We denote by gR, gG and gB the components of g in the

R,G,B basis. A CFA h is defined as a color image, with

the additional constraint that h[k] ∈ [0, 1]3 for every k, for

physical realizability of the filters.

We define in the following the color image u as the ground

truth to be estimated by the demosaicking process, while h

denotes the CFA used for the acquisition. The scalar pixel

values v[k] ∈ R of the mosaicked image v form the available

data set from which we want to estimate u. The acquisition

process is modeled by the simple linear relationship:

v[k] = 〈u[k],h[k]〉, (1)

for every k ∈ Z
2, where we introduce the scalar product of

two vectors, 〈a,b〉 = aTb.

It is well known that in natural images, the R,G,B compo-

nents are not independent [1], [5], [7], [17]. Thus, we consider

instead the orthonormal basis corresponding to luminance, red-

green and blue-yellow chrominances, defined as

L =
1√
3
[1, 1, 1]T,C1 =

1√
2
[−1, 1, 0]T,C2 =

1√
6
[−1,−1, 2],

(2)

respectively. We denote gL, gC1 and gC2 the components

of a color image g in this basis. These components can

be considered as statistically independent [17]. According

to the theory of opponent colors, validated by experimental

evidences [18], this luminance/chrominance basis is also a

good model for the three channels used in the human visual

system to process the visual information. This may indicate

that the evolution favored our biological visual system because

it is adapted to the statistics of natural color scenes [19].

We define the Z transform of a scalar filter g = (g[k])k∈Z2

as G(z) =
∑

k∈Z2 g[k]z−k1

1 z−k2

2 and we extend it to a vector

filter g by applying it component-wise. We also define the

inverse filter g−1 of g as the filter with Z transform 1/G(z).
We introduce the autocorrelation function aϕ of a function

ϕ(x) by aϕ(x) = (ϕ ∗ ϕ̄)(x), using the flip operator ϕ̄(x) =
ϕ(−x).

II. VARIATIONAL RECONSTRUCTION

A. Formulation of the Problem

Given the mosaicked image v = 〈u,h〉 acquired using a

given CFA h, the demosaicking process aims at reconstructing

a demosaicked image ũ, that is a good estimate of the

unknown ground truth u.

A natural criterion to be satisfied by ũ is the consis-

tency [20] with respect to the mosaicked image, that is,

v = 〈ũ,h〉. (3)

With consistency only, demosaicking is obviously an ill-posed

problem. The solution we adopt in this work consists, at least

formally, in reconstructing a continuously-defined function f̃ :
R

2 7→ R
3, that is then resampled to yield the demosaicked

image:

ũ[k] = f̃(k), ∀k ∈ Z
2. (4)

We regularize the problem and look for the function that

minimizes some quadratic functional, under the consistency

constraint:

f̃ = argmin
g∈Ω

Q(g), s.t. 〈g(k),h[k]〉 = v[k] ∀k ∈ Z
2,

(5)

for some functional space Ω to be chosen. Popular functionals

used in signal and image processing, approximation theory, or

statistics, penalize the lack of smoothness of the solution [15],

[16]. Of particular interest are Duchon’s semi-norms, which

are invariant under rotations, defined for a scalar function g(x)
as [21],

Mp(g) =

∫

R2

‖Dpg(x)‖2dx, (6)

where Dp is the vector of all possible partial derivative

operators of order p. For instance,

M1(g) =

∫

R2

(

∂g(x)

∂x1

)2

+

(

∂g(x)

∂x2

)2

dx, (7)

M2(g) =

∫

R2

(

∂2g(x)

∂x2
1

)2

+2

(

∂2g(x)

∂x1∂x2

)2

+

(

∂2g(x)

∂x2
2

)2

dx.

(8)

For the reconstruction of color images, we have to define

a smoothness functional that can be applied to vector-valued

functions. Since we assumed that the luminance and chromi-

nance components of natural scenes are independent, we adopt

a functional that is diagonal is the luminance/chrominance

basis, using Duchon’s semi-norms on each component:

Qp,µ(g) = µMp(g
L) + Mp(g

C1) + Mp(g
C2), (9)

for some integer order p ≥ 1 and weight parameter µ > 0.

This functional is rotation-invariant with respect to the spatial

variable x, but also invariant with respect to a rotation in the

color plane of the color value of g: if

[gL
θ , gC1

θ , gC2

θ ]T =





1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)



 [gL, gC1 , gC2]T,

(10)
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then Qp,µ(gθ) = Qp,µ(g), for every θ ∈ R. Thus, there is no

privileged color axis and the smoothness of the chrominance

is penalized in a fair way in every iso-luminant color plane.

With this functional, the optimization problem (5) is well

posed: there exists a solution, since the space of consistent

reconstructions is not empty, and the solution is unique due

to the convexity of Qp,µ.

The parameter µ in (9) plays a crucial role in our formula-

tion. It controls the balance between the smoothness of the

luminance and the smoothness of the chrominance for the

reconstructed function. Qualitatively, we can remark that

• If µ = 0, then the solution of the problem (5) is not

unique and corresponds to a gray-scale function plus

a color constant: every function of the form f̃(x) =
f(x).L + C for some scalar function f and color C ∈
R

3, which is consistent with the mosaicked samples, is

solution of (5), since it is in the null space of Qp,0. For

instance, the gray-scale demosaicked image defined by

ũ[k] = (v[k]/hL[k]).L for every k, is a valid solution,

in which all the available information has been assigned

to the luminance. This trivial solution is clearly not

satisfying.

• If µ = 1, we can rewrite Qp,1 in the R,G,B basis

as Qp,1(g) = Mp(g
R) + Mp(g

G) + Mp(g
B). Hence,

for a CFA with R,G,B filters, the demosaicking process

amounts to reconstruct the R,G,B channels independently,

and the global solution to (5) is obtained by interpolation

of each channel using thin-plate splines [21]. For the

Bayer CFA and p = 1, the solution will be very close to

what is obtained by bilinear interpolation. Thus, the case

µ = 1 is not satisfying, neither, since it does not take

into account the cross-correlations between the R,G,B

channels.

Consequently, µ should be chosen between 0 and 1, and

relatively small in order to get a slowly varying hue across the

image. However, a too small value will produce watercolor

effects at sharp color transitions and, at the limit, a gray-

scale image. Like often with tradeoff parameters, there is no

mathematical rule for choosing µ, and the best value for a

given CFA should be chosen empirically by trial and error, to

give the best performances on test images.

B. Reconstruction in Shift-Invariant Spaces

For the problem to be completely defined, we have to choose

the reconstruction space Ω in (5). Finding the analytical form

of the global minimizer of (5) among all possible functions

(more rigorously, in the Sobolev space of order p) is a

too complicated problem. We can expect the solution to be

expressed in the basis of some “colored” thin-plate splines

shifted at every pixel of the lattice Z
2, similarly to the scalar

case [21]. For the practical purpose of image demosaicking we

focus on in this paper, an extensive mathematical treatment of

this solution is not required.

Instead, we constrain the reconstruction space Ω to be a

linear shift-invariant (LSI) space [22], [23] Vϕ generated by

some function ϕ to be chosen:

Vϕ =

{

g(x) =
∑

k∈Z2

c[k]ϕ(x − k) : c[k] ∈ R
3 ∀k

}

.

(11)

LSI spaces have been used extensively in sampling theory, for

approximation and interpolation [24], and they are at the heart

of the wavelet theory. The function ϕ can be chosen arbitrarily,

under the following assumptions:

• ϕ is bounded with compact support. This condition is not

necessary, but we enforce it for implementation purpose.

• The shifts ϕ(x−k) form a Riesz basis of Vϕ ∩L2 [22],

so that each function g ∈ Vϕ has a unique expansion in

the form (11).

• Mp(ϕ) < +∞ so that the smoothness term Qp,µ(g) does

not blow up for every g ∈ Vϕ.

In practical reconstruction problems encountered in image

processing, spline spaces have shown to be particularly ade-

quate [15], [24], [25]. In that case, ϕ is chosen as the separable

centered B-spline βd of degree d ≥ p [25].

Thus, our reconstruction problem boils down to finding the

coefficients c[k] ∈ R
3 that parameterize the function

f̃(x) =
∑

k∈Z2

c[k]ϕ(x − k), (12)

so that f̃ is solution of (5) with Ω = Vϕ.

C. Derivation of the Solution

We now express the solution of the minimization problem in

terms of the pixel values ũ[k] of the demosaicked image. The

consistency is expressed by (3). In order to discretize the vari-

ational term, we first remark that Dpϕ(−x) = (−1)pDpϕ̄(x).
Consequently, we obtain

Qp,µ(f̃) = (13)
∑

k,l∈Z2

(

µ cL[k]cL[l] + cC1 [k]cC1 [l] + cC2 [k]cC2 [l]
)

×
∫

R2

Dpϕ(x − k)TDpϕ(x − l)dx = (14)

∑

k,l∈Z2

(

µ cL[k]cL[l] + cC1 [k]cC1 [l] + cC2 [k]cC2 [l]
)

×

(−1)p
(

(Dp)TDpaϕ

)

(k − l) = (15)

µ
∑

k∈Z2

cL[k]
(

cL ∗ qϕ,p

)

[k] +
∑

k∈Z2

cC1 [k]
(

cC1 ∗ qϕ,p

)

[k]+

∑

k∈Z2

cC2 [k]
(

cC2 ∗ qϕ,p

)

[k], (16)

where qϕ,p is the discrete filter defined by

qϕ,p[k] = (−1)p
(

(Dp)TDpaϕ

)

(k) (17)

= (−1)p
∑

a+b=p

(

p
a

)

∂2paϕ(x)

∂x2a
1 ∂x2b

2

∣

∣

∣

∣

x=k

(18)

for every k ∈ Z
2. In the case where ϕ is a separable B-spline,

explicit formulas for the filters qϕ,p have been given in [15]. In

the most simple case corresponding to bilinear reconstruction
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(ϕ is the separable centered B-spline of degree 1) and p = 1,

the filter is

qβ1,1 =
1

3





−1 −1 −1
−1 8 −1
−1 −1 −1



 . (19)

In order to express the minimization problem in terms of

ũ instead of c, we define bϕ as the discretization of ϕ by

bϕ[k] = ϕ(k) for every k ∈ Z
2. Then,

c = ũ ∗ b−1
ϕ . (20)

Thus, we obtain the final form

Qp,µ(f̃) =µ〈ũL, ũL ∗ rϕ,p〉 + 〈ũC1 , ũC1 ∗ rϕ,p〉+
〈ũC2 , ũC2 ∗ rϕ,p〉, (21)

where we introduce the filter rϕ,p = qϕ,p ∗ (bϕ)−1 ∗ (b̄ϕ)−1.

When minimizing a quadratic criterion under a linear con-

straint, it is well known that the solution can be derived by

expressing the associated Lagrangian criterion [26]. In our

case,

C(f̃) = Qp,µ(f̃ ) + 2
∑

k∈Z2

λ[k]
(

〈ũ[k],h[k]〉 − v[k]
)

. (22)

Then, the desired solution is obtained by setting the partial

derivatives of C to zero, with respect to the unknowns ũL[k],
ũC1 [k], ũC2[k], and the Lagrangian parameters λ[k]. Thus, we

obtain the following set of linear equations, that describe the

solution of our problem: for every k ∈ Z
2,















µ (ũL ∗ rϕ,p)[k] + λ[k]hL[k] = 0,
(ũC1 ∗ rϕ,p)[k] + λ[k]hC1 [k] = 0,
(ũC2 ∗ rϕ,p)[k] + λ[k]hC2 [k] = 0,
ũL[k]hL[k] + ũC1 [k]hC1 [k] + ũC2 [k]hC2 [k] = v[k].

(23)

In the next Section, we propose an iterative algorithm to

solve this system of equations.

III. PRACTICAL DEMOSAICKING METHOD

A. Iterative Demosaicking Algorithm

Since the linear system (23) does not have a simple sparse

form that would provide us with a direct solution, we propose

an iterative scheme that converges to the solution. Formally,

the method is a so-called Jacobi iterator, that approximates

the inverse of the convolution matrix corresponding to rϕ,p by

the inverse of its diagonal [27]. That is, each refinement step

updates the demosaicked image as follows: for every k ∈ Z
2,

ũL
(n)[k] = ũL

(n−1)[k] − 1/rϕ,p[0]×
(

(ũL
(n−1) ∗ rϕ,p)[k] + λ(n)[k]hL[k]/µ

)

, (24)

ũC1

(n)[k] = ũC1

(n−1)[k] − 1/rϕ,p[0]×
(

(ũC1

(n−1) ∗ rϕ,p)[k] + λ(n)[k]hC1 [k]
)

, (25)

ũC2

(n)[k] = ũC2

(n−1)[k] − 1/rϕ,p[0]×
(

(ũC2

(n−1) ∗ rϕ,p)[k] + λ(n)[k]hC2 [k]
)

, (26)

where X(n) denotes the value of the quantity X after the n-th

iteration. Then, according to this scheme, we can rewrite the

linear system (23) as the following one, where the unknowns

are spatially de-interlaced. We first assume that the regular-

ization filter is normalized such that rϕ,p[0] = 1, which is not

restrictive. Then, our iterative algorithm boils down to solving,

during each iteration and for each k in scanline order in the

image, a 4×4 linear system in terms of the unknowns ũL
(n)[k],

ũC1

(n)[k], ũC2

(n)[k], λ(n)[k]:






















ũL
(n)[k] + λ(n)[k]hL[k]/µ = (ũL

(n−1) ∗ r′ϕ,p)[k],

ũC1

(n)[k] + λ(n)[k]hC1 [k] = (ũC1

(n−1) ∗ r′ϕ,p)[k],

ũC2

(n)[k] + λ(n)[k]hC2 [k] = (ũC2

(n−1) ∗ r′ϕ,p)[k],

ũL
(n)[k]hL[k] + ũC1

(n)[k]hC1 [k] + ũC2

(n)[k]hC2 [k] = v[k].
(27)

where r′ϕ,p = δ0 − rϕ,p and δ0 is the identity filter with Z
transform equal to 1. For given n and k, this linear system

is solved by first calculating λ(n)[k] and then updating the

pixel values of the demosaicked image using the first three

equations of the system (27). λ(n)[k] is computed using the

following equality, derived by substitutions in the system:

λ(n)[k]
(

hL[k]2/µ + hC1 [k]2 + hC2 [k]2
)

=

hL[k](ũL
(n−1) ∗ r′ϕ,p)[k] + hC1 [k](ũC1

(n−1) ∗ r′ϕ,p)[k]+

hC2 [k](ũC2

(n−1) ∗ r′ϕ,p)[k] − v[k]. (28)

We note that the consistency is satisfied exactly by the

demosaicked image ũ(n) after each iteration. Thus, even only

one iteration could be used as post-processing to improve

the result of another demosaicking algorithm that would yield

visually pleasing but not consistent demosaicked images.

The complexity of our algorithm is about three convolutions

with rϕ,p at each iteration. The method proposed in this

article is based on the most simple iterator for solving large

linear systems; it is stable, efficient, and easy to implement,

but the convergence may be slow. So, our algorithm is not

particularly competitive with respect to the computation time.

More complex schemes could be used to improve the speed of

convergence: Gauss-Seidel iterator or other descent methods

of convex optimization, introduction of damping parameters. . .

Such refinements are left to the interested practitioners, how-

ever.

The proposed algorithm is also versatile in the sense that

it can handle the situation when the sensor has “dead pixels”,

that is, the value v[k] is corrupted and irrelevant for some k.

In that case, simply set λ(n)[k] = 0 during the computation

of ũ(n)[k]. This way, the value of the dead pixels are defined

so that the smoothness of the image in their neighborhood

is maximal; thus, the dead pixels should be invisible in the

demosaicked image.

The sequel of the section is dedicated to the choice of

the tuning parameters, namely the initial estimate ũ(0), the

stopping condition of the algorithm, the value of µ and the

choice of rϕ,p.

B. Choice of the Parameters

We first remark that the proposed approach turns out to

be discrete, since it depends on the discrete filter rϕ,p only,
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although formally a continuous model f̃ is fitted on the

demosaicked image. Actually, formulating the minimization

problem in the LSI space Vϕ yields a reversal in its inter-

pretation: instead of looking for a function that depends on

the measurements only and that is then resampled on the

target lattice Z
2, we look for the demosaicked image ũ such

that the function f̃ that interpolate it, defined by means of

(12) and (20), has maximal smoothness. Thus, for the task of

demosaicking only, the function f̃ does not come into play

directly; the continuous formalism only provides a well-suited

design method for the regularization filter rϕ,p. However, if

the demosaicked image is interpolated for further treatment or

resampling, we have the guarantee that the underlying model

f̃(x) is satisfying, with respect to the smoothness prior.

We implemented the method using a linear spline model,

with ϕ = β1 and p = 1, and a cubic spline model, with

ϕ = β3 and p = 2. In this second case, the filter qϕ,p is a

7×7 filter given in [15, Tab. 1]. We note that the computation

of the value rβ3,2[0], which is required in our implementation,

is not trivial. We obtained this value by noticing that

rϕ,p[0] =
1

4π2

∫

[−π,π]2

∑

k∈Z2 qϕ,p[k]e−jω
Tk

∣

∣

∑

k∈Z2 ϕ(k)e−jω
Tk

∣

∣

2 dω, (29)

which can be calculated exactly. For instance, rβ3,2[0] =
(14766− 175

√
3)/175. We also tried the regularization filter

r0 =
1

4





0 −1 0
−1 4 −1

0 −1 0



 . (30)

The filter r0 is not derived from some function ϕ and order

p, which means that when using this filter, the continuous

interpretation associated to the method is lost. It turned out

in our experiments that, independently of the CFA chosen,

r0 provides the best performance among the three tested

regularization filter. After mosaicking and demosaicking the

test images used for our experiments (see in Section IV), the

average mean-square-error with r0 is roughly 95% that with

rβ3,2 and 89% that with rβ1,1. Thus, we adopt the filter r0 as

the regularization filter to be used in our framework, since it

provides the best results for the minimal complexity.

Since the solution of the problem is unique, it does not

depend on the estimate ũ(0) that serves as initialization for

the iterative algorithm. However, the choice of ũ(0) influences

the speed of convergence. The gray-scale image ũ(0)[k] =
(v[k]/hL[k]).L is not a good initializer since the color in-

formation is then very slowly recovered. The consistent color

mosaicked image ũ(0)[k] = (v[k]/‖h[k]‖2).h[k] is also a bad

initializer, because the average color of the CFA (e.g., green-

ish for the Bayer pattern) disappears very slowly along the

iterations (a color constant is in the kernel of the smoothness

penalty term). A method that turns out to work well in practice

consists in starting with a uniform grey image ũ(0)[k] = 127.5
and in performing a few iterations (we used 10 iterations)

with the parameter µ = 1. Thus, the spatial distribution of

the color information is roughly but quickly recovered and

the repartition of the high frequency content between the

luminance and chrominance channels is then refined by the

subsequent iterations with the correct value of µ.

As mentioned at the end of Section II-A, there is no

definite rule for choosing the important parameter µ. The

value giving the best results depends on the image and on

the CFA considered. For the seven CFAs compared in this

article, depicted in Fig. 1 and detailed in the next section, we

found out that the value µ = 0.04 provides good results for

the CFAs (I) to (IV), while µ = 0.11 is better for the CFAs

(V) to (VII), which have a higher light sensitivity (average

value of hL[k] over k). These values were roughly determined

by empirical trials, considering the minimization of the mean

squared error (MSE) averaged over the twenty images used for

the experiments in the next section. These values are indicative

only, but it turns out that the best value for a given CFA

closely depends on the ratio between its color discrimination

capabilities and its light sensitivity, although this notion is hard

to quantify.

The convergence of the proposed iterative algorithm is

relatively slow, that is, up to thousand iterations have to been

run before the solution is achieved up to machine precision.

The convergence turns out to be faster for the RGB CFAs

than for CFAs with higher light sensitivity. But surprisingly,

when observing for a given image the MSE with respect

to the ground-truth along the iterations, we found that it

achieves a minimum after a few iterations only, after increasing

progressively toward the MSE of the asymptotic solution. This

statement does not hold for every CFA, however, and it may

depend on the filter rϕ,p and value of µ adopted. Anyhow,

for the tests in the next section, we ran only 19 iterations of

the algorithm—including the 10 iterations for the initialization

with µ = 1 as detailed previously—for the CFAs (I) to (V).

Here also, this choice is empirical and the number of iterations

giving the best result depends on the image considered. For

the CFAs (VI) and (VII), we did not observe this behavior and

the MSE decreases monotonically along the iterations; so, 100

iterations were ran to yield the results reported in Tab. I.

IV. PRACTICAL COMPARISON OF THE PERFORMANCES OF

CFAS

In order to validate our method experimentally, we consid-

ered the data set of 20 color images of size 768 × 512 used

by many authors to test their methods (e.g. [8], [11]). These

images were mosaicked using several CFAs and demosaicked

using our method, with the values of the tuning parameters as

discussed in Section III-B. The mean squared errors (MSE)1

obtained are reported in Tab. I. The CFA considered in this

comparison, which are depicted in Fig. 1 are:

• (I). The well-known Bayer CFA [2].

1The MSE for an image of size N × M is

1

3NM

X

k∈[1..N]×[1..M]

|uR[k]−ũ
R[k]|2+|uG[k]−ũ

G[k]|2+|uB[k]−ũ
B[k]|2.

(31)
However, in this article, we do not take into account the first and last three
rows and columns of the demosaicked images for the computation of the
MSE, since the initial images used for the tests have been badly acquired at
the boundaries.



6 RESEARCH REPORT HAL-XXXXXXXX, APR. 2008

TABLE I

MEAN SQUARED ERROR FOR THE DEMOSAICKING EXPERIMENTS USING

THE CFAS (I) TO (VII) AND THE PROPOSED DEMOSAICKING METHOD.

IMAGE NUMBERS CORRESPOND TO [8]. THE LAST ROW GIVES THE

AVERAGE OVER THE 20 IMAGES.

Image (I) (II) (III) (IV) (V) (VI) (VII)

1 13.76 12.92 11.58 11.17 17.13 24.36 11.12

2 14.79 13.20 11.61 13.10 19.80 16.10 15.52
3 18.84 20.36 22.36 20.10 23.75 37.41 22.71
4 12.06 11.61 9.45 8.64 11.58 17.85 9.03
5 8.06 7.94 7.78 8.08 10.25 12.15 9.40
6 31.97 20.56 19.31 17.80 35.13 43.06 18.41
7 6.65 6.15 6.11 5.60 7.48 10.10 7.10
8 5.62 6.01 6.05 5.69 6.61 10.06 5.91
9 10.66 10.27 9.85 9.21 11.93 17.38 10.40

10 5.62 5.49 4.62 5.01 7.93 7.39 5.06
11 20.99 22.80 26.76 20.61 20.41 45.32 23.52
12 12.55 11.43 10.84 11.59 16.86 16.09 11.51
13 5.65 5.48 3.99 3.97 5.79 7.46 4.27
14 5.84 5.94 6.21 5.93 5.19 8.98 5.66
15 15.56 16.95 17.34 16.26 15.75 26.32 16.40
16 11.23 8.29 7.72 6.68 10.54 16.30 7.25
17 8.86 8.94 8.06 8.33 8.01 12.23 8.73
18 10.56 10.31 9.83 8.54 11.02 19.20 9.97
19 14.66 13.85 13.49 13.35 14.70 19.40 13.33

20 23.52 23.81 26.22 23.35 21.13 33.58 22.25

average 12.87 12.11 11.96 11.15 14.05 20.04 11.88

• (II). The R,G,B pattern proposed by Lukac in [12].

• (III). The random pattern of type 2 proposed by the

author in [28]. Contrary to the other patterns, this one

is aperiodic.

• (IV). A new pattern proposed in this work with R,G,B

and Y (yellow) filters designed so that the filters for each

of the four colors are arranged on a hexagonal lattice.

• (V). The CMY pattern with C (cyan), M (magenta) and

Y filters, a variant of the Bayer CFA with doubled light

sensitivity [2]. To our knowledge, this CFA has been

neglected and no advanced demosaicking method has

been proposed for it in the literature.

• (VI). One of the three new patterns recently proposed

and patented by Kodak [29], that should be used in the

next generation of digital cameras of this company for

the consumer market. These new CFAs will replace the

Bayer CFA, whose patent is also hold by Kodak. Thus,

the development of demosaicking methods for this CFA

will become an important problem in image processing

in the near future.

• (VII). The pattern of type 1 recently designed by Hi-

rakawa et al., with better spectral properties than previous

designs [11]. It consists in filters with the colors [12 , 1, 0],
[0, 1, 1

2 ], [1, 0, 1
2 ] and [ 12 , 0, 1] arranged with a 4 × 2

periodicity.

For the CFAs (I) to (III) having R,G,B filters, we compared

our method to two other demosaicking techniques:

• We propose a simple linear scheme that consists in

computing a missing value for the color C ∈ {R,G,B}
at location k, by averaging the pixel values v[l] for l in

a 3 × 3 neighborhood surrounding k such that h[l] = C.

This simple scheme reverts to bilinear interpolation for

the Bayer pattern.

• We implemented the non-linear universal demosaicking

TABLE II

MEAN SQUARED ERROR FOR THE DEMOSAICKING EXPERIMENTS USING

DIFFERENT COMBINATIONS OF R,G,B CFAS AND DEMOSAICKING

METHODS. IMAGE NUMBERS CORRESPOND TO [8].

Bayer (I) Lukac (II) random (III)
Image bilinear [30] bilinear [30] bilinear [30]

1 154.92 16.26 155.39 21.54 143.56 22.96
2 31.75 7.61 31.48 8.89 30.29 9.42
3 139.59 15.61 146.20 22.50 146.73 32.26
4 109.32 12.81 110.05 17.59 103.76 17.35
5 29.14 5.06 29.84 7.29 30.56 8.22
6 283.68 33.14 276.64 31.41 251.86 37.91
7 36.87 5.19 37.03 7.11 35.24 7.66
8 37.18 4.96 39.21 7.09 37.08 8.38
9 77.44 9.40 77.93 11.89 74.84 14.41

10 31.44 4.85 31.98 6.80 29.58 5.93
11 264.32 27.94 269.93 34.02 266.70 49.84
12 43.85 9.05 43.96 10.33 42.44 11.63
13 47.25 5.95 47.62 8.12 44.03 7.24
14 40.71 5.49 41.61 7.05 41.38 9.40
15 105.51 15.14 107.46 18.69 104.10 24.50
16 103.26 11.34 99.86 11.00 90.45 14.27
17 44.41 6.33 45.66 8.47 44.89 10.27
18 90.56 10.86 91.54 14.08 88.23 16.28
19 57.95 12.18 58.19 13.87 56.15 15.63
20 138.68 24.64 141.76 27.97 139.48 35.56

average 93.39 12.19 94.17 14.79 90.07 17.96

algorithm of Lukac et al. [30] which is, to our knowledge,

the only advanced demosaicking algorithm proposed in

the literature, that can be used for every R,G,B CFA.

The MSE results are reported in Tab. II. We observe that

the simple bilinear method, that does not exploit the cross-

correlations between the color bands in natural images, pro-

vides poor results. Although our method is simple and linear,

it outperforms the non-linear method of Lukac, except for the

Bayer CFA. This may indicate that the latter has been designed

to perform well with the Bayer CFA in particular.

In the specific case of the Bayer pattern, our linear approach

does not compete with the many sophisticated non-linear

methods proposed in the literature. To our knowledge, the

best demosaicking technique proposed to date is the one of

Dubois [4], with an average MSE over our 20 test images

equal to 8.632. Another recent algorithm yields an average

MSE equal to 9.283 [31]. These values give an idea of the

margin of improvement that could be expected, if non-linear

methods were developed for each CFA to exploit at best their

intrinsic performances. Also, they show that our approach is

not so far from the best methods, if we compare with the

results obtained by the naive bilinear interpolation in Tab. II.

As a result of Tab. I, we first observe that the choice of the

CFA yields important differences. This confirms that the CFA

is a crucial element in the color imaging pipeline and has to

be carefully chosen. But on the other hand, there is no CFA

that is better on all images and the comparison of the average

MSE has to be relativized by the variance of the results from

one image to another one. Interestingly, the best average MSE

2We computed the MSE using the images available online at
http://www.site.uottawa.ca/˜edubois/demosaicking/

3We performed the demosaicking experiments using the Matlab code put
available online by the authors at
http://www.ntu.edu.sg/home5/CHAN0069/AFdemosaick.zip
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(I) (II) (III) (IV) (V) (VI) (VII)

Fig. 1. The seven CFAs used in our experiments. (I): Bayer pattern [2], (II): Lukac pattern [12], (III): random pattern [28], (IV): new RGBY pattern, (V):
CMY pattern [2], (VI): Kodak pattern [29], (VII): Hirakawa pattern [11].

Original (I) (II) (III)

(IV) (V) (VI) (VII)

Original (I) (II) (III)

(IV) (V) (VI) (VII)

Fig. 2. Results of our demosaicking method used with the seven CFAs depicted in Fig. 1, on two parts of the Lighthouse image (image number 16 in Tab. I).
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is obtained for our new CFA (IV), which was not expected

at all. It is better than the second one, the CFA (VII), for 15

of the 20 images. However, we have to be cautious with this

ranking, since the MSE results reported in [11] for the CFA

(VII), using demosaicking by spectral selection, are the best

reported ever. This indicates that the joint optimization of the

CFA and the demosaicking method as in [11] is a powerful

framework.

This work also tends to confirm the superiority of our

random pattern (III) over the other arrangements with R,G,B

filters, as already stated in [28]. The CFAs giving the worst

performances are the ones with high light sensitivity, the CFAs

(V) and (VI). The advantage of using them lies in the lower

amount of noise appearing in the acquired images, since we

have to keep in mind that the noise-free formalization of

demosaicking is an ideal scenario that is not met in practice.

Thus, it makes sense to use CFAs with higher light sensitivity

when the sensor is sensitive to noise, which is an actual trend

with the increase of number of pixels for a surface area of the

sensor kept constant.

The visual inspection of the demosaicked images provides

us with a complementary qualitative analysis of the perfor-

mances of the CFAs. Two parts of the demosaicked image

Lighthouse are depicted in Fig. 2. They illustrate, respectively,

the two main types of artifacts that occur during demosaick-

ing [3]:

1) If energy corresponding to high frequency luminance

information is assigned to the chrominance, color fringes

appear, as visible in the fence in Fig. 2.

2) If energy corresponding to chrominance information

is incorrectly assigned to the luminance, some high

frequency patterns of luminance appear, as visible on

the red buoy in Fig. 2. This effect is called zipper effect

for the Bayer pattern [3].

It is well-known that the Bayer CFA, and its CMY coun-

terpart, exhibit a particularly high sensitivity to aliasing on

horizontal or vertical patterns with high frequency content,

like the fence in Fig. 2. The CFA (VI) has the same problem,

even more problematic because it occurs on patterns oscillating

with a frequency two times lower than the Nyquist frequency.

This is due to the 2×2 sparser distribution of the R,G,B filters

than with the Bayer CFA. Another manifestation of aliasing for

this CFA is visible on the reflection in the top left part of the

red buoy, which is yellow and should be white. In the case of

the random CFA (III), the aliasing artifacts take the form of a

color rainbow-like noise randomly distributed and spread over

the fence. Due to its low magnitude and the low sensitivity of

the human visual system to such chrominance patterns, these

artifacts are less disturbing than the coherent moiré structures

that appear with periodic CFAs. For this example of the fence,

the CFA (VII) delivers the best result.

Concerning the artifacts that appear on the red buoy in

Fig. 2, the Bayer CFA yields an image corrupted by disturbing

checkerboard pattern. The patterns that appear with the CFAs

(II) and (IV) are less visible. The fine white structures that

occur with the CFA (VI) are disturbing, too. The worst result

is obtained with the CFA (V), for which the buoy is orangish

red. The artifacts take the form of noise on the edges in the

case of the random CFA (III). The CFA (VII) performs at best

for this example, too.

In conclusion, these results show that there is a significant

margin of possible improvement over the Bayer CFA. The

CFA (VII) of Hirakawa et al. is attractive: it provides artifacts

with low magnitude and low visibility, and it has a higher

light sensitivity than the CFA (I) to (IV). The even higher

light sensitivity of the CFA (V) and (VI) is obtained at the

expense of a significantly degraded image quality.

V. CONCLUSION

In this work, we proposed a new linear framework for

image demosaicking, which is based on the minimization of a

variational functional under the constraint of consistency with

the available raw data. This formalism is linear, hence robust,

and generic; to our knowledge, the proposed method is the first

that can be applied to images acquired with every CFA without

any constraint: the pattern can be periodic or random and the

colors arbitrary. It would also be easy to extend the approach

to the problem of demosaicking multi-spectral images having

more than three bands, e.g. for remote sensing applications.

We proposed a simple and stable algorithm to implement our

method. Although it is iterative, good results are obtained after

a few iterations only.

Our future work will concentrate on the extension of the

method to the more realistic situation where the data are

corrupted by additive noise. The linearity of the method allows

to characterize precisely the characteristics of the noise once

it has run through the demosaicking process.

REFERENCES

[1] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schaffer, and
R. M. Mersereau, “Demosaicking: Color filter array interpolation,” IEEE
Signal Processing Mag., vol. 22, no. 1, pp. 44–54, Jan. 2005.

[2] B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, July, 1976.
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