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Abstract

We provide yet another proof of the existence of calibrated forecasters; it has two
merits. First, it is valid for an arbitrary finite number of outcomes. Second, it is short
and simple and it follows from a direct application of Blackwell’s approachability theorem
to carefully chosen vector-valued payoff function and convex target set. Our proof captures
the essence of existing proofs based on approachability (e.g., the proof by Foster [1999] in
case of binary outcomes) and highlights the intrinsic connection between approachability
and calibration.
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A Geometric Proof of Calibration

1 Motivation

Already in 1999, Foster [1999] stated that:

Over the past few years many proofs of the existence of calibration have been discovered.

Each of the following provides a different algorithm and proof of convergence: Foster and

Vohra [1991, 1998], Hart [1995], Fudenberg and Levine [1999], Hart and Mas-Colell [2000].

Does the literature really need one more? Probably not.

Despite all, he argued, successfully, that his new proof of the existence of calibrated forecasters
in the case of binary outcomes, based on Blackwell’s approachability theorem (Blackwell
[1956]), was shorter and more direct than most of the previous proofs.

In this paper, we consider the general case of finitely many outcomes and exhibit an even
shorter (ten-line long) proof of the existence of calibrated forecasters based on approachability.
We show therefore that calibration is a straightforward consequence of approachability. As
we realized by browsing on the web, approachability and calibration are well-taught matters
and we are pretty confident that this new proof will become a standard example in the list
of direct applications of approachability (as is already, for instance, the existence of no-regret
forecasters).

Foster [1999] mentions that his approachability-based proof of the existence of a calibrated
forecaster was obtained by first considering (a modification of) an intuitive forecaster already
stated in Foster and Vohra [1991] and then working out the proof of its guarantees. We proceed
the other way round and start directly from the statement of Blackwell’s approachability
theorem for convex sets [Blackwell, 1956, Theorem 3] but, as a drawback, can only exhibit a
forecaster which has to solve a linear program at each step. Taking a closer look at Foster
[1999], one can see that we indeed capture the essence of his previous proof. His algorithm
is a clever modification, in the case of binary outcomes, of the general approachability-based
forecaster presented below; the former has a nice, explicit, and simple statement.

We now recall the informal definition and consequences of calibration. Consider a finite
set of possible outcomes and suppose we obtain random forecasts about future events; these
forecasts are each given by probability distributions over the outcomes. Now, such a sequence
of forecasts is called calibrated whenever it is consistent in hindsight, that is, when, for all
distributions p, the actual empirical distribution of the outcomes on those rounds when the
forecast was close to p is also close to p.

Having a calibrated forecasting scheme is beneficial in several ways. On the one hand, it
allows some agent to choose the best responses to the predicted forecasts or to consider other
risk measures which might be more valuable than greedily choosing the best action leading
to highest reward. On the other hand, calibrated forecasting rules enable multiple agents
to converge to a reasonable joint play in some situations. For instance, if all players use
calibrated forecasts of other players’ actions, then the empirical distribution of action profiles
converges to the set of correlated equilibria; see Foster and Vohra [1997]. We refer to Sandroni
et al. [2003] for further discussion on calibrated forecasting as well as its generalizations.
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2 Setup and formal definition of calibration

We consider a finite set A of outcomes, with cardinality denoted by A and denote by P = ∆(A)
the set of probability distributions over A. We equip P, which can be considered a subset of
R
A, with some1 norm ‖ · ‖. In particular, the Dirac probability distribution on some outcome

a ∈ A will be referred to as δa.
A forecaster plays a game against Nature. At each step, it outputs a probability distribu-

tion Pt ∈ P while Nature chooses simultaneously an outcome at ∈ A. We make no assumption
on Nature’s strategy.

The goal of the forecaster is to ensure the following property, known as calibration: for
all strategies of Nature,

∀ ε > 0, ∀p ∈ P, lim
T→+∞

w

w

w

w

w

1

T

T
∑

t=1

I{
‖Pt−p‖6ε

}

(

Pt − δat

)

w

w

w

w

w

= 0 a.s. (1)

The a.s. statement accounts for randomized forecasters. (It was shown by Oakes [1985] and
Dawid [1985] that randomization is essential for calibration.)

The literature (e.g., Foster and Vohra [1998], Foster [1999]) essentially considers a less
ambitious goal, at least in a first step: ε–calibration. (We explain in Section 4.2 how to get
a calibrated forecaster from some sequence of ε–calibrated forecasters with good properties.)
Formally, given ε > 0, an ε–calibrated forecaster considers some finite covering of P by Nε

balls of radius ε and abides by the following constraints. Denoting by p1, . . . ,pNε the centers
of the balls in the covering (they form what will be referred to later on as an ε–grid), the
forecaster chooses only forecasts Pt ∈

{

p1, . . . ,pNε

}

. We thus denote by Kt the index in
{

1, . . . , Nε

}

such that Pt = pKt . The final condition to be satisfied is then that for all
strategies of Nature,

lim
T→+∞

Nε
∑

k=1

w

w

w

w

w

1

T

T
∑

t=1

I{Kt=k}

(

pk − δat

)

w

w

w

w

w

6 ε a.s. (2)

When the considered norm is the ℓ1–norm ‖ · ‖1, the sum appearing in this criterion is
usually referred to as the ℓ1–calibration score (Foster [1999]). Another popular criterion is
the Brier score (Foster and Vohra [1998]), which we consider in Section 4.3; it is bounded, up
to a factor of 2, by the ℓ1–calibration score.

1The precise nature of this norm, e.g., ℓ
1, Euclidian ℓ

2, or ℓ
∞ supremum norm, is irrelevant at this stage,

since all norms are equivalent on finite-dimensional spaces.
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3 A geometric construction of ε–calibrated forecasters

In this section we prove our main result regarding the existence of an ε–calibrated forecaster
based on approachability theory. We start with recalling approachability theory, provide the
main result, and then address the issue of computational complexity.

3.1 Statement of Blackwell’s approachability theorem

Consider a vector-valued game between two players, with respective finite action sets I and
J . We denote by d the dimension of the reward vector. The payoff function of the first player
is given by a mapping m : I × J → R

d, which is linearly extended to ∆(I) × ∆(J ), the set
of product-distributions over I × J .

We denote by I1, I2, . . . and J1, J2, . . . the sequences of actions in I and J taken by each
player (they are possibly given by randomized strategies). Let C ⊂ R

d be some set. By
definition, C is approachable if there exists a strategy for the first player such that for all
strategies of the second player,

lim
T→∞

inf
c∈C

w

w

w

w

w

c− 1

T

T
∑

t=1

m
(

It, Jt
)

w

w

w

w

w

= 0 a.s.

That is, the first player has a strategy that ensures that the average of his vector-valued
payoffs converges to the set C.

For closed convex sets C, there is a simple characterization of approachability that is a
direct consequence of the minimax theorem.

Theorem 1 ([Blackwell, 1956, Theorem 3]). A closed convex set C ⊂ R
d is approachable if

and only if

∀q ∈ ∆(J ), ∃p ∈ ∆(I), m(p,q) ∈ C .

3.2 Application to the existence of an ε–calibrated forecaster

As indicated above, we equip P with some norm ‖ · ‖ and fix ε > 0; we then consider an
associated ε–grid

{

p1, . . . ,pNε

}

in P = ∆(A).

Theorem 2. There exists an ε–calibrated forecaster which selects at every stage a distribution

from this grid.

Proof. We apply the results on approachability recalled above. To that end, we consider in
our setting the action sets I = {1, . . . , Nε} for the first player and J = A for the second
player.

We define the vector-valued payoff function as follows; it takes values in R
ANε . For all

k ∈ {1, . . . , Nε} and a ∈ A,

m(k, a) =
(

0, . . . , 0, pk − δa, 0, . . . , 0
)

,

which is a vector of Nε elements of R
A composed by Nε − 1 occurrences of the zero element

0 ∈ R
A and one non-zero element, located in the k–th position and given by the difference of

probability distributions pk − δa.
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We now define the target set C as the following subset of the ε–ball around
(

0, . . . , 0
)

for
the underlying norm ‖ · ‖. We write (ANε)–dimensional vectors of R

ANε as Nε–dimensional
vectors with components in R

A, i.e., for all x ∈ R
ANε ,

x =
(

x1, . . . , xNε

)

where xk ∈ R
A for all k ∈ {1, . . . , Nε}. Then,

C =

{

x ∈ R
ANε :

Nε
∑

k=1

‖xk‖ 6 ε

}

.

Note that C is a closed convex set.

The condition (2) of ε–calibration can be rewritten as follows: the sequence of the

mT
def
=

1

T

T
∑

t=1

m
(

Kt, at
)

=

(

1

T

T
∑

t=1

I{Kt=1}

(

p1 − δat

)

, . . . ,
1

T

T
∑

t=1

I{Kt=Nε}

(

pNε − δat

)

)

converges to the set C almost surely.

The existence of an ε–calibrated forecaster is thus equivalent to the the approachability
of C, which we now prove by showing that the characterization provided by Theorem 1 is
satisfied. Let q ∈ ∆(J ) = P. By construction, there exists k ∈ {1, . . . , Nε} such that
‖pk − q‖ 6 ε and thus

m(k,q) ∈ C .

(Here, the distribution p of the approachability theorem can be taken as the Dirac distribution
δk.)

3.3 Computation of the exhibited ε–calibrated forecaster

The proof of the approachability theorem gives rise to an implicit strategy, as indicated in
Blackwell [1956]. We denote here by ΠC the projection in ℓ2–norm onto C.

At each round t > 2 and with the notations above, the forecaster should pick his action
Kt at random according to a distribution ψt =

(

ψt,1, . . . , ψt,Nε

)

on
{

1, . . . , Nε

}

such that

∀ a ∈ A,
(

mt−1 − ΠC

(

mt−1

)

)

·
(

m
(

ψ, a
)

− ΠC

(

mt−1

)

)

6 0 , (3)

where · denotes the inner product in R
ANε . The proof of Theorem 1 (see Blackwell [1956])

shows that such a distribution ψt indeed exists; the question is how to efficiently compute it.
To do so, we first need to compute the projection ΠC

(

mt−1

)

of mt−1.

We address the two computational issues separately. We first indicate how to find the
projection efficiently and then explain how to find the distribution ψt based on the knowledge
of this projection.

3.3.1 Projecting onto C

We need to find the closest point in C to mt−1. Since C is convex and the ℓ2–norm is convex,
we have to deal with a minimization problem of a convex function over a convex set. Since
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answering the question whether a given point is in C or not can be done in time linear in
ANε, the projection problem can be solved (approximately) in time polynomial in ANε.

Now, for the special case where the underlying norm is the ℓ1–norm ‖ · ‖1, we can do much
better. For i ∈

{

1, . . . , ANε

}

, we denote by si,t−1 ∈ {−1, 1} the sign of the i–th component
mi,t−1 of the vector mt−1. (The value of the sign function at x is arbitrary at x = 0, equal
to −1 when x < 0 and to 1 when x > 0.) Then, ΠC

(

mt−1

)

is the solution of the following
optimization problem, where the unknown is y =

(

y1, . . . , yANε

)

:

min
∥

∥y −mt−1

∥

∥

2

2

such that















ANε
∑

i=1

yi si,t−1 6 ε

yi si,t−1 > 0 , ∀ i ∈
{

1, . . . , ANε

}

.

It can be easily shown (e.g., by an immediate adaptation of [Palomar, 2005, Lemma 1]) that
the optimal solution is unique; it is given by y(µ∗) where for all µ > 0,

y(µ) = si,t−1

(

si,t−1mi,t−1 − µ
)+

and µ∗ is chosen as the minimum nonnegative value such that
∑

i yi(µ) si,t−1 6 ε. (Note that
if µ∗ > 0 then

∑

i yi(µ
∗) si,t−1 = ε.)

It follows, as a conclusion, that projecting onto C can be done in linear time in ANε when
the underlying norm is the ℓ1–norm ‖ · ‖1.

3.4 Finding the optimal distribution ψt in (3)

The question that has to be resolved is therefore how to find ψt that satisfies condition (3).
Since we know that such a ψt exists, it suffices, for instance, to compute an element of

argmin
ψ

max
a∈A

(

mt−1 − ΠC

(

mt−1

)

)

· m
(

ψt, a
)

= argmin
ψ

max
a∈A

Nε
∑

k=1

ψk γk,a,t−1

where we denoted γk,a,t−1 =
(

mt−1 − ΠC

(

mt−1

)

)

· m(k, a).

This can be done efficiently by linear programming leading to a polynomial complexity in
Nε and A.

However, if instead of solving the minimax problem exactly we are satisfied with solving it
approximately, i.e., allowing a small violation δ > 0 in each of the A constraints given by (3),
we can use the multiplicative weights algorithm as explained in Freund and Schapire [1999];
see also [Cesa-Bianchi and Lugosi, 2006, Section 7.2]. The complexity of such a solution would
be

O

(

ANε

δ2
lnNε

)

,

since (lnNε)/δ
2 steps of complexity ANε each have to be performed.
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The proof of Blackwell’s approachability theorem shows that in this case the sequence of
the average payoff vectors mt converges rather to the

√
δ–expansion (in ℓ2–norm) of C; it is

easy2 to see that the latter is included in the δ–expansion (in ℓ1–norm) of C.
Putting all things together, we obtain that if we consider the ℓ1–norm ‖ · ‖1 as the underly-

ing norm (in particular, to define C), we can find a 2ε–calibrated forecaster whose complexity
is of the order of ANε ε

−2 logNε at each step. Since Nε behaves like ε−(A−1) we have that the
dependence of the complexity per stage behaves like ε−(A+1) (ignoring multiplicative and log-
arithmic factors). This implies a polynomial dependence in ε but an exponential dependence
in A.

Remark 1. It is worth noting that when choosing a solution ψt, it is not possible to replace
ψt with its mean or with an element of p1,p2, . . . ,pNε that is close to its mean. The reason is
that this would give rise to a deterministic rule, which, as we mentioned in Section 2, cannot
be calibrated. The fact that we have to randomize rather than take the mean is due to our
construction of the vector-valued game; therein, playing a mixed action ψt over the pi’s leads
to a very different vector-valued reward than playing the (element pk closest to the) mean
of the mixed action. This is because different indices of the (ANε)–dimensional space are
involved.

4 Rates of convergence and construction of a calibrated fore-

caster

In this section we provide rates of convergence and discuss the construction of a calibrated
(rather than ε–calibrated) forecaster. We finally compare our results to some existing cali-
brated forecasters in the literature.

4.1 Rates of convergence

Approachability theory provides uniform convergence rates of sequence of empirical payoff
vectors to the target set, see [Cesa-Bianchi and Lugosi, 2006, Exercise 7.23]. Formally, denot-
ing by ‖ · ‖2 the Euclidian norm in R

ANε , there exists some absolute constant γ (independent
of A and Nε) such that for all strategies of Nature and for all T , with probability 1 − δ,

w

wmT − ΠC

(

mT

)
w

w

2
6 γ

√

ln(1/δ)

T
.

Here, it is crucial to state the convergence rates based on the Euclidian norm because of some
underlying martingale convergence argument in Hilbert spaces proved by Chen and White
[1996]. The reason why the convergence rate is independent here of A and Nε is that the
payoff vectors m(k, a) all have an Euclidian norm bounded by an absolute constant, e.g., 2;
this happens because most of their components are 0.

However, the set C can be defined by a different norm ‖ · ‖. Below, we will define it based
on the ℓ1–norm, for instance. The stated uniform convergence rate can be used since, via a
triangle inequality and an application of the Cauchy-Schwarz inequality,

‖mT ‖1 6
w

wΠC

(

mT

)
w

w

1
+
w

wmT − ΠC

(

mT

)
w

w

1
6 ε+

√

ANε

w

wmT − ΠC

(

mT

)
w

w

2
.

2It suffices to note that for all vectors ∆ of a finite-dimensional space, one has ‖∆‖∞ 6 ‖∆‖2, so that the

inequality ‖∆‖2 6
p

‖∆‖∞ ‖∆‖1 yields
p

‖∆‖2 6 ‖∆‖1.
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Nε is of the order of ε−(A−1); we let γ′ be an absolute constant such that Nε 6 γ′ ε−(A−1)

for all ε 6 1 (say). We therefore have proved that given 0 < ε 6 1, the forecaster defined in
the previous section is such that for all strategies of Nature and for all T , with probability
1 − δ,

‖mT ‖1 =
Nε
∑

k=1

w

w

w

w

w

1

T

T
∑

t=1

I{Kt=k}

(

pk − δat

)

w

w

w

w

w

1

6 ε+ γγ′
√
A

√

ln(1/δ)

ε(A−1) T

def
= Uε,T,δ .

4.2 Construction of a calibrated forecaster

We use a standard approach which is commonly known as the “doubling trick,” see, e.g., Cesa-
Bianchi and Lugosi [2006]. It consists in defining a meta-forecaster that proceeds in regimes;
regime r (where r > 1) lasts Tr rounds and resorts for the forecasts to an εr–calibrated
forecaster, for some εr > 0 to be defined by the analysis. We now show that for appropriate
values of the Tr and εr, the resulting meta-forecaster is calibrated in the sense of (1), and
even uniformly calibrated in the following sense, where B denotes the Borel sigma-algebra of
P:

lim
T→+∞

sup
B∈B

w

w

w

w

w

1

T

T
∑

t=1

I{Pt∈B}

(

Pt − δat

)

w

w

w

w

w

= 0 a.s. (4)

Of course, uniform calibration (4) implies calibration (1) via the choices for B given by ε–balls
around probability distributions p.

For concreteness, we focus below on the ℓ1–calibration score.

Regimes are indexed by r = 1, 2, . . . and the index of the regime corresponding to round
T is referred to as RT . The set of the rounds within regime r 6 RT − 1 is called Tr; rounds
in regime RT with index less than T are gathered in the set TRT

(we commit here an abuse
of notations). We denote by pk,r, where k ∈ {1, . . . , Nεr}, the finite εr–grid considered in the
r–th regime. By the triangle inequality satisfied by ‖ · ‖, we first decompose the quantity of
interest according to the regimes and to the played points of the grids,

w

w

w

w

w

T
∑

t=1

I{Pt∈B}

(

Pt − δat

)

w

w

w

w

w

1

6

RT
∑

r=1

Nεr
∑

k=1

I{pk,r∈B}

w

w

w

w

w

∑

t∈Tr

I{Kt=k}

(

pk,r − δat

)

w

w

w

w

w

1

.

We now substitue the uniform bound obtained in the previous section and get that with
probability 1 − (δ1,T + . . . + δRT ,T ) > 1 − 1/T 2,

sup
B∈B

w

w

w

w

w

1

T

T
∑

t=1

I{Pt∈B}

(

Pt − δat

)

w

w

w

w

w

1

6
1

T

RT
∑

r=1

Tr Uεr ,Tr,δr,T

where we defined δr,T = 1/(2rT 2).
An application of the Borel-Cantelli lemma and Cesaro’s lemma shows that for suitable

choices of a sequence εr decreasing towards 0 and an increasing sequence Tr such that εA−1
r Tr

tends to infinity fast enough, one then gets the desired convergence (4). For instance, if
Tr = 2r, and εr is chosen such that

εr and

√

1

ε
(A−1)
r Tr
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are of the same order of magnitude, e.g., εr = 2−r/(A+1), then

lim sup
T→∞

T 1/(A+1)

√
lnT

sup
B∈B

w

w

w

w

w

1

T

T
∑

t=1

I{Pt∈B}

(

Pt − δat

)

w

w

w

w

w

1

6 ΓA a.s. ,

where the constant ΓA depends only on A. To the best of our knowledge, this is the first
rates results for calibration for an alphabet of size A larger than 2.

Remark 2. Our approach can be easily extended to calibration of countably infinite alpha-
bets; in that case both ε and A would change with the regime. We omit the technical details
here.

4.3 Comparison to previous forecasters

4.3.1 ℓ1–calibration score

Foster [1999] first considered the ℓ1–calibration score in the context of the prediction of binary
outcomes only, i.e., when A = 2. The ε–calibrated forecaster he explicitly exhibited has a
computational complexity of the order of 1/ε. He did not work out the convergence rates but
since his procedure is mostly a clever twist on our general procedure, they should be similar
to the ones we proved in Section 4.1.

4.3.2 Brier score

What follows is extracted from Foster and Vohra [1998]; see also [Cesa-Bianchi and Lugosi,
2006, Section 4.5].

Given an ε–grid over the simplex P, we define, for all k ∈ {1, . . . , Nε}, the empirical
distribution of the outcomes chosen by Nature at those rounds t when the forecaster used pk,

ρT (k) =















pk if
∑T

t=1 I{Kt=k} = 0,

T
∑

t=1

I{Kt=k}
1

∑T
t=1 I{Ks=k}

δat if
∑T

t=1 I{Kt=k} > 0.

The Brier score is defined as the following cumulative criterion,

Nε
∑

k=1

‖ρT (k) − pk‖2
2

(

1

T

T
∑

t=1

I{Kt=k}

)

.

Since for two probability distributions p and q of P, one always has

‖p− q‖2
2 6 2 ‖p− q‖1 ,

the Brier score can be seen to be upper bounded by twice the ℓ1–calibration score; it is thus
a weaker criterion.

Section 4.5 in Cesa-Bianchi and Lugosi [2006] shows however that forecasters with Brier
scores asymptotically smaller than ε can be the keystones to construct calibrated forecasters,
in a way similar to the construction exhibited in Section 4.2.
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In the case A = 2, these forecasters essentially bound the Brier score, with probability at
least 1 − δ, by something of the order of

ε+
1

ε

√

ln(1/ε) + ln(1/δ)

T
,

which is worse than the rate we could exhibit in Section 4.1 for the ℓ1–calibration score.
In addition, the computational complexity of the underlying procedure (based on the

minimization of internal regret) is of the order of 1/ε2 per stage and thus is similar to the
complexity 1/εA+1 = 1/ε2 we derived in Section 3.3 for our new procedure.

The general case of A > 3 is briefly mentioned in Cesa-Bianchi and Lugosi [2006] (Section
4.5) who indicate that the case of A = 2 can be extended to A > 3 without further details.
As far as we can say, the computational complexity of such an extension per step would be of
the order of 1/ε2(A−1) versus 1/ε(A+1) for the approachability-based procedure we suggested
above. The convergence rates, for a straightforward extension, seem to be quite slow.
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