
HAL Id: hal-00441998
https://hal.science/hal-00441998

Submitted on 17 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stigmergy: a design pattern for product-driven systems
Rémi Pannequin, André Thomas

To cite this version:
Rémi Pannequin, André Thomas. Stigmergy: a design pattern for product-driven systems. 13th IFAC
Symposium on Information Control Problems in Manufacturing, INCOM’2009, Jun 2009, Moscou,
Russia. pp.CDROM. �hal-00441998�

https://hal.science/hal-00441998
https://hal.archives-ouvertes.fr

STIGMERGY: A DESIGN PATTERN FOR

PRODUCT-DRIVEN SYSTEMS

Rémi Pannequin, André Thomas

Research Centre for Automatic Control (CRAN)

CNRS (UMR 7029) – Nancy University,

27, rue du merle blanc, F-88000 Epinal, France

{remi.pannequin, andre.thomas}@cran.uhp-nancy.fr

Abstract: This paper proposes a new interpretation of stigmergy, where cooperation

between production actors is achieved thanks to attributes (informational pheromones)

attached to products. From this interpretation is introduced a new design pattern that can

be used to develop product-driven systems. Agent-oriented components which implement

it are presented, and then applied on an experimental platform.

Keywords: multi-agent systems; software architecture; manufacturing control;

product-driven control.

1. INTRODUCTION

High competition between enterprises and market

volatility lead enterprises to be more agile (Christopher,

2000). Agility, from the point of view of production

control, may be seen as the ability to operate with a

high level of coordination and proactivity throughout

the supply-chain, and at the same time to react effi-

ciently to disturbances on the shop floor while taking

into account the increasing process complexity (vari-

abilities, high product variety, reconfiguration issues).

The first point have been targeted by a "centralized"

approach of decision-making, using tools and meth-

ods mainly based on operation research, while in

the second one a "distributed" approach of decision-

making, such as anthropocentric or visual manage-

ment methods (kanban, empowered operators, ...) and

more recently holonic and agent-based manufacturing

(Babiceanu and Chen, 2006), have been also success-

ful.

To combine these two centralized and distributed ap-

proaches of decision making, hybrid systems have

been proposed. The key point to make this hybrida-

tion possible, is to define an interface able to cope

with the differences between the two decision making

approaches, and to ensure a coherence between the

physical flows and their informational representations.

The product-driven paradigm (Morel et al., 2007) is

based on the assumption that the product is the core

object is this system. Indeed, the product is the com-

mon object shared by a vast majority of services in

the enterprise, for instance centralized and distributed

decision systems. Therefore, hybrid systems may be

enabled by active products, which integrate every ac-

tor in the company, from the central (software) sys-

tems to the processes, products and also operators, into

the same ambiant information system. Using a combi-

nation of identification, embedded systems and agent

technologies, the physical product itself can become

active in it environment (Mcfarlane et al., 2003).

However, developing product-driven systems (PDS)

asks a number of questions, ranging from conceptual

issues, to logical and technical ones. This paper focus

on architectural aspects of PDS. Indeed, if there is

a consensus about the concept of an active product,

the design patterns required to actually develop such a

system are not well-defined.

Therefore, this paper propose a architectural pattern

based on stigmergy to design product-driven systems.

First, we will state the problems faced while designing

product-driven systems, and remind the principle of

stigmergy. Then, in section three, the actual propo-

sition will be enunciated. Finally, section four will

present an application of our approach on a experi-

mental platform.

2. PROBLEM STATEMENT

2.1 Architectural patterns

One of the main issue to solve in the development

phase of a PDS (or in any distributed control system)

is what entities to define, and how to structure their

interactions to achieve the industrial goal. PROSA

(van Brussel et al., 1998) defines four types of entities

(products, orders, resources and staff agents), and has

been used by many implementations of PDS (with

minors variations concerning product vs order agents).

Some patterns have also been proposed to structure

entities. The simplest pattern is a master/slave co-

ordination, where agents receive requests, that are

broken down into sub-requests sent to slave agents.

Likewise, reports are aggregated and sent back to the

original request initiator. This pattern define a hier-

archical structure (as in (Albus and Barbera, 2005))

that enable to achieve high performance levels but

that is often rigid and therefore not able to adapt to

changing operation conditions. To solve some of this

issues, unconstrained, dynamic or partial hierarchies

have been proposed (Brennan and Norrie, 2001), but

remains hard to implement.

Another approach is to use negotiation or auction-

based patterns. These approaches are based on the

emergence of a complex global behavior from simple

local entities that interacts. Because only elemental

behaviors are defined, such emerging systems are able

to adapt easily to change. However, their global behav-

ior is hard to predict and misbehaviors such as famine,

deadlocks and livelocks can degrade performance.

The design of such system is often inspired by human

or animal behavior. For instance the contract-net pro-

tocol (Smith, 1980) is one of the most widely used

negotiation pattern, and has been industrially applied,

for instance at Daimler (Bussmann and Schild, 2001).

2.2 Stigmergy

Stigmergy is a cooperation mechanism that come from

the study of animal behavior (ethology), in particu-

lar social insects. It has been first observed in the

case of nest-constructing termites by (Grassé, 1959),

who coined the word stigmergy from the Latin roots

stigma (sign) and ergon (work). He observed that

coordination between the numerous individuals im-

plied in nest building was achieved using pheromones.

Pheromones are chemical substances released by an

insect that causes another individual of the same

species to react. Termites release pheromones on the

building material (dirt balls), thus influencing the be-

havior of others termites.

Using stigmergy, a global coordination of the complex

process involving many entities is done without any

global design, and only through indirect interactions

through pheromones. So stigmergy can be defined

as a coordination mechanism of many workers by

the mean of pieces of information deposited on their

common work.

One of the most famous application of stigmergy is the

ant colony optimization algorithm (ACO) (Dorigo and

Gambardella, 1997). This algorithm comes from the

modeling of the behavior of foraging ants. To find the

shortest path between their anthill and a food source,

ants release pheromones to mark their tracks. It has

been shown that he pheromone path converge to the

shortest path. ACO has been used to solve traveling-

salesman kind of optimization problems. It has also

been transposed in the domain of manufacturing con-

trol (Valckenaers et al., 2006).

In this application, orders generate various kind of

ants, who search the better route for their orders in

the network of manufacturing resources, and release

pheromones on the resources which correspond to

their intension of using this resource sometime in the

future (thus providing proactivity).

The concept of a common work marked with pheromones

that control (or influence) the behavior of workers

seems quite close to the concept of an active product,

able to interact with its environment. Thus, we pro-

pose an pattern based on stigmergy to design product-

driven control architectures.

3. PROPOSITION

3.1 Stigmergy-based pattern

In this paper, we apply stigmergy to the manufactur-

ing context by interpreting products as the common

work and operators, decision systems and processes as

the workers. Comparatively, approaches based on ant

colony optimization identify resources reservation as

the common work (the path) and products as workers

(ants).

According to this interpretation, we define a stigmer-

gic product as a physical object able to carry data (the

computer equivalent of pheromones). Likewise, we

call actor any system that contributes to the elabora-

tion of the product, either directly by transforming its

morphology or its position (physical resources), or in-

directly by producing and consuming control annota-

tion attached to the products. Noteworthy, the stigmer-

gic product is closely related to the concept of holonic

product, in the interpretation that an holonic product

enable to see the physical part and the informational

part as a complete object.

Actors can interact with products by reading or writing

their attributes. Depending of the kind of actor, three

categories of attribute can be defined:

• what the product currently is;

• the requirements that it will have to meet, from

the point of view of physics (customer specifica-

tions), or of the point of view of control, such as

a centralized decisions (e.g. a scheduled process-

ing date);

• the history of what was made: this includes phys-

ical transformations (morphological and spacial

changes), and control decisions, such as the re-

sults of distributed decision processes (e. g. a

routing decision).

But beyond simple product-actor interaction, the key

point of the proposed stigmergic architecture is to

achieve coordination between actors only by changing

products’ attributes, and by reacting to such changes.

Two specific cases of this coordination through prod-

uct’s attribute can be highlighted:

• coordination between control actors. For in-

stance, an operator can be informed of centrally-

made schedule thanks to a priority attribute

(Pannequin et al., 2009).

• coordination between a control actor and the

observation system. Physical observation of the

product (e. g. an event reporting that product p

is arrived in station s) may trigger an attribute

change, that can then be perceived by the corre-

sponding control actor.

Finally, the product itself is able to observe its own

attributes, and can react to changes of one of its

attributes by modifying others. This feature enable

the product to manage its own life-cycle, by setting

the value of attributes describing its current state and

requirements, according to the transformations made.

The stigmergic pattern is summarized by an UML

class diagram presented figure 1.

3.2 Interactions with the stigmergic product

According to our interpretation of stigmergy, actors

interacts with products by observing and modifying

their attributes. The question is to specify the most

efficient mechanism to implement these interactions.

In social insects behavior, pheromones are deposed di-

rectly on the environment (i.e. common work). Thus,

an insect (worker) is instantly notified of any rele-

vant information in its current context. This makes

appear two essential features of the interaction with

pheromones. First, the worker get only information

that are relevant in a particular context, second, the

worker don’t have the initiative of the communication.

In the proposed architecture, these features are pro-

vided by a subscription/notification mechanism. When

a product is created, it broadcast a list of its attributes

to other actors. The actors can then respond by sub-

scribing to some attributes. A subscription is a pair

(attributename, pattern). When the attribute’s value

changes and matches the pattern, the subscriber is

notified. The pattern enable to filters out notifications

that are not relevant for the actor.

This subscription-based mechanism can be imple-

mented in various ways. For instance, in the object-

oriented paradigm, the model-view-controller can pro-

vide a way to implement this notification mechanism.

In this paper, the multi-agent paradigm have been

used. This ensure a clear separation between entities

(products and actors are modeled as separate agents)

and impose to specify the content language and inter-

action protocols that are used for agents communica-

tion.

A content language has been defined to implement

communication among agents. Figure 2 shows two

examples of such messages, encoded in the FIPA-SL0

language. Two main concepts have been used: the first

one is the concept of ’attribute’, seen as the association

of a name and a value. Both name and value are

strings. The second concept is ’holon’, defined by its

name (a string) and type (three type of holon have been

defined: product, resources and staff).

Several predicates and actions can be build on these

concepts. The predicates ’owns’, ’has-value’ and

’matches’ describe respectively that a holon has a

sequence of attributes, that a holon’s attribute has a

particular value, or that a holon attribute value matches

a particular pattern (regular expression). The actions

change-value and query-value are used to modify or

query an attribute value.

((action

(agent-identifier

:name p1-pla2@tracilog)

(change

:attribute (

attribute

:name affectation

:value p0))

))

Fig. 2. Example of an attribute change request mes-

sage in the Fipa-SL0 language.

Several interaction protocols have also been used. The

FIPA-subscribe (FIPA, 2005) implements the notifi-

cation mechanism. First, product agents declare their

attribute list, by broadcasting an INFORM message.

Agents that want to be notified when an attribute

value matches a pattern, initiate a the subscription

interaction with the product agent. Moreover, other

request-like protocols (such as FIPA-Query and FIPA-

Request) are used to query or modify products at-

tributes.

<<Observable>>

Attribute

name: String
value: Object

get(): Object
set(new_value: Object)
notify()
match(pattern: String): Boolean

Actor
Product

product_ID:

process(event: PhysicalObservation)

<<Observer>>

Reactive Entity

observed_attributes: Attribute[0..*]

update(changed_attr: Attribute)

PhysicalObservation

event
location
sensor_id
date
parameters

modify observe

**

**

receive* interact **

Fig. 1. UML Class Diagram of the proposed stigmergic pattern.

3.3 Structure of an stigmergic product

A stigmergic product is represented as an agent, that is

both connected to the physical product, and to others

agents representing production actors. At the core of

this agent is the product’s attribute base (figure 3).

Attributes
base

Sensor
processing

Actuator
control

Notification ExecutionRules
(behavior)

Message exchanges with other agents

events to/from physical system
(real or emulated)

Fig. 3. Internal structure of a stigmergic physical agent

Physical observations received by an agent results in

modifications in the attribute base. Several processing

approach can be used: on the one hand, an attribute can

take the direct value of the event name, or one of the

event’s parameter (e. g. the epc attribute is assigned

after the epc parameter of a RFID-reading event). On

the other hand, the attributes value can be indirectly

computer from the event. The most typical case is to

use a finite-state machine for that task.

Product agents are able to communicate with other ac-

tors about attribute values, thanks to two subsystems.

The first one notify other agents of attribute changes

and respond to queries about attribute value, while the

second one receive change requests and implements

them in the attribute base.

Finally, the product agent can execute a rule, that

represent its behavior. The rule is notified of attribute

change and can then modify local attributes.

Many components of this structure are generic and

can be re-used. However, when developing a new

application of a product-driven system, the rule must

be written, and the product attributes defined.

4. APPLICATION

4.1 Test-case presentation

The proposition has been tested on an experimental

platform. This platform assembles products composed

of:

• a support;

• up to four wooden square pieces, yellow or or-

ange;

• up to four wooden chips.

This product structure generate more than one thou-

sand differents products, providing sufficient variety.

Figure 4 shows a some examples of assembled prod-

ucts.

Fig. 4. Examples of products

The experimental platform has four stations linked by

a conveyor belt (figure 5) : M1 is an assembing station,

where square pieces are assembled on support; M2

is a transformation station, this transformation being

concretized by putting some chips on the product; A1

and A2 are routting stations.

The product components are equipped with identifi-

cation devices. The supports and square pieces carry a

RFID tag. RFID readers are placed in front of each sta-

tion, and additional readers enable to check products

integrity. The color of the square pieces is deduced

from reading their tag.

The main issue to solve on this platform is product va-

riety. Indeed, we have witnessed that vendors control

systems were not able to deal with mixed flows: the

assembly cell could produce only one type of product

M1 M2

A2 A1

empty
Supports squares

RFID
readers

Fig. 5. A overview of the material flow in the test-case

at a time, and must be emptied before setting up a new

type. To reduce these setup times to a minimum, the

control system must be able to manage a flow where

each product is different from the other ones.

Moreover, to test the robustness of the variety manage-

ment feature, flow disturbances have been introduced:

products might be taken from the conveyor belt, and

put back elsewhere.

4.2 Intercations between customers, products and

processes

The test-case system is controlled using a multi-agent

system. Agents have been associated to resources

(M1, M2, A1 and A2), and to products (both the sup-

port and the square pieces). Staff agents are present

in the platform to enable customers to configure and

generate production orders (i.e. product agents). Fi-

nally, the platform comprises utilities agents, to com-

municate with the physical system (the programmable

logic controller and the RFID subsystems), or to offer

common services (agent creation, directory facilita-

tors, ...). The typical number of agents cooperating is

between 10 and 50.

A typical interaction scenario correspond to the fol-

lowing sequence of message. First, products are con-

figured from the business point of view and are then

introduced on the multi-agent system.

(1) The customer-agent creates a new product-agent,

wait agent initialization, and sets the ’reference’

attribute of the agent.

(2) The product agent declares its attributes. Actors

subscribes to some to them. For instance, M2

subscribes to the attribute ’state’, with value ’sta-

tionM2’.

(3) The newly created product agent reacts to the

change of its reference attribute, initializes its

internal bill of operations and set it progM1,

progM2,... attributes accordingly.

(4) A physical product is associated with the product

agent by scanning its RFID tag. An association

between the product ID and the epc code of the

tag is created, enabling event brokers to route

RFID event to the right product agent.

Then, products agents interacts with the process, until

production finishes.

(5) When the physical product arrives in a station

(e. g. in M2), a RFID event is received by the

product agent, and the ’state’ attribute is conse-

quently changed (e. g. ’stationM2’)

(6) The station’s control agent is notified of the new

value of the product’s state attribute. It queries

the product about its requirements (e. g. attribute

progM2), and transforms the physical product

accordingly.

(7) When the transformation ends, the station con-

trol agent releases the product, and request to

change a report attribute (e. g. reportM2). The

product agent reacts to this change by updating

its internal bill of operation and consequently

modify attribute value.

This approach based on stigmergy enables a high

product variety (the flow can mix any number of dif-

ferent products), and also a high robustness (products

are able to interact with any resource at any time,

allowing them to find back their normal route). Com-

paratively, an existing traditional implementation, de-

veloped by an independent engineering company, al-

lowed only to produce one type of product at a time,

and was not able to cope with flow disturbances.

The implementation of this system is a relatively sim-

ple task, because only the behavior rules and the at-

tribute base have to be implemented. Indeed, most of

the components are generics and may be re-used.

The most important feature of the system is the high

functionnal independance between defining products

requirements, managing products life-cycle, and con-

trolling product transformation resources. Since inter-

actions are based on product attributes, the system can

also cope with a completely asynchronous execution

of all these tasks.

4.3 Special case of assembly

The assembly between a support an square pieces

is a special case, because both types of pieces are

controlled by a product-agent. Therefore, three agents

must interact here: the product-agent associated with

the support (S), the product agents associated with a

square piece (S q), and the resource agent controlling

manipulator M1. In this situation, the stigmergic pat-

tern can be applied at a smaller scale (figure 6).

Agent S creates agent S q, get its ’color’ attribute,

decide to assemble it at some position or to discard

it, and set its ’destination’ attribute accordingly. Agent

M1 is notified of the ’destination’ attribute of S q,

move the square piece, and finally reports this action.

