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Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. For p > r(r -1)(r -2)(g -1) we construct an atlas for the locus of all Frobenius-destabilized bundles of rank r (i.e. we construct all Frobeniusdestabilized bundles of rank r and degree zero up to isomorphism). This is done by exhibiting a surjective morphism from a certain Quot-scheme onto the locus of stable Frobenius-destabilized bundles. Further we show that there is a bijective correspondence between the set of stable vector bundles E over X such that the pull-back F * (E) under the Frobenius morphism of X has maximal Harder-Narasimhan polygon and the set of opers having zero p-curvature. We also show that, after fixing the determinant, these sets are finite, which enables us to derive the dimension of certain Quot-schemes and certain loci of stable Frobenius-destabilized vector bundles over X. The finiteness is proved by studying the properties of the Hitchin-Mochizuki morphism; an alternative approach to finiteness has been realized in [CZ]. In particular we prove a generalization of a result of Mochizuki to higher ranks.

Dedicated to Vikram B. Mehta 1. Introduction 1.1. The statement of the results. Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. One of the interesting features of vector bundles in positive characteristic is the existence of semistable vector bundles E over X such that their pull-back F * (E) under the absolute Frobenius morphism F : X → X is no longer semistable. This phenomenon also occurs over base varieties of arbitrary dimension and is partly responsible for the many difficulties arising in the construction and the study of moduli spaces of principal G-bundles in positive characteristic. We refer to the recent survey [La] for an account of the developments in this field.

Let us consider the coarse moduli space M(r) of S-equivalence classes of semistable vector bundles of rank r and degree 0 over a curve X and denote by J (r) the closed subvariety of M(r) parameterizing semistable bundles E such that F * (E) is not semistable. For arbitrary r, g, p, besides their non-emptiness (see [START_REF] Laszlo | The Frobenius map, rank 2 vector bundles and Kummer's quartic surface in characteristic 2 and 3[END_REF]), not much is known about the loci J (r). For example, their dimension and their irreducibility are only known in special cases or for small values of r, p and g; see e.g. [D], [J0], [JRXY], [J2], [LanP], [START_REF] Laszlo | The Frobenius map, rank 2 vector bundles and Kummer's quartic surface in characteristic 2 and 3[END_REF], [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF], [START_REF] Mochizuki | Foundations of p-adic Teichmüller theory[END_REF], [O1, O2], [START_REF] Sun | Direct images of bundles under Frobenius morphism[END_REF]. Following [JRXY] one associates to a stable bundle E ∈ J (r) the Harder-Narasimhan polygon of the bundle F * (E) and defines in that way [Sha] a natural stratification on the stable 1 locus J s (r) ⊂ J (r). Thus the fundamental question which arises is: what is the geometry of the locus J (r) and the stratification it carries. Before proceeding further we would like to recall some notions. A well-known theorem of Cartier's (see section 2.1.3) says that there is a one-to-one correspondence between vector bundles E over X and local systems (V, ∇) having p-curvature ψ(V, ∇) zero, which is given by the two mappings E → (F * (E), ∇ can ) and (V, ∇) → V ∇ = E.

Here V ∇ denotes the sheaf of ∇-invariant sections and ∇ can the canonical connection. An important class of local systems (in characteristic zero) was studied by Beilinson and Drinfeld in their fundamental work on the geometric Langlands program [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF]. These local systems are called opers and they play a fundamental role in the geometric Langlands program.

An oper is a triple (V, ∇, V • ) (see Definition 3.1.1) consisting of a vector bundle V over X, a connection ∇ on V and a flag V • satisfying some conditions. In their original paper [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] (see also [START_REF] Beilinson | Opers[END_REF]) the authors define opers (with complete flags) over the complex numbers and identify them with certain differential operators between line bundles. We note that over a smooth projective curve X the underlying vector bundle V of an oper as defined in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] is constant up to tensor product by a line bundle: in the rank two case the bundle V is also called the Gunning bundle G (see [Gu], [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF]) and is given by the unique non-split extension of θ -1 by θ for a theta-characteristic θ of the curve X. For higher rank r the bundle V equals the symmetric power Sym r-1 (G) up to tensor product by a line bundle. In particular, the bundle V is non-semistable and we shall denote by P oper r its Harder-Narasimhan polygon. Opers of rank two appeared in characteristic p > 0 in the work of S. Mochizuki (see [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF]), where they appeared as indigenous bundles. An oper is nilpotent if the underlying connection has nilpotent p-curvature (of exponent ≤ rank of the oper). An oper is dormant if the underlying connection has p-curvature zero (this terminology is due to S. Mochizuki). By definition any dormant oper is nilpotent. Let Op PGL(r) denote the moduli of PGL(r)-opers, i.e. rank-r opers (V, ∇, V • ) up to tensor product by rank-1 local systems (see section 3.2 for the precise definition) and let Nilp r (X) ⊂ Op PGL(r) be the subscheme of nilpotent PGL(r)-opers on X (see section 6.1 for the precise definition). In [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF], Mochizuki proved a foundational result: the scheme of nilpotent, indigenous bundles is finite (i.e Nilp 2 (X) is finite). This result lies at the center of Mochizuki's p-adic uniformization program. Opers of higher rank in positive characteristic p > 0 also appeared in [JRXY]. We will take a slightly more general definition of opers by allowing non-complete flags. With our definition the triple (F * (F * (Q)), ∇ can , V • ) associated to any vector bundle Q over X, as introduced in [JRXY] (we note that in [JRXY] this was shown under assumption that F * (Q) is stable if Q is stable; this restriction was removed in [LanP] for Q of rank one, and more recently in all cases by [START_REF] Sun | Direct images of bundles under Frobenius morphism[END_REF] see Theorem 3.1.6), is an oper, even a dormant oper.

Our first result is the higher rank case of the finiteness result of [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF] -that the locus of nilpotent PGL(r)-opers is finite (see Theorem 6.1.3):

Theorem 1.1.1. The scheme Nilp r (X) is finite.

We note that Mochizuki allows curves with log structures, but we do not. Theorem 1.1.1 is proved by proving that Nilp r (X) is both affine and proper. One gets affineness by constructing Nilp r (X) as the fiber over 0 of what we call the Hitchin-Mochizuki morphism (see section 3.3)

HM : Op PGL(r) -→ r i=2 H 0 (X, (Ω 1 X ) ⊗i ), (V, ∇, V • ) → [Char ψ(V, ∇)] 1 p ,
which associates to an oper (V, ∇, V • ) the p-th root of the coefficients of the characteristic polynomial of the p-curvature. That the scheme Op PGL(r) of PGL(r)-opers is affine is due to Beilinson-Drinfeld (see [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF]).

This morphism is a generalization of the morphism, first introduced and studied by S. Mochizuki (see [Mo1, page 1025]) in the rank two case and for families of curves with logarithmic structures, and called the Verschiebung. We consider a generalization of this to arbitrary rank and we call it the Hitchin-Mochizuki morphism. Our approach to Theorem 1.1.1 is different from that of [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF][START_REF] Mochizuki | Foundations of p-adic Teichmüller theory[END_REF]. The key point is: Mochizuki's Verschiebung is really a Hitchin map with affine source and target. From this view point finiteness is equivalent to properness, and we note that Hitchin maps (all of them) share a key property: properness. Thus one sees from this that finiteness of indigenous bundles is a rather natural consequence of being a fibre of a Hitchin(-Mochizuki) map. Thus it remains to prove, exactly as is the case with usual Hitchin morphism ( [F], [N]), that the Hitchin-Mochizuki morphism HM is proper (Remark 6.1.7). We mention that both sides of the morphism HM are affine and of the same dimension. At any rate, from this point of view we reduce the proof of finiteness to proving a suitable valuative criterion. This is accomplished by showing that the underlying local system of an oper is stable (Proposition 3.4.4) and by proving a semistable reduction theorem for nilpotent opers (Proposition 6.1.4). We note that the finiteness result for indigenous bundles was proved by S. Mochizuki in the rank two case (see [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF]) by a different method which does not seem (at the moment) to lend itself to generalization to higher ranks as it uses some rather non-linear properties of p-curvature and some peculiarities of rank 2. The fibre over zero of the Hitchin-Mochizuki morphism consists of nilpotent opers -this is the analogue of the global nilpotent cone of the usual Hitchin morphism. Since dormant opers (i.e. opers with p-curvature zero) are nilpotent, we deduce from Theorem 1.1.1 that the scheme of dormant opers with fixed determinant is finite. In the rank two, genus two case it is possible to compute by various methods the length of this scheme (see [START_REF] Mochizuki | Foundations of p-adic Teichmüller theory[END_REF], [LanP] or [O2]). Our finiteness result Theorem 1.1.1 naturally raises the problem of counting the nilpotent and dormant opers for general r, p and g. In [START_REF] Mochizuki | A theory of ordinary p-adic curves[END_REF] Mochizuki also showed among other results that Nilp 2 (X) is a scheme of length p dim Op PGL(2) for any genus g. The analogous result for nilpotent opers of higher ranks has been proved recently in [CZ].

The key technical tool in the proof of Theorem 1.1.1 is the following result which controls the Harder-Narasimhan polygon of Frobenius-destabilized bundles (also see Theorem 5.3.1).

Theorem 1.1.2. Let (V, ∇) be a semistable local system of degree 0 and rank r over the curve X. Let V HN • denote the Harder-Narasimhan filtration of V . Then

(1) the Harder-Narasimhan polygon P V of V is on or below the oper-polygon P oper r .

(2) we have equality P V = P oper r if and only if (V, ∇, V HN

•

) is an oper.

To better appreciate this result, it is best to put it in proper perspective. We note that bundles with connections of p-curvature zero are crystals (in the sense of Grothendieck -though not F -crystals) and this theorem is, in a sense, an analog of Mazur's theorem ("Katz' conjecture") on Hodge and Newton polygons of F -crystals see [START_REF] Mazur | Frobenius and the Hodge filtration (estimates)[END_REF] -the oper polygon has integer slopes and plays the role of the Hodge polygon (and if we apply a 180 degree counter clockwise rotation to the polygon plane, then our result says that the rotated Harder-Narasimhan polygon lies on or above the oper-polygon and both have the same endpoints).

As in the case of Mazur's Theorem (see [START_REF] Mazur | Frobenius and the Hodge filtration (estimates)[END_REF]), our result is equivalent to a list of inequalities for the slopes of the graded pieces of the Harder-Narasimhan filtration. We establish the result by proving that the relevant list of inequalities hold using induction and by combining and refining some well-known inequalities (see [She], [START_REF] Sun | Remarks on semistability of G-bundles in positive characteristic[END_REF] or [START_REF] Laszlo | On the Hitchin morphism in positive characteristic[END_REF]) on the slopes of the successive quotients of V HN

•

. As a particular case of Theorem 1.1.2 we obtain that, when the semistable bundle E varies, the Harder-Narasimhan polygon of F * (E) is maximal if and only if (F * (E), ∇ can , F * (E) HN

• ) is a dormant oper. We now turn to describing our results on the Frobenius instability locus in the moduli space of semi-stable vector bundles on curves. As pointed out above, the problem of describing the Frobenius-destabilized locus is one of the least understood aspects of the theory of vector bundles on curves. Our next result, provides a construction of all Frobenius destabilized stable bundles. We state the result in its weakest form:

Theorem 1.1.3. Let X be a smooth, projective curve of genus g ≥ 2 over an algebraically closed field k of characteristic p > 0. If p > r(r -1)(r -2)(g -1), then we have

(1) Every stable and Frobenius-destabilized vector bundle V of rank r and slope µ(V ) = µ over X is a subsheaf V ֒→ F * (Q) for some stable vector bundle Q of rank rk(Q) < r and µ(Q) < pµ.

(2) Conversely, given a semistable vector bundle Q with rk(Q) < r and µ(Q) < pµ, every subsheaf V ֒→ F * (Q) of rank rk(V ) = r and slope µ(V ) = µ is semistable and destabilized by Frobenius.

It should be remarked that (especially after [JRXY] and [LanP]) it has been expected that every Frobenius-destabilized stable bundle V should occur as a subsheaf of F * (Q) for a suitably chosen Q. The main difficulty in realizing this expectation was the injectivity V ֒→ F * (Q) for the canonical choice of Q (the one given by the minimal slope quotient of the instability flag of F * (V )). We are able to resolve this difficulty, and it should be remarked that opers play a critical role in this resolution as well, by providing a uniform bound on the slopes of subbundles of F * (Q) (for any stable Q) (see Proposition 4.2.1). This bound is finer than the bounds which exists in literature (see [LanP], [JRXY] and [J1]). Our method is to use a method of X. Sun (see [START_REF] Sun | Direct images of bundles under Frobenius morphism[END_REF]), especially an important formula (see eq 4.2.3) due to him, relating the slope of a subbundle of W ⊂ F * (Q) to the slopes of the graded pieces of the filtration induced by the oper filtration. We show that Sun's formula reduces the problem of obtaining a bound to a numerical optimization problem. We are able to carry out this optimization effectively (for p bigger than an explicit constant depending on the degree and the rank, see the statement of the theorem for details). The final step is to show that every stable Frobenius-destabilized bundle V is, in fact, a subsheaf of F * (Q) for a Q of some rank ≤ rk(V ) -1 and deg(Q) = -1. This is the optimal degree allowed from Harder-Narasimhan flag slope considerations and this is accomplished in Theorem 4.1.2.

This paves the way for describing the instability locus J (r) in terms of a suitable Quotscheme. We show that under the assumption that p > r(r -1)(r -2)(g -1), there is a morphism π (see Theorem 4.4.1 for the precise statement) from a disjoint union of relative Quot-schemes to J (r), which surjects onto the stable part of the instability locus J s (r). We expect that π is birational over some irreducible component of J (r), but we are not able to show that for r > 2 and we hope to return to it at a later work. We also show (Proposition 5.4.2) that the set of dormant opers equals a relative Quot-scheme α : Quot(r, 0) → Pic -(r-1)(g-1) (X) over the Picard variety of line bundles over X of degree -(r-1)(g-1) such that the fiber α -1 (Q) over Q ∈ Pic -(r-1)(g-1) (X) equals the Quot-scheme Quot r,0 (F * (Q)) parameterizing subsheaves of degree 0 and rank r of the direct image F * (Q). In particular, since Quot r,0 (F * (Q)) = ∅ (Proposition 2.3.2), we obtain the existence of dormant opers.

As mentioned earlier, the instability locus J (r), and especially J s (r), is equipped with a stratification, and one would like a concrete description of the instability strata. This is at the moment only understood completely for p = 2, r = 2 ( [JRXY]), though there are partial results for p ≤ 3, g ≤ 3, r ≤ 3, or p ≥ 2g, r ≤ 2, in the references cited at the end of the first paragraph of this paper. Our first result (Theorem 1.1.1) identifies the minimal dimensional stratum of this stratification on J s (r). The finiteness result Theorem (1.1.1) provides the following description of the minimal dimensional stratum which corresponds to the highest Harder-Narasimhan polygon: the stratum corresponding to the oper-polygon is zero dimensional. We call this the operatic locus. The operatic locus is characterized as the locus of semi-stable bundles whose Frobenius pull-back and its Harder-Narasimhan filtration together with its canonical connection and is a dormant oper. The finiteness result (Theorem 1.1.1) shows that the operatic locus is finite (Theorem 5.4.1). As applications of the relationship between opers and Quot-schemes, we mention the following results. Firstly, for rank two, we show (Theorem 7.1.2) that any irreducible component of J (2) containing a dormant oper has dimension 3g -4, which completes some results on dim J (2) for general curves due to S. Mochizuki. Secondly, we deduce from Theorem 1.1.1 that dim Quot r,0 (F * (Q)) = 0 (its expected dimension) for any line bundle Q of degree -(r -1)(g -1).
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In the early 1990s Vikram B. Mehta suggested the problem of studying Frobenius destabilized bundles to the first author and encouraged him to think about it. Both authors acknowledge Vikram's mathematical tutelage, of many years, with great pleasure and deepest gratitude. 2.1.1. Definitions. Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. Let F : X → X be the absolute Frobenius morphism of the curve X. One also has at one's disposal the relative Frobenius morphism X → X (1) = X × k,σ k, where σ : k → k denotes the Frobenius of the base field k. For notational simplicity we will work with the absolute Frobenius morphism as opposed to the relative Frobenius morphism. As we work over an algebraically closed field, one has an equivalence of categories of coherent sheaves on X and X (1) induced by the natural morphism X (1) → X, and the distinction between relative and absolute Frobenius is immaterial for our purposes. Occasionally we will (when we make relative constructions) invoke the relative Frobenius morphism and we will say so. We hope that the reader will not find the change too distressing (when it is needed). The full yoga of the two morphisms is spelled out in many places (for instance in [K]). We denote by Ω 1 X and T X the canonical bundle and the tangent bundle of the curve X. Given a local system (V, ∇) over X, i.e. a pair (V, ∇) consisting of a vector bundle V over X and a connection ∇ on V , we associate (see e.g. [K]) the p-curvature morphism

ψ(V, ∇) : T X -→ End(V ), D → ∇(D) p -∇(D p ).
Here D denotes a local vector field, D p its p-th power and End(V ) denotes the sheaf of O X -linear endomorphisms of V .

2.1.2. Properties of the p-curvature morphism. By [K] Proposition 5.2 the p-curvature morphism is O X -semi-linear, which means that it corresponds to an O X -linear map, also denoted by ψ(V, ∇)

(2.1.1) ψ(V, ∇) : F * T X -→ End(V ).
In the sequel we will always consider p-curvature maps as O X -linear maps (2.1.1). Given local systems (V, ∇ V ) and (W, ∇ W ) over X, we can naturally associate the local systems given by their tensor product (V ⊗ W, ∇ V ⊗ ∇ W ) and the determinant (det V, det ∇ V ).

Proposition 2.1.2. We have the following relations on the p-curvature maps

(i) ψ(O X , d) = 0, where d : O X → Ω 1 X is the differentiation operator. (ii) ψ(V ⊗ W, ∇ V ⊗ ∇ W ) = ψ(V, ∇ V ) ⊗ Id W + Id V ⊗ ψ(W, ∇ W ). (iii) ψ(det V, det ∇ V ) = Tr • ψ(V, ∇ V ), where Tr : End(V ) -→ O X denotes the trace map.
Proof. Part (i) is trivial. Part (ii) follows from the definition of the p-curvature and the fact that the two terms of

∇ V ⊗W (D) = ∇ V (D) ⊗ Id W + Id V ⊗ ∇ W (D) commute in the ring End k (V )
of k-linear endomorphisms of V . As for part (iii), we iterate the formula proved in (ii) in order to obtain an expression for the p-curvature ψ(V ⊗r , ∇ V ⊗r ) with r = rk(V ) and show that the F * Ω 1 X -valued endomorphism ψ(V ⊗r , ∇ V ⊗r ) of V ⊗r induces an endomorphism on the quotient V ⊗r -→ Λ r V = det V . The formula in (iii) then follows by taking a basis of local sections of V and comparing both sides of the equality. Let (L, ∇ L ) be a local system of rank 1, i.e. L is a line bundle. Let r be an integer not divisible by p. We say that (L, ∇ L ) is an r-torsion local system if (L ⊗r , ∇ L ⊗r ) = (O X , d). Note that for an r-torsion line bundle L there exists a unique connection ∇ L on L such that the local system (L,

∇ L ) is r-torsion. Proposition 2.1.3. Let (L, ∇ L ) be an r-torsion local system. If p does not divide r, then ψ(L, ∇ L ) = 0. Proof. By Proposition 2.1.2 (i) and (ii) we know that 0 = ψ(O X , d) = ψ(L ⊗r , ∇ L ⊗r ) = rψ(L, ∇ L ).
Hence, if p does not divide r, we obtain the result.

2.1.3. Cartier's theorem. We now state a fundamental property of the p-curvature saying roughly that the tensor ψ(V, ∇) is the obstruction to descent of the bundle V under the Frobenius map F : X → X.

Theorem 2.1.4 ([K] Theorem 5.1).

(1) Let E be a vector bundle over X. The pull-back F * (E) under the Frobenius morphism carries a canonical connection ∇ can , which satisfies the equality ψ(F * (E), ∇ can ) = 0.

(2) Given a local system (V, ∇) over X, there exists a vector bundle E such that (V, ∇) = (F * (E), ∇ can ) if and only if ψ(V, ∇) = 0.

2.2. Direct images under the Frobenius morphism. Applying the Grothendieck-Riemann-Roch formula to the morphism F : X → X we obtain the following useful formula for the degree of the direct image of a vector bundle under the Frobenius morphism Lemma 2.2.1. Let Q be a vector bundle of rank q = rk(Q) over X. Then we have

deg(F * (Q)) = deg(Q) + q(p -1)(g -1), and µ(F * (Q)) = µ(Q) p + 1 - 1 p (g -1).
2.3. The Hirschowitz bound and Quot-schemes.

2.3.1. Existence of subbundles of given rank and degree. We will use the following result due to A. Hirschowitz [H] (see also [L]).

Theorem 2.3.1. Let X be a smooth, projective curve of genus g ≥ 2. Let V be a vector bundle of rank n and degree d over X. Let m be an integer satisfying 1 ≤ m ≤ n -1. Then there exists a subbundle W ⊂ V of rank m such that

µ(W ) ≥ µ(V ) - n -m n (g -1) - ε mn ,
where ε is the unique integer satisfying 0 ≤ ε ≤ n -1 and

ε + m(n -m)(g -1) ≡ md mod n.
2.3.2. Non-emptiness of Quot-schemes. Let Q be a vector bundle of rank q and let r be an integer satisfying q < r < pq. We denote by Quot r,0 (F * (Q))

the Quot-scheme parameterizing rank-r subsheaves of degree 0 of the vector bundle F * (Q).

The following result is an immediate consequence of Theorem 2.3.1.

Proposition 2.3.2. If deg(Q) ≥ -(r -q)(g -1), then Quot r,0 (F * (Q)) = ∅.
Proof. By Theorem 2.3.1 there exists a subsheaf

W ⊂ F * (Q) with rk(W ) = r such that (2.3.3) µ(W ) ≥ µ(F * (Q)) - pq -r pq (g -1) - ε pqr ,
where ǫ is the unique integer satisfying 0 ≤ ε ≤ pq -1 and

ε + r(pq -r)(g -1) = r deg(F * (Q)) mod pq. Now by Lemma 2.2.1 we have deg(F * (Q)) = deg(Q) + q(p -1)(g -1), so that ε = r(deg(Q) + q(p -1)(g -1)) -r(pq -r)(g -1) mod pq, = r deg(Q) + pqr(g -1) -rq(g -1) -pqr(g -1) + r 2 (g -1) mod pq = r deg(Q) -rq(g -1) + r 2 (g -1) mod pq = r [deg(Q) + (r -q)(g -1)] mod pq
First we consider the case when r [deg(Q) + (rq)(g -1)] ≤ pq -1. We replace ε with r [deg(Q) + (rq)(g -1)] in the inequality (2.3.3) and we obtain µ(W ) ≥ 0. Thus we can find a subsheaf W of rank r of F * (Q) with deg(W ) ≥ 0. If deg(W ) > 0, then we take a lower modification V of W to get a subsheaf with deg(V ) = 0 and rk(V ) = r.

Secondly, we consider the case when r [deg(Q) + (rq)(g -1)] ≥ pq or, equivalently deg(Q) ≥ pq r -(rq)(g -1). When we combine this inequality and -ε pqr ≥ -1 r , with inequality (2.3.3) we obtain the lower bound µ(W ) ≥ 0, and we can conclude as above.

2.3.3. Dimension estimates for the Quot-scheme. We recall the following result [START_REF] Grothendieck | Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert[END_REF]Exposé IV,Cor. 5.2] (or [START_REF] Huybrechts | The geometry of moduli spaces of sheaves[END_REF]Cor. 2.2.9]), which will be used in Section 7 in the rank two case.

Proposition 2.3.4. Any irreducible component of Quot r,0 (F * (Q)) has dimension at least r [(r -q)(g -1) + deg(Q)] .
Proof. By [START_REF] Grothendieck | Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert[END_REF]Exposé IV,Cor. 5.2] (or [START_REF] Huybrechts | The geometry of moduli spaces of sheaves[END_REF]Cor. 2.2.9]) the dimension at a point

E ∈ Quot r,0 (F * (Q)) is at least χ(X, Hom(E, F * (Q)/E))
, which is easily computed using Lemma 2.2.1.

Opers

3.1.

Definition and examples of opers and dormant opers. Opers were introduced by A. Beilinson and V. Drinfeld in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] (see also [START_REF] Beilinson | Opers[END_REF]). In this paper, following [JRXY, Section 5], we slightly modify the definition (in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF][START_REF] Beilinson | Opers[END_REF]). Definition 3.1.1. An oper over a smooth algebraic curve X defined over an algebraically closed field k of characteristic p > 0 is a triple (V, ∇, V • ), where

(1) V is a vector bundle over X, (2) ∇ is a connection on V , (3)

V • : 0 = V l ⊂ V l-1 ⊂ • • • ⊂ V 1 ⊂ V 0 =
V is a decreasing filtration by subbundles of V , called the oper flag. These data have to satisfy the following conditions

(1)

∇(V i ) ⊂ V i-1 ⊗ Ω 1 X for 1 ≤ i ≤ l -1, (2) the induced maps (V i /V i+1 ) ∇ -→ (V i-1 /V i ) ⊗ Ω 1 X are isomorphisms for 1 ≤ i ≤ l -1. Definition 3.1.2. We say that an oper (V, ∇, V • ) is a dormant oper if ψ(V, ∇) = 0, i.e. by Cartier's theorem, if the oper (V, ∇, V • ) is of the form (F * (E), ∇ can , V • ). Given an oper (V, ∇, V • ) we denote by Q the first quotient of V • , i.e., Q = V 0 /V 1 .
We define the degree, type and length of an oper (

V, ∇, V • ) by deg(V, ∇, V • ) = deg(V ), type(V, ∇, V • ) = rk(Q), length(V, ∇, V • ) = l.
The following formulae are immediately deduced from the definition:

(3.1.3) V i /V i+1 ∼ = Q ⊗ (Ω 1 X ) ⊗i for 0 ≤ i ≤ l -1, (3.1.4) deg(V ) = l(deg(Q) + rk(Q)(l -1)(g -1)), rk(V ) = rk(Q)l.
We note that the existence of a connection ∇ on V implies that deg(V ) is divisible by p (see [K]) -the connection ∇ can have non-zero p-curvature. Note that our notion of oper of type 1 corresponds to the notion of GL(l)-oper in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF].

Remark 3.1.5. If the quotient Q is semistable, then the oper flag V • coincides with the Harder-Narasimhan filtration of the vector bundle V . To see this we note that the Harder-Narasimhan filtration is the unique filtration characterized by the two properties (see section 5.1): (1) graded pieces are semistable and (2) the slopes are strictly decreasing (starting with µ max ). Now as Q is semistable it suffices to check that slopes of the graded pieces satisfy the second property. This is an easy numerical check which is immediate from the formulae for the graded pieces given above.

The following result which combines the results of [START_REF] Joshi | On vector bundles destabilized by Frobenius pull-back[END_REF]Section 5] and [START_REF] Sun | Direct images of bundles under Frobenius morphism[END_REF] provides the basic example of opers in characteristic p > 0.

Theorem 3.1.6. Let E be any vector bundle over X and let F : X → X be the absolute Frobenius of X. Then the triple

(V = F * (F * (E)), ∇ can , V • ),
where V • is the canonical filtration defined in [JRXY] section 5.3, is a dormant oper of type rk(E) and length p. Moreover, there is an equality

V 0 /V 1 = Q = E.

Recollection of results on opers.

In this section we concentrate on opers of type 1, which we call opers for simplicity. Let r ≥ 2 be an integer. Although all the results which are mentioned in this section are proved in [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] and [START_REF] Beilinson | Opers[END_REF] over the complex numbers, we recall the main facts and include some proofs for the convenience of the reader.

We assume that p > r and that p does not divide g -1.

We recall that a GL(r)-oper (as defined by [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF]) corresponds to an oper (V, ∇, V • ) of type 1 and length r as defined by 3.1.1. An SL(r)-oper is a GL(r)-oper (V, ∇, V • ) which satisfies

(det V, det ∇) ∼ -→ (O X , d), where d : O X → Ω 1
X is the differentiation operator on X.

Given a theta-characteristic θ on X we consider the (unique up to isomorphism) rank-2 vector bundle G 2 (θ) defined as the non-split extension of θ -1 by θ

0 -→ θ -→ G 2 (θ) -→ θ -1 -→ 0,
and equip it with the filtration G 2 (θ) 1 = θ. Under the above assumption on the characteristic p, any connection ∇ on G 2 (θ) defines a GL(2)-oper (G 2 (θ), ∇, G 2 (θ) • ). For arbitrary r, we introduce the rank-r vector bundle given by the symmetric power

G r (θ) := Sym r-1 (G 2 (θ))
and equip it with the filtration G r (θ) • given by the natural subbundles

G r (θ) i = θ i ⊗ G r-i (θ) for 1 ≤ i ≤ r -1.
We define G 1 (θ) = O X . As for r = 2 any connection ∇ on G r (θ) defines a GL(r)-oper (G r (θ), ∇, G r (θ) • ). Conversely, it is easy to show that, up to tensor product by a line bundle, the underlying filtered bundle (

V, V • ) of a GL(r)-oper (V, ∇, V • ) is isomorphic to (G r (θ), G r (θ) • ). It is straightforward to establish that, if r is odd G r (θ) does not depend on θ and, if r is even G r (θ ⊗ γ) = G r (θ) ⊗ γ for any 2-torsion line bundle γ ∈ JX[2]. We recall that det G r (θ) = O X and that G r (θ) • is the Harder-Narasimhan filtration of G r (θ).
We also note that the space of global sections

(3.2.1) Hom(θ -(r-1) , θ ⊗ G r-1 (θ) ⊗ Ω 1 X ) = H 0 (X, G r-1 (θ) ⊗ θ r+2 )
has a canonical filtration induced by the filtration G r-1 (θ) • and its associated graded vector space is given by

W r = r i=2 H 0 (X, (Ω 1 X ) ⊗i ).
We recall that dim W r = (g -1)(r 2 -1).

In order to deal with moduli of opers we introduce the following moduli stacks:

(1) the stack Loc GL(r) parameterizing rank-r local systems over X defined as the sheaf of groupoids which assigns to a k-scheme S the groupoid Loc GL(r) (S) of pairs (V, ∇) where V is a vector bundle over X × S having degree zero on the fibers over S and ∇ : (2) the stack Loc SL(r) parameterizing rank-r local systems over X with trivial determinant defined as the fiber over the trivial local system (O X , d) of the map of stacks Loc GL(r) → Loc GL(1) induced by the determinant. More explicitly, for a k-scheme S the groupoid Loc SL(r) (S) consists of triples (V, ∇, α), where V and ∇ are as in (1) and α : (det V, det ∇)

V → V ⊗ p * X Ω 1 X is an O S -
∼ -→ (O X×S , d) is an isomorphism of local systems. Here d : O X×S → p * X Ω 1 X is the O S -linear differentiation operator of X × S/S.
Since the morphism of stacks pt → Loc GL(1) corresponding to the trivial local system (O X , d) is representable, the morphism Loc SL(r) → Loc GL(r) is also representable (by base change) and therefore Loc SL(r) is an algebraic stack.

(3) the stack Op SL(r) parameterizing SL(r)-opers over X is the stack which assigns to a kscheme S the groupoid Op SL(r) (S) consisting of quadruples (V, ∇, V • , α), where V, ∇, α are as in ( 1) and ( 2), and V • denotes a decreasing filtration of subbundles of V. Moreover these data have to satisfy the conditions (1) and (2) of Definition 3.1.1 over the relative curve X × S → S. Morphisms in Op SL(r) (S) are isomorphisms of vector bundles commuting with the connections, the trivializations of the determinant and preserving the filtrations. The morphism which forgets the filtration Op SL(r) → Loc SL(r) is an immersion, since the filtration V • coincides with the Harder-Narasimhan filtration on V (see Remark 3.1.5 and e.g. [He] Proposition 5.3).

(4) the stack T r parameterizing r-torsion line bundles over X is the stack which assigns to a k-scheme S the groupoid T r (S) consisting of pairs (L, β) where L is a line bundle over X × S and β : L ⊗r ∼ -→ O X×S is an isomorphism. Morphisms in T r (S) are isomorphisms between line bundles commuting with the trivializations, hence the automorphism group Aut(T r (S)) = µ r . Note that T r is the fiber product of the stack morphism [r] : Pic → Pic between Picard stacks of the curve X induced by the r-th power map and the stack morphism pt → Pic corresponding to the trivial line bundle.

(5) the group Aut 0 (G r (θ)) of trivial-determinant automorphisms of the bundle G r (θ) acts via conjugation on the space of connections of G r (θ). We denote this action by ∇ → ∇ φ for φ ∈ Aut 0 (G r (θ)). We introduce the space Conn 0 (G r (θ)) parameterizing gauge equivalence classes of connections on G r (θ) with trivial determinant. Then we have Lemma 3.2.2. The space Conn 0 (G r (θ)) is an affine space whose underlying vector space equals the space of sections H 0 (X, G r-1 (θ) ⊗ θ r+2 ) introduced in 3.2.1. Note that H 0 (X, G r-1 (θ) ⊗ θ r+2 ) is naturally a subspace of H 0 (X, End 0 (G r (θ)) ⊗ Ω 1 X ). Proof. It can be shown that, fixing a connection ∇ 0 on G r (θ), for any connection ∇ there exists a unique (up to homothety) φ ∈ Aut 0 (G r (θ)) and a unique ω ∈ H 0 (X, G r-1 (θ) ⊗ θ r+2 ) such that

∇ φ = ∇ 0 + ω.
In other words, fixing a connection ∇ 0 on G r (θ), the affine subspace

{∇ 0 + ω | ω ∈ H 0 (X, G r-1 (θ) ⊗ θ r+2 )}
of the space of connections on G r (θ) is isomorphic to the quotient Conn 0 (G r (θ)). In particular, we have a transitive and free action of H 0 (X, G r-1 (θ) ⊗ θ r+2 ) on the space Conn 0 (G r (θ)) -note that any ω ∈ H 0 (X, G r-1 (θ) ⊗ θ r+2 ) is fixed under conjugation by Aut 0 (G r (θ)).

The previous moduli stacks are related as follows.

Proposition 3.2.3 ([BD1] Proposition 3.4.2). Fixing a theta-characteristic θ we have an isomorphism between stacks

τ θ : Op SL(r) ∼ -→ Conn 0 (G r (θ)) × T r .
Proof. Over a k-scheme S an object in Op SL(r) (S) is a quadruple (V, ∇, V • , α) described above.

We consider the quotient line bundle Q = V 0 /V 1 over S ×X. Then, using the connection ∇ and its induced isomorphisms on the quotients V i /V i+1 , we obtain an isomorphim det

V ∼ -→ Q ⊗r ⊗ (Ω 1 X ) ⊗ r(r-1)
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. We put L = Q ⊗ p * X θ ⊗r-1 . Composing the previous isomorphism with α, we obtain an isomorphism β : L ⊗r ∼ -→ O X×S . We recall that the line bundle L has a unique O Slinear connection ∇ L such that (L, ∇ L ) ⊗r = (O X×S , d). Tensoring (V, ∇) with (L -1 , ∇ L -1 ) we obtain a local system (W, ∇ W , W

• ) = (V ⊗ L -1 , ∇ ⊗ ∇ L -1 , V • ⊗ L -1
), which clearly satisfies the oper conditions (1) and (2). By restriction of W to a fiber {x} × S, we show that the induced isomorphisms between quotients of the filtration by the O S -linear connection ∇ W give a splitting of the filtration W •|{x}×S , hence an isomorphism W |{x}×S ∼ = O ⊕r S for any x ∈ X. This implies that W ∼ -→ p * X G r (θ) and therefore the connection ∇ W induces a map φ : S → Conn 0 (G r (θ)), i.e. an object of Conn 0 (G r (θ))(S). The map τ θ then associates to the quadruple (V, ∇, V • , α) the pair (φ, (L, β)). An inverse map to τ θ is naturally constructed by choosing a connection on G r (θ).

In particular, for any theta-characteristic θ we obtain via the above isomorphism a map

σ θ : Conn 0 (G r (θ)) → Op SL(r) .
Note that the affine space Conn 0 (G r (θ)) does not depend on the theta-characteristic θ, since for any two theta-characteristics θ and θ ′ there exists a canonical isomorphism Conn 0 (G r (θ)) ∼ = Conn 0 (G r (θ ′ )).

In [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] section 3.1 the authors introduce the notion of PGL(r)-oper and show that the stack of PGL(r)-opers Op PGL(r) is an affine space ([BD1] Proposition 3.1.10). Since our results can be stated in terms of vector bundles only, we decided to avoid introducing G-opers for a general group G in order to keep our paper more accessible. We refer the interested reader to [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] and [START_REF] Beilinson | Opers[END_REF]. For completeness, we mention that the natural group homomorphism SL(r) → PGL(r) induces a projection pr : Op SL(r) -→ Op PGL(r) .

In [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] sections 3.4.1 and 3.4.2 the authors construct a section of pr. More precisely, they show that for any theta-characteristic θ, there is an isomorphism

φ θ : Op PGL(r) × T r ∼ -→ Op SL(r) .
In Proposition 3.2.3 we reformulated the above isomorphism in terms of vector bundles. In particular, for any theta-characteristic θ we obtain an isomorphism

pr • σ θ : Conn 0 (G r (θ)) ∼ -→ Op PGL(r) ,
which does not depend on the theta-caracteristic (see [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] section 3.4.2). Although we have not defined the space Op PGL(r) in this paper, we shall however use in the sequel Op PGL(r) as a notation for the affine space Conn 0 (G r (θ)).

Although not needed in this paper, we mention that, as a corollary to Proposition 3.2.3, the group JX[r] acts on the stack Op SL(r) via tensor product with r-torsion local systems. The set of connected components of Op SL(r) is in one-to-one correspondence with JX[r].

3.3.

The Hitchin-Mochizuki morphism. We consider the morphism of stacks

(3.3.1) Loc GL(r) -→ ⊕ r i=1 H 0 (X, F * (Ω 1 X ) ⊗i ), (V, ∇) → Char(ψ(V, ∇)),
where Char(ψ(V, ∇)) denotes the vector in ⊕ r i=1 H 0 (X, F * (Ω 1 X ) ⊗i ) whose components are given by the coefficients of the characteristic polynomial of the p-curvature ψ(V, ∇) :

V → V ⊗ F * (Ω 1 X ).
It is shown in [START_REF] Laszlo | On the Hitchin morphism in positive characteristic[END_REF] Proposition 3.2 that the components of Char(ψ(V, ∇)) descend under the Frobenius morphism. This implies that the morphism (3.3.1) factorizes as

Loc GL(r) Φ -→ V r := ⊕ r i=1 H 0 (X, (Ω 1 X ) ⊗i ) F * -→ ⊕ r i=1 H 0 (X, F * (Ω 1 X ) ⊗i ). Proposition 3.3.2. The image of the composition of the natural map Loc SL(r) → Loc GL(r) with Φ is contained in the subspace W r ⊂ V r .
Proof. Let S be a k-scheme and let (V, ∇, α) be an object of the groupoid Loc SL(r) (S). By the relative version of Proposition 2.1.2 (i) and (iii), we obtain that Tr[ψ(V, ∇)] = ψ(det V, det ∇) = 0 in Mor(S, H 0 (Ω 1 X )). We also denote the composite map by Φ : Loc SL(r) → W r .

Given a theta-characteristic θ on X, we consider the composite morphism HM : Op PGL(r)

σ θ -→ Op SL(r) -→ Loc SL(r) Φ -→ W r ,
which we call the Hitchin-Mochizuki morphism. By the above considerations the Hitchin-Mochizuki morphism can be identified with a self-map of the affine space of dimension (g -1)(r 2 -1).

Proposition 3.3.3. The morphism HM does not depend on the theta-characteristic θ.

Proof. Given two theta-characteristics θ and θ ′ on X, we can write θ ′ = θ ⊗α with α a 2-torsion line bundle on X. By [START_REF] Beilinson | Quantization of Hitchin's integrable system and Hecke eigensheaves[END_REF] section 3.4.2 there exists an r-torsion line bundle L (take L = O X if r is odd and L = α if r is even) such that σ θ ′ = T L • σ θ , where T L is the automorphism of Op SL(r) (X) induced by tensor product with the r-torsion local system (L, ∇ L ). Here ∇ L is the unique connection on L such that (L, ∇ L ) ⊗r = (O X , d). Now the result follows because, by Proposition 2.1.2 (ii) and by Proposition 2.1.3, we have for any local system (V, ∇ V )

ψ(V ⊗ L, ∇ V ⊗ ∇ L ) = ψ(V, ∇ V ) + Id V ⊗ ψ(L, ∇ L ) = ψ(V, ∇ V ).
3.4. Semistability. We recall the notion of semistability, introduced in [Si], for a local system, i.e., a pair (V, ∇), where V is a vector bundle over X and ∇ is a connection on V . Definition 3.4.1. We say that the local system (V, ∇) is semistable (resp. stable) if any proper

∇-invariant subsheaf W ⊂ V satisfies µ(W ) ≤ µ(V ) (resp. µ(W ) < µ(V )).
In the particular case of a local system (V, ∇) with ψ(V, ∇) = 0 the semistability condition can be expressed as follows. In that case, by Cartier's theorem (Theorem 2.1.4), the local system (V, ∇) is of the form (V, ∇) = (F * (E), ∇ can ) for some vector bundle E over X. Then, since ∇ can -invariant subsheaves of F * (E) correspond to subsheaves of E, the local system (F * (E), ∇ can ) is semistable if and only if E is semistable.

Lemma 3.4.2. Let (V, ∇, V • ) be an oper of any type with Q = V 0 /V 1 and let W ⊂ V be a ∇-invariant subbundle. We consider the induced filtration W • on W defined by W i = W ∩ V i and denote by m the integer satisfying W m = 0 and W m+1 = 0. Then (i) there is an inclusion W 0 /W 1 ֒→ Q and the connection ∇ induces sheaf inclusions

W i /W i+1 ֒→ (W i-1 /W i ) ⊗ Ω 1 X .
(ii) we have a decreasing sequence of integers

(3.4.3) rk(Q) = q ≥ r 0 ≥ r 1 ≥ • • • ≥ r m ≥ 1 and m i=0 r i = rk(W ).
with

r i = rk(W i /W i+1 ) for 0 ≤ i ≤ m.
Proof. Since W is ∇-invariant, the connection ∇ induces the horizontal maps of the following commutative diagram

W i /W i+1 ---→ (W i-1 /W i ) ⊗ Ω 1 X     V i /V i+1 ---→ (V i-1 /V i ) ⊗ Ω 1 X
Since the vertical arrows are inclusions and the lower horizontal map is an isomorphism (by Definition 3.1.1), we obtain part (i). Part (ii) follows immediately from part (i).

Proposition 3.4.4. Let (V, ∇, V • ) be an oper of any type with

Q = V 0 /V 1 . If Q is semistable (resp. stable), then the local system (V, ∇) is semistable (resp. stable).
Proof. We will use Lemma 3.4.2 and its notational setup. Combining the inclusions of Lemma 3.4.2 (i), we obtain for any 0

≤ i ≤ m W i /W i+1 ֒→ Q ⊗ (Ω 1 X ) ⊗i .
Hence, if Q is semistable, we have the inequality µ(W i /W i+1 ) ≤ µ(Q) + i(2g -2) and we obtain

deg(W ) = m i=0 r i µ(W i /W i+1 ) ≤ rk(W )µ(Q) + (2g -2) m i=0 ir i or, equivalently, µ(W ) ≤ µ(Q) + 2g -2 rk(W ) m i=0 ir i By relation (3.1.4) we have µ(V ) = µ(Q) + (l -1)(g -1)
, so the semistability condition µ(W ) ≤ µ(V ) will be implied by the inequality

2 m i=0 ir i ≤ rk(W )(l -1).
Obviously the length m of the induced filtration on W is bounded by l -1, hence it suffices to show that 2 ( m i=0 ir i ) ≤ rk(W )m. But the latter inequality reduces to

rk(W )m -2 m i=0 ir i = m i=0 (m -2i)r i = [ m 2 ] i=0 (m -2i)(r i -r m-i ) ≥ 0,
which holds because of the inequalities (3.4.3). Finally, if Q is stable, then one easily deduces from the preceding inequalities that equality µ(W ) = µ(V ) holds if and only if W = V . Hence (V, ∇) is stable. Although we will not use the next result, we mention an interesting corollary (due to X. Sun) Corollary 3.4.5 ([Su2] Theorem 2.2). Let E be a vector bundle over X. If E is semistable (resp. stable), then the direct image under the Frobenius morphism F * (E) is semistable (resp. stable).

Proof. It suffices to apply Proposition 3.4.4 to the oper (F * (F * (E)), ∇ can , V • ), where V • is the canonical filtration, which satisfies V 0 /V 1 = E (see Theorem 3.1.6).

Remark 3.4.6. We note that Proposition 3.4.4 and Lemma 3.4.2 are essentially a reformulation of X. Sun's arguments in the set-up of opers.

4. Quot-schemes and Frobenius-destabilized vector bundles 4.1. Statement of the results. Let r ≥ 2 be an integer and put

C(r, g) = r(r -1)(r -2)(g -1).
The purpose of this section is to show the following Theorem 4.1.1. Let X be a smooth, projective curve of genus g ≥ 2 over an algebraically closed field k of characteristic p > 0. If p > r(r -1)(r -2)(g -1), then we have

(1) Every stable and Frobenius-destabilized vector bundle V of rank r and slope µ(V ) = µ over X is a subsheaf V ֒→ F * (Q) for some stable vector bundle Q of rank rk(Q) < r and µ(Q) < pµ.

(2) Conversely, given a semistable vector bundle Q with rk(Q) < r and µ(Q) < pµ, every subsheaf V ֒→ F * (Q) of rank rk(V ) = r and slope µ(V ) = µ is semistable and destabilized by Frobenius.

In the case when the degree of the Frobenius-destabilized bundle equals 0, we will prove the following refinement of Theorem 4.1.1.

Theorem 4.1.2. Let X be a smooth, projective curve of genus g ≥ 2 over an algebraically closed field k of characteristic p. If p > r(r -1)(r -2)(g -1), then every stable and Frobeniusdestabilized vector bundle V of rank r and of degree 0 over X is a subsheaf

V ֒→ F * (Q)
for some stable vector bundle Q of rank rk(Q) < r and degree deg(Q) = -1.

4.2.

Proof of Theorem 4.1.1. Let V be a stable and Frobenius-destabilized vector bundle of rank r and slope µ(V ) = µ. Consider the first quotient Q of the Harder-Narasimhan filtration of F * (V ). If Q is not stable, we replace Q by a stable quotient. This shows the existence of a stable vector bundle Q such that

F * (V ) → Q and pµ = µ(F * (V )) > µ(Q).
Moreover rk(Q) < rk(V ) = r. By adjunction we obtain a non-zero map

V → F * (Q).
Thus to prove the Theorem 4.1.1(1) it will suffice to prove that this map will be an injection. Suppose that this is not the case. Then the image of V → F * (Q) generates a subbundle, say, W ⊂ F * (Q) and one has 1 ≤ rk(W ) ≤ r -1 and by the stability of V , we have

µ(V ) = µ < µ(W ).
Now we observe that we can bound µ(W ) from below

µ(W ) ≥ µ + 1 r(r -1) > µ(Q) p + 1 r(r -1)
.

The proof of Theorem 4.1.1(1) will now follow from Proposition 4.2.1 below applied with δ = 1 r(r-1) and n = r -1.

Let us also indicate how to deduce Theorem 4.1.1(2) from Proposition 4.2.1 as well. Let V ⊂ F * (Q) be a subsheaf of rk(V ) = r and µ(V

) = µ with µ(Q)/p ≤ µ. If V is not semi-stable, then there exists a subsheaf W ⊂ V with µ(W ) > µ(V ) and, more precisely, µ(W ) ≥ µ(V ) + 1 r(r-1) . Moreover W ⊂ V ⊂ F * (Q). Replacing W by a subbundle generated by it in F * (Q), we see that we have a subbundle W ⊂ F * (Q) with µ(W ) ≥ µ(Q) p + 1 r(r-1)
. We can now apply Proposition 4.2.1 with δ = 1 r(r-1) and n = r -1 to obtain a contradiction. Hence V is semistable. The fact that V is Frobenius-destabilized follows immediately by adjunction. This completes the proof of Theorem 4.1.1. Proposition 4.2.1. Let Q be a semistable vector bundle over the curve X. Let δ > 0 be a real number and let n be a positive integer. Assume that p > (n-1)(g-1) δ . Then any subbundle

W ⊂ F * (Q) of rank rk(W ) ≤ n has slope µ(W ) < µ(Q) p + δ.
Proof. We recall from Theorem 3.1.6 that the triple (

F * (F * (Q)), ∇ can , V • ) is a dormant oper of type q = rk(Q). Let W ⊂ F * (Q) be a subbundle. Then let W 0 = F * (W ) ⊂ F * (F * (Q)) = V
and consider the induced flag on W 0 , i.e. W i = W 0 ∩ V i . We now apply Lemma 3.4.2 (i) to the subbundle W 0 ⊂ V and, using the notation of that lemma, we have

(4.2.2) q ≥ r 0 ≥ r 1 ≥ • • • ≥ r m ≥ 1 and m i=0 r i = rk(W ) = w. It is shown in [Su2] formula (2.12) that (4.2.3) µ(F * (Q)) ≥ µ(W ) + 2(g -1) pw m i=0 p -1 2 -i r i .
We will bound the sum on the right from below to obtain a bound on µ(F * (Q))µ(W ). This will be a substantial strengthening of the results of [JRXY], [LanP] and [J1].

We have the equalities

m i=0 p -1 2 -i r i = m i=0 p -1 2 r i - m i=0 ir i = p -1 2 m i=0 r i - m i=0 ir i , = w p -1 2 - m i=0 ir i .
So to bound the expression on the right from below, it will suffice to bound the sum m i=0 ir i from above subject to constraints (4.2.2). This is done in the following Lemma 4.2.4. For any sequence of positive integers r • = (r 0 , r 1 , . . . , r m ) satisfying the constraints (4.2.2) we have the inequality

S(r • ) = m i=0 ir i ≤ w(w -1) 2 .
Moreover, we have equality if and only if m = w -1 and

r 0 = • • • = r m = 1.
Proof. Given a sequence r • we introduce the sequence of integers s • = (s 0 , . . . , s m+1 ) with s i ≥ 0 defined by the relations

r i = 1 + s m+1 + s m + . . . + s i+1
for 0 ≤ i ≤ m, and r 0 + s 0 = q.

We compute S(r

• ) = m(m+1) 2 + m+1 i=1 i(i-1)
2 s i . The problem is then equivalent to determine an upper bound for S(r • ), where the integers s • are subject to the two constraints m+1 i=0 s i = q -1 and m+1

i=1 is i = w -(m + 1). Since s i ≥ 0 and i(i-1)
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≤ im 2 for 1 ≤ i ≤ m + 1, we obtain the inequality

m+1 i=1 i(i -1) 2 s i ≤ m+1 i=1 m 2 is i = m 2 (w -(m + 1)), hence S(r • ) ≤ mw 2 .
If we vary m in the range 0 ≤ m ≤ w -1, we observe that the maximum is obtained for m = w -1 and that equality holds for s 1 = . . . = s m+1 = 0, s 0 = q -1, i.e.

r 0 = • • • = r m = 1.
Combining the previous lemma with inequality (4.2.3), we obtain

µ(F * (Q)) ≥ µ(W ) + 2(g -1) pw w p -1 2 - w(w -1) 2 = µ(W ) + (g -1) 1 - w p .
As by Lemma 2.2.1 we have µ(F * (Q)) = µ(Q) p + (g -1)(1 -1 p ), we obtain the inequality

µ(W ) ≤ µ(Q) p + (g -1) w -1 p .
Hence if (g-1)(w-1) p < δ, or equivalently p > (w-1)(g-1)

δ

, we obtain the desired inequality.

4.3. Proof of Theorem 4.1.2. Let V be a Frobenius-destabilized vector bundle of degree 0 and rank r. We will need a lemma.

Lemma 4.3.1. Let E be a non-semistable vector bundle with deg E = 0. Then there exists a semistable vector bundle Q with deg(Q) = -1 and rk(Q) < rk(E) and such that Hom(E, Q) = 0.

Proof. It suffices to prove the existence of a semistable subsheaf S ⊂ V = E * with deg S = 1 and then take the dual. We will prove that by a double induction. Given two positive integers r and d we introduce the induction hypothesis H(r, d): "If V contains a semistable subsheaf of rank r and degree d, then V contains a semistable subsheaf of degree 1". We will show that H(r, d) holds for any 1 ≤ r < rk(E) and any d ≥ 1. We first observe that H(r, 1) holds trivially for any r, and H(1, d) holds for any d, because there exist degree 1 and rank 1 subsheaves of any degree d line bundle.

We now suppose that H(r, d) holds for any pair (r, d) with 1 ≤ r < r 0 and we will deduce that H(r 0 , d) holds for any d ≥ 1. As observed above H(r 0 , 1) holds. So assume that H(r 0 , d) holds. We will show that H(r 0 , d + 1) also holds. So assume that V contains a semistable subsheaf W of rank r and degree d + 1. Two cases can occur2 : either there exists a semistable negative elementary transform W ′ ⊂ W of colength one (hence a general negative elementary transform is semistable by openness of semistability) or any such W ′ is non-semistable. In the first case we can take a semistable elementary transform W ′ , which has degree d, and apply H(r 0 , d), which holds by induction. In the second case we pick any elementary transform W ′ and consider the first piece M ⊂ W ′ of its Harder-Narasimhan filtration. Then it follows from the definition of M that

d r 0 = µ(W ′ ) < µ(M)
and rk(M) < r 0 .

In particular, deg(M) ≥ 1. So we can apply H(rk(M), deg(M)), which holds by induction, and we are done.

We apply the lemma to the non-semistable bundle V = F * (E) and obtain a non-zero map

F * (E) → Q with deg(Q) = -1, rk(Q) ≤ r -1.
We now continue as in the proof of Theorem 4.1.1(1) to show that the map E → F * (Q) obtained by adjunction is injective.

4.4. Loci of Frobenius-destabilized vector bundles. Let M(r) denote the coarse moduli space of S-equivalence classes of semistable bundles of rank r and degree 0 over the curve X.

We wish to define the closed subscheme of M(r) which parameterizes Frobenius-destabilized bundles. The construction is as follows. We recall the construction of M(r) as a projective variety via Geometric Invariant Theory. There exists a quasi-projective variety R and an action of P GL (N) on R such that the quotient is M(r). On R, we have a universal family of semistable bundles on X. So on R we may apply a theorem of S. Shatz (see 5.2.1 or [Sha]) which asserts that the locus of points of R where the Harder-Narasimhan polynomial jumps is closed in R. We will abuse notation by identifying a semistable bundle V on X with the corresponding point [V ] ∈ R. Let Z ⊂ R be the locus of points V ∈ R, where F * (V ) has Harder-Narasimhan polygon lying strictly above the slope zero polygon of rank r. Then Z is closed by Shatz' Theorem and invariant under the action of P GL (N), since, given a strictly semistable bundle E with associated graded gr(E) = E 1 ⊕ • • • ⊕ E l with E i stable, one observes that E is Frobenius-destabilized if and only if at least one of the stable summands E i is Frobeniusdestabilized. Then let J (r) be the image of Z under the quotient morphism R → M(r). As M(r) is a good quotient, the image of Z is closed. So J (r) ⊂ M(r) is closed. Moreover, J (r) is a closed subvariety of M(r). Let J s (r) ⊂ J (r) be the open subset corresponding to stable bundles. This is the image of under the above quotient map, of the corresponding subset Z s ⊂ Z with V stable. We will refer to

J (r) ⊂ M(r)
as the locus of semistable bundles E which are destabilized by Frobenius pull-back, i.e. F * (E) is not semistable.

Let 1 ≤ q ≤ r -1 be an integer and let M(q, -1) be the moduli space of semistable bundles of rank q and degree -1 over the curve X. As gcd(q, -1) = 1 we are in the coprime case and so every semistable bundle Q ∈ M(q, -1) is stable. In particular, we see that there exists a universal Poincaré bundle U on M(q, -1) × X. Let α : Quot(q, r, 0) := Quot r,0 ((F × id M(q,-1) ) * U) -→ M(q, -1) be the relative Quot-scheme [Gr] over M(q, -1). The fibre α -1 (Q) over a point Q ∈ M(q, -1) equals Quot r,0 (F * (Q)). We note that Quot(q, r, 0) is a proper scheme [Gr].

We are now ready to restate Theorems 4.1.2 and 4.1.1(2) in a geometrical set-up.

Theorem 4.4.1. If p > r(r -1)(r -2)(g -1), then the image of the forgetful morphism

π : r-1 q=1 Quot(q, r, 0) -→ M(r), [E ⊂ F * (Q)] → E
is contained in the locus J (r) and contains the closure J s (r) of the stable locus J s (r).

Question 4.4.2. For r ≥ 3, is the locus J (r) equal to the closure J s (r) in M(r)? In other words, does any irreducible component of J (r) contain stable bundles? 4.5. Maximal degree of subbundles of F * (Q). The next proposition will not be used in this paper.

Proposition 4.5.1. Let Q be a semistable vector bundle of rank q = rkQ satisfying q < r < pq and

-(r -q)(g -1) ≤ deg(Q) < 0.
Proof. First we note that the non-emptiness of Quot 

• of V = F * (F * (Q)) on W 0 = F * (W ).
Using the same notation as in the proof of Proposition 4.2.1, we immediately deduce from the inequalities (4.2.2) that m = r -1 and r

0 = • • • = r m = 1. Moreover, since W i /W i+1 is a subsheaf of V i /V i+1 , we have the inequalities for 0 ≤ i ≤ m deg(W i /W i+1 ) ≤ deg(V i /V i+1 ) = deg(Q) + i(2g -2).
Summing over i we obtain

0 = deg(W 0 ) = m i=0 deg(W i /W i+1 ) ≤ m i=0 deg(V i /V i+1 ) = (m+1) deg(Q)+ m(m + 1) 2 (2g-2) = 0.
Hence we deduce that the previous inequalities are equalities deg(W i /W i+1 ) = deg(Q)+i(2g-2), so that the induced flag W • on F * (W ) is in fact the oper flag. Moreover, since the quotients W i /W i+1 are line bundles and the sequence of slopes µ(W i /W i+1 ) is strictly increasing, the flag W • coincides with the Harder-Narasimhan filtration of F * (W ). This proves part one.

In order to show part two, we observe that any dormant oper is of the form (F * (W ), ∇ can , V • ), where by Remark 3.1.5 the oper flag V • is necessarily the Harder-Narasimhan filtration (F * (W )) HN • . If we denote by Q the line bundle quotient V 0 /V 1 , then deg(Q) = -(r-1)(g -1), and by adjunction we obtain a non-zero map W → F * (Q). We then conclude, as in the proof of Proposition 4.1.1, that W ֒→ F * (Q) is an injection.

The previous result leads to a description of the set of all dormant opers of degree 0 as a relative Quot-scheme. We need to introduce some notation. We consider a universal line bundle U over X × Pic -(r-1)(g-1) (X) and denote by α : Quot(r, 0) := Quot r,0 ((F × id Pic ) * U) -→ Pic -(r-1)(g-1) (X) the relative Quot-scheme over the Picard variety Pic -(r-1)(g-1) (X). The fibre α -1 (Q) over a line bundle Q ∈ Pic -(r-1)(g-1) (X) equals the Quot-scheme Quot r,0 (F * (Q)).

The group Pic 0 (X) parameterizing degree 0 line bundles over X acts on the relative Quotscheme Quot(r, 0) via tensor product. Note that by the projection formula

if W ∈ Quot r,0 (F * (Q)), then W ⊗ L ∈ Quot r,0 (F * (Q ⊗ L ⊗p )).
Using this action one observes that the fibres α -1 (Q) are all isomorphic for Q ∈ Pic -(r-1)(g-1) (X).

On the other hand the determinant map det :

Quot(r, 0) -→ Pic 0 (X), W → det W
gives another fibration of Quot(r, 0) over Pic 0 (X) and, using again the action of Pic 0 (X), one notices that the fibres of det are all isomorphic. We denote by Quot(r, O X ) := det -1 (O X ) the fibre over O X . Then Theorem 5.4.1 implies the following Proposition 5.4.2. If p > r(r -1)(r -2)(g -1), there is a one-to one correspondence between the set of dormant opers of rank r and degree 0 (resp. with fixed trivial determinant) and the relative Quot-scheme Quot(r, 0) (resp. Quot(r, O X )). quotients (V s ) i /(V s ) i+1 are torsion free. Hence the filtration (6.1.5) coincides with the Harder-Narasimhan filtration of V s . Finally, Theorem 5.3.1 (2) allows to conclude that (V s , ∇ s , (V s ) • ) is an oper.

This completes the proof of the theorem.

Since dormant opers are nilpotent, we immediately obtain Corollary 6.1.6. There exists only a finite number of dormant opers with fixed trivial determinant.

Remark 6.1.7. The previous proof generalizes straightforwardly to arbitrary fibers (see [F] Theorem I.3 or [LasP1] Proposition 5.2), which implies that the Hitchin-Mochizuki morphism HM is proper.

6.2. Dimension of Quot-schemes. We refer to section 5.4 for the correspondence between dormant opers and Quot-schemes.

Theorem 6.2.1. Assume p > r(r -1)(r -2)(g -1). For any line bundle Q with deg(Q) = -(r -1)(g -1) the Quot-scheme Quot r,0 (F * (Q)) is 0-dimensional.

Proof. We deduce from Proposition 5.4.2 and Corollary 6.1.6 that dim Quot(r, O X ) = 0. Hence dim Quot(r, 0) = g and, since the isomorphism class of the fiber α -1 (Q) does not depend on Q, we obtain dim Quot r,0 (F * (Q)) = 0.

Remark 6.2.2. Let us remark that in order to show that dim Quot r,0 (F * (Q)) = 0, it is sufficient to show that the natural morphism Quot r,0 (F * (Q)) → Op PGL(r) is injective and use properness of the Quot-scheme and the fact that Op PGL(r) is affine to conclude that dim Quot r,0 (F * (Q)) = 0.

7. Applications to loci of Frobenius-destabilized rank-2 vector bundles 7.1. Dimension of any irreducible component. In this section we will deal with rank-2 vector bundles and use the notation introduced in section 4.4. Note that in this case C(2, g) = 0 and that J s (2) = J (2) since there are no strictly semistable rank-2 Frobenius-destabilized vector bundles.

Remark 7.1.1. It is shown in [START_REF] Mochizuki | Foundations of p-adic Teichmüller theory[END_REF] that dim J (2) = 3g -4 for a general curve X under the assumption p > 2g -2.

As an application of our results on opers we obtain the following information on the locus of Frobenius-destabilized bundles J (2).

Theorem 7.1.2. Any irreducible component of J (2) containing a dormant oper has dimension 3g -4.

Proof. We recall from Theorem 4.4.1 that there is a surjective morphism π : Quot(1, 2, 0) -→ J (2), and that α : Quot(1, 2, 0) → Pic -1 (X) is a fibration, whose fibers α -1 (Q) = Quot 2,0 (F * (Q)) are all isomorphic.

We will need a more general version of Theorem 6. Using the fibration α we deduce from Lemma 7.1.3 applied with d = g -2 that any irreducible component I of Quot(1, 2, 0) containing a dormant oper has dimension 3g -4. Therefore it will suffice to show that the restriction of π to I is generically injective. This, in turn, will follow from the fact that a general vector bundle E ∈ I satisfies

f E : F * (E) → Q surjective,
where the map f E is obtained by adjunction from the sheaf inclusion E ֒→ F * (Q) with Q ∈ Pic -1 (X). In fact, if f E is surjective, then 0 ⊂ ker f E ⊂ F * (E) is the Harder-Narasimhan filtration of F * (E), which implies that the quotient Q is unique and that dim Hom(E, F * (Q)) = 1.

Let us now show that the map f E is surjective for a general E ∈ C ⊂ Quot 2,0 (F * (Q)), where C is an irreducible component containing a dormant oper and deg(Q) = -1. Suppose on the contrary that this is not the case. Then any E ∈ C lies in Quot 2,0 (F * (Q(-x))) for some x ∈ X, i.e. Two cases can occur:

(1) there exists a point x ∈ X such that dim Quot 2,0 (F * (Q(-x))) ∩ C = 2g -4. Then C = Quot 2,0 (F * (Q(-x))) ∩ C and contains a dormant oper. This contradicts Lemma 7.1.3 with d = g -3.
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  linear map satisfying Leibniz rule. Morphisms in Loc GL(r) (S) are isomorphisms of vector bundles V ∼ -→ V ′ commuting with the connections. The stack Loc GL(r) is algebraic (see e.g. [LasP1] Corollary 3.1).

2. 1

 1 Lemma 7.1.3. Let Q be a line bundle of degree deg(Q) = -(g -1) + d with 0 ≤ d ≤ 2g -3. Then any irreducible component of Quot 2,0 (F * (Q)) containing a dormant oper has dimension 2d.Proof. We prove the result by induction on d. For d = 0, this is exactly Theorem 6.2.1. Consider a line bundle Q with deg(Q) = -(g -1) + (d + 1) and let C ⊂ Quot 2,0 (F * (Q)) be an irreducible component containing a dormant oper E. Since F * (E) is the underlying bundle of an oper, we have an exact sequence 0→ M → F * (E) → L → 0 with deg(M) = g -1 =deg(L). By the assumption on the degree of Q, we have deg(Q) < deg(M) and therefore Hom(M, Q) = {0}. So the morphism F * (E) → Q factors as F * (E) ։ L ֒→ Q. So we obtain a non-zero section O X → Q ⊗ L -1 , and since deg(Q ⊗ L -1 ) = d + 1, we can write L = Q(-D)for some an effective divisor D of degree d + 1. So, by adjunction, we haveE ֒→ F * (Q(-D)) ⊂ F * (Q). We decompose D = x + D ′ with x ∈ X and D ′ effective of degree d. Let C ′ be an irreducible component of Quot 2,0 (F * (Q(-x))) ∩ C containing E. By induction we have dim C ′ = 2d. Now we claim that codim C (C ′ ) ≤ 2. To prove this note that C ′ = ∅. Since C is an irreducible component of the Quot-scheme, it is equipped with a universal quotient sheaf Q over X × C 0 -→ E -→ p * X (F * (Q)) -→ Q -→ 0. We denote by E the kernel ker(p * X (F * (Q)) ։ Q). Since Q and p * X (F * (Q)) are C-flat, E is also a C-flat and ∀c ∈ C the homomorphism E |X×{c} → F * (Q) is injective. Hence, since F * (Q) is locally free, E |X×{c}is also locally free (since torsion free over a smooth curve) and by[HL] Lemma 2.1.7 we conclude that E is locally free overX × C. Since p * X (F * (Q)) = (F × id C ) * (p * X (Q)) we obtain by adjunctioon a non-zero map (F × id C ) * E → p * X (Q), hence a section σ of the rank-2 vector bundle V := Hom((F × id C ) * E, p * X (Q)) over X × C. It is clear that Quot 2,0 (F * (Q(-x))) ∩ C is the zero-scheme of the restricted section σ |{x}×C ∈ H 0 (C, V |{x}×C ). Hence codim C (C ′ ) ≤ 2 and therefore dim C ≤ 2d + 2. On the other hand, by the dimension estimate of the Quot-schemes given in Proposition 2.3.4 we have dim C ≥ 2d + 2. Therefore dim C = 2d + 2 and we are done.

  r,0 (F * (Q)) has been shown in Proposition 2.3.2. Secondly, by Theorem 4.1.1 (2) any vector bundle W ∈ Quot r,0 (F * (Q)) is semistable, hence (F * W, ∇ can ) is a semistable local system. Thus it remains to check that P F * W = P oper r . As in the proof of Proposition 4.2.1 we induce the oper flag V

We are grateful to Peter Newstead for having pointed out this fact.

If p > r(r -1)(g -1), then the maximal degree of rank-r subbundles of F * (Q) equals 0. In particular, any subsheaf of F * (Q) of degree 0 is a subbundle. Proof. By Proposition 2.3.2 we know that Quot r,0 (F * (Q)) = ∅, hence the maximal degree of rank-r subbundles is at least 0. It is therefore enough to show that any rank-r subbundle W ⊂ F * (Q) satisfies µ(W ) ≤ 0. We apply Proposition 4.2.1 with n = r and δ = 1 r , which leads to µ(W ) < 1 r , hence µ(W ) ≤ 0.

Harder-Narasimhan polygons of local systems

5.1. Harder-Narasimhan filtration. Given a vector bundle V over X we consider its Harder-Narasimhan filtration

and we denote for 1 ≤ i ≤ l the slopes of the successive quotients µ i = µ(V i-1 /V i ), which satisfy

We will also use the notation

Then the numerical information (rk(V i ), deg(V i )) associated to the Harder-Narasimhan flag can be conveniently organized into a convex polygon in the plane R 2 , denoted by P V . It is the convex polygon with vertices (or "break points") at the points (rk

The segment joining (rk(V i ), deg(V i )) and (rk(V i-1 ), deg(V i-1 )) has slope µ i . We will use the following result (see [START_REF] Laszlo | On the Hitchin morphism in positive characteristic[END_REF] Lemma 4.2, [Su1] Theorem 3.1 or [She] Corollary 2) Lemma 5.1.1. If the local system (V, ∇) is semistable, then we have for

Remark 5.1.2. Note that [START_REF] Sun | Remarks on semistability of G-bundles in positive characteristic[END_REF] and [She] make the assumption that ψ(V, ∇) = 0. In fact, this assumption is not needed in their proofs.

5.2.

A theorem of Shatz. The set of convex polygons in the plane R 2 starting at (0, 0) and ending at (r, 0) is partially ordered: if P 1 , P 2 are two such polygons, we say that P 1 P 2 if P 1 lies on or above P 2 . We recall the following well-known theorem by Shatz [Sha] Theorem 5.2.1.

(1) Let V be a family of vector bundles on X × T parameterized by a scheme T of finite type. For t ∈ T , we denote by V t = V | X× T k(t) the restriction of V to the fibre over t. For any convex polygon P the set

is closed in T and the union of the subsets S P gives a stratification of T .

(2) Let R be a discrete valuation ring and let V be a family of vector bundles parameterized by Spec(R), then

where s and η denote the closed and generic point of Spec(R) respectively.

5.3. Oper-polygons are maximal. Let (V, ∇, V • ) be an oper of rank r, degree 0 and type 1.

Then it follows from (3.1.3) and (3.1.4) that l = r and for 0

We introduce the oper-polygon P oper r : with vertices (i, i(ri)(g -1)) for 0 ≤ i ≤ r.

In the next section we will see that the oper-polygon actually appears as a Harder-Narasimhan polygon of some semistable local system. Our next result says that oper-polygons are maximal among Harder-Narasimhan polygons of semistable local systems.

Theorem 5.3.1. Let (V, ∇) be a semistable local system of rank r and degree 0. Then (1) We have the inequality P oper r P V .

(2) The equality P oper r = P V holds if and only if the triple (V, ∇, V HN

•

) is an oper.

Proof. Let (V, ∇) be a semistable local system of rank r and degree 0. Assume that V is not semistable

So in order to show the first part of the theorem, we have to prove that

The inequalities of Lemma 5.1.1 give for 1

We will prove (5.3.2) by a decreasing induction on i. The first step is to establish that

We consider for k = l -1, . . . , 1 the inequality

Now using l i=1 δ i = 0 and adding up all these equations and simplifying we get:

Thus it remains to show that

We introduce m i = n i -1 ≥ 0, and the previous inequality can be written as follows:

and after some simplification using 1

After a rearrangement we are reduced to proving

Now clearly this holds as the inequality

visibly holds for all l ≥ 2 as m i ≥ 0 and each term on the left is less than or equal to the corresponding term on the right. This establishes (5.3.3). Now we will proceed by induction on i. So assume that if we have, for some i, the inequality

Then we claim that we also have the corresponding inequality for i -1. The new inequality which needs to be established is

We begin with the following inequalities:

obtained by doing the following operations n k ((

. . , 1. Now we add all the inequalities for k = i -1, . . . , 1 and the equality δ i = δ i and we obtain:

Multiplying this by

Next we multiply the inequality (5.3.4) by n 1 +•••+n i-1 n 1 +•••+n i and add to the previous inequality. We get

So in order to show that the required inequality (5.3.5) holds, it is enough to establish that

Equivalently we have to establish that

But this follows immediately by introducing m i = n i -1 ≥ 0 as was done in the first step. Since this is straightforward, we omit the details. This finishes the proof of the first part.

In order to show part two, we will directly check that a triple (V, ∇, V HN

•

) with P V = P oper r satisfies the two conditions of Definition 3.1.1. Given an integer i with 1 ≤ i ≤ l -1 we consider the O X -linear map ∇ i induced by the connection ∇

) + 2g -2, and on the other hand

Since both sides are line bundles of the same degree, we conclude that ∇i is an isomorphism. 5.4. Correspondence between dormant opers and Quot-schemes. In this section we will determine all semistable local systems (V, ∇) with P V = P oper r and ψ(V, ∇) = 0.

Theorem 5.4.1. Let r ≥ 2 be an integer and assume p > r(r -1)(r -2)(g -1). Then we have

(1) Given a line bundle Q of degree deg(Q) = -(r-1)(g-1), the Quot-scheme Quot r,0 (F * (Q)) is non-empty and any vector bundle W ∈ Quot r,0 (F * (Q)) gives under pull-back by the Frobenius morphism a semistable local system

Remark 5.4.3. By Proposition 3.4.4 any oper (of type 1) is stable, which implies that, if p > r(r -1)(r -2)(g -1), any vector bundle W ∈ Quot r,0 (F * (Q)) is stable.

Finiteness of the scheme of nilpotent PGL(r)-opers

The purpose of this section is to show that there are only a finite number of dormant opers with trivial determinant (Corollary 6.1.6). This finiteness result will imply that certain Quotschemes have the expected dimension (Theorem 6.2.1).

6.1. Nilpotent opers. Definition 6.1.1. We say that an oper (V, ∇,

We remark that by Proposition 2.1.2 (ii) the property of being nilpotent is not invariant under tensor product by rank-1 local systems. For PGL(r)-opers we therefore take the following Definition 6.1.2. We say that a ω ∈ Op PGL(r) is nilpotent (resp. dormant) if some (hence any) lift σ θ (ω) ∈ Op SL(r) is nilpotent (resp. dormant). By Proposition 3.3.3 we obtain that ω is nilpotent if and only if HM(ω) = 0. We will denote by Nilp r (X) := HM -1 (0) ⊂ Op PGL(r) the fiber over 0 of the Hitchin-Mochizuki map. It parameterizes nilpotent PGL(r)-opers and contains in particular dormant PGL(r)-opers.

Theorem 6.1.3. The scheme Nilp r (X) is finite.

Proof. By Lemma 3.2.2 the scheme Nilp r (X) is a closed subvariety of an affine space, hence it is affine. It suffices therefore to show that it is proper over Spec(k). Using composition with the section σ θ : Op PGL(r) → Op SL(r) it will be enough to show that the fiber N ilp r (X) over 0 of the morphism Op SL(r) → W r (see section 3.3) is universally closed over Spec(k). Using the projection map pr : Op SL(r) → Op PGL(r) this implies that Nilp r (X) is also universally closed. The assertion on N ilp r (X) will be a consequence of the following valuative criterion. Proposition 6.1.4. Let R be a discrete valuation ring and let s and η be the closed and generic point of Spec(R). For any nilpotent SL(r)-oper (

Proof. First of all we observe that the local system (V η , ∇ η ) is stable by Proposition 3.4.4. Hence we can apply [LasP1] Proposition 5.2 which asserts the existence of a local system (V R , ∇ R ) over X × Spec(R) extending (V η , ∇ η ) and such that (V s , ∇ s ) is semistable and ψ(V s , ∇ s ) is nilpotent, where (V s , ∇ s ) denotes the restriction of (V R , ∇ R ) to the special fiber.

By Theorem 5.2.1 (2) the Harder-Narasimhan polygon raises under specialization, i.e. P Vs P Vη = P oper r . On the other hand, by Theorem 5.3.1 (1) we have P oper r P Vs since the local system (V s , ∇ s ) is semistable. Hence we obtain equality P Vs = P Vη = P oper r . It remains to check that the extension (V R ) • to X × Spec(R) of the oper flag (V η ) • has the property that the restriction to the special fiber (V s , ∇ s , (V s ) • ) is an oper. We note that by properness of the Quot-scheme the extension (V R ) • exists and is unique. Restricting (V R ) • to the special fiber gives a filtration by subsheaves (6.1.5) 0

Since the degrees are constant under specialization deg(V s ) i = deg(V η ) i for 0 ≤ i ≤ r -1 and since P Vs = P Vη , we deduce that the subsheaves of the filtration (6.1.5) are subbundles, i.e. the

(2) for any point x ∈ X we have dim Quot 2,0 (F * (Q(-x)))∩C ≥ 2g-5. Because of (7.1.4) there exists a point x ∈ X such that Quot 2,0 (F * (Q(-x))) ∩ C contains a dormant oper, contradicting again Lemma 7.1.3 with d = g -3.

Remark 7.1.5. Since the set of dormant opers is non-empty, there always exists at least one irreducible component of J (2) of dimension 3g -4. Question 7.1.6. Does any irreducible component of J (2) contain a dormant oper? The only case where the answer is known is p = 2: in that case by [JRXY] the locus J (2) is irreducible.