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Abstract

In regression with a high-dimensional predictor vector, dimension reduction

methods aim at replacing the predictor by a lower dimensional version with-

out loss of information on the regression. In this context, the so-called cen-

tral mean subspace is the key of dimension reduction. The last two decades

have seen the emergence of many methods to estimate the central mean sub-

space. In this paper, we go one step further, and we study the performances

of a k-nearest neighbor type estimate of the regression function, based on

an estimator of the central mean subspace. The estimate is first proved to

be consistent. Improvement due to the dimension reduction step is then

observed in term of its rate of convergence. All the results are distributions-

free. As an application, we give an explicit rate of convergence using the

SIR method.

Index Terms — Dimension Reduction; Central Mean Subspace; Nearest

Neighbor Method; Semiparametric Regression; SIR Method.

AMS 2000 Classification — 62H12; 62G08.

1 Introduction

In a full generality, the goal of regression is to infer about the conditional law of

the response variable Y given the R
p-valued predictor X . Many different methods

∗corresponding author
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have been developped to adress this issue. In the present paper, we consider suf-

ficient dimension reduction which is a body of theory and methods for reducing

the dimension of X while preserving information on the regression (see Li, 1991,

1992 and Cook and Weisberg, 1991). Basically, the idea is to replace the predictor

with its projection onto a subspace of the predictor space, without loss of infor-

mation on the conditional distribution of Y given X . Several methods have been

introduced to estimate this subspace: sliced inverse regression (SIR; Li, 1991),

sliced average variance estimation (SAVE; Cook and Weisberg, 1991), average

derivative estimation (ADE; Härdle and Stoker, 1989), ... See also the paper by

Cook and Weisberg (1999) who gives an introductory account of studying regres-

sion via these methods.

Even if the methods above give a complete picture of the dependence of Y on

X , certain characteristics of the conditional distribution may often be of special

interest. In particular, regression is often understood to imply a study of the con-

ditional expectation E[Y |X ]. Subsequently, the response variable Y is a univariate

and integrable random variable. Following the ideas developped for the condi-

tional distribution, Cook and Li (2002) introduced the central mean subspace that

will be of great interest for the paper. Let us recall the definition. For a ma-

trix Λ ∈ Mp(R), denote by S(Λ) the space spanned by the columns of Λ. Here,

Mp(R) stands for the set of p× p-matrices with real coefficients. Letting ΛT the

transpose matrix of Λ, we say that S(Λ) is a mean dimension-reduction subspace

if

E[Y |X ] = E[Y |ΛT X ], (1.1)

that is, if the projection of the predictor onto S(Λ) has no influence on the re-

gression. When the intersection of all dimension-reduction subspaces itself is a

dimension-reduction subspace, it is defined as the central mean subspace and is

denoted by SE[Y |X ]. With this respect, a matrix Λ that spans the central mean sub-

space is called a candidate matrix. Hence the central mean subspace, which exists

under mild conditions (see Cook, 1994, 1996, 1998), is the target of sufficient

dimension reduction for the mean response E[Y |X ]. Various methods have been

developped to estimate SE[Y |X ], among with principle Hessian direction (pHd; Li,

1992), iterative Hessian transformation (IHT; Cook and Li, 2002), minimum av-

erage variance estimation (MAVE; Xia et al, 2002). Discussions, improvements

and relevant papers can be found in Zhu and Zeng (2006), Ye and Weiss (2003) or

Cook and Ni (2005).
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Regarding the regression estimation problem in a nonparametric setting, the aim

of the dimension-reduction methods is to overcome the curse of dimensionality

-which roughly says that the rate of convergence of any estimator decreases as

p grows- by accelerating the rate of convergence. Indeed, assuming (1.1), it is

naturally expected that the rate of convergence of any estimator will depend on

rank(Λ) instead of p, since ΛT X lies in a vector space of dimension rank(Λ). In

general, rank(Λ) is much smaller than p, hence the rate of convergence in the esti-

mation of E[Y |X ] may be considerably improved. For this estimation problem, we

shall use the so-called k-nearest neighbor method (NN), which is one of the most

studied method in nonparametric regression estimation since it provides efficient

and tractable estimators (e.g., see the monography by Györfi et al, 2002, and the

references therein). As far as we know, similar studies in a dimension-reduction

setting were only been carried out for particular models, such as additive models

or projection pursuits for instance. We refer the reader to Chapter 22 in the book

by Györfi et al (2002) for a complete list of references on the subject.

In the present paper, we adress the problem of estimating the conditional expec-

tation E[Y |X ] based on a sequence (X1,Y1), · · · ,(XN ,YN) of i.i.d. copies of (X ,Y ).
Assuming the existence of a mean dimension-reduction subspace as in (1.1), we

first construct in Section 2 the k-NN type estimator based on an estimate Λ̂ of Λ.

Roughly speaking, it is defined as the k-NN regression estimate drawn from the

(Λ̂Xi,Yi)’s. In a distribution-free setting, we prove consistency of the estimator

(Theorem 2.1) and we show that the rate of convergence essentially depends on

rank(Λ) (Theorem 2.2). In particular, up to the terms induced by the dimension-

reduction methodology, we recover the usual optimal rate when the predictor be-

longs to R
rank(Λ). Section 3 is devoted to the term induced by the dimension-

reduction method: in a general setting, we propose and study the performances

(convergence and rate) of a numerically robust estimator. As an example, we con-

sider in Section 4 the case where the candidate matrix is constructed via the SIR

method. All the proofs are postponed to the last three sections.

2 Fast regression estimation

2.1 The estimator

Throughout this section, we shall assume the following assumption.
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BASIC ASSUMPTION: there existsΛ∈Mp(R) such that S(ΛT ) is a mean dimension-

reduction subspace, i.e.

E[Y |X ] = E[Y |ΛX ].

Note that we have written ”Λ” instead of the usual ”ΛT ” in the conditional expec-

tation. This choice is for notational simplicity since, in this section, we only have

to deal with Λ.

The estimation of the regression function requires to first estimate the matrix Λ

and then to estimate the regression function r defined by

r(x) = E[Y |ΛX = x], x ∈ R
p.

To reach this goal, we assume throughout the paper that the sample size N is

even, with N = 2n. We split the dataset into two sub-samples: the n first data

(X1,Y1), · · · ,(Xn,Yn) are used to estimate the matrix Λ, whereas the last ones

(Xn+1,Yn+1), · · · ,(X2n,Y2n) are used to estimate the body of the regression func-

tion r.

For the first estimation problem, we assume in this section that we have at hand

an estimate Λ̂ of Λ, constructed with the observations (X1,Y1), · · · ,(Xn,Yn). We

refer to Sections 3 and 4 for an efficient and tractable way to estimate Λ. We

now explain the nearest neighbour method that will be introduced to estimate the

function r (for more information on the NN-method, we refer the reader to Chapter

6 of the monography by Györfi et al, 2002). For all i = n+1, · · · ,2n, we let

X̂i = Λ̂Xi.

Then, if x ∈ R
p, we reorder the data (X̂n+1,Yn+1), · · · ,(X̂2n,Y2n) according to in-

creasing values of {‖X̂i − x‖, i = n + 1, · · · ,2n}, where ‖.‖ stands for the Schur

norm of any vector or matrix. The reordered data sequence is denoted by:

(X̂(1)(x),Y(1)(x)),(X̂(2)(x),Y(2)(x)), · · · ,(X̂(n)(x),Y(n)(x)),

which means that

‖X̂(1)(x)− x‖ ≤ ‖X̂(2)(x)− x‖ ≤ ·· · ≤ ‖X̂(n)(x)− x‖.

In this approach, X̂(i)(x) is called the i-th NN of x. Note that if X̂i and X̂ j are

equidistant from x, i.e. ‖X̂i−x‖ = ‖X̂ j −x‖, then we have a tie. As usual, we then
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declare X̂i closer to x than X̂ j if i < j. We now let k = k(n) ≤ n be an integer and

for all i = n+1, · · · ,2n, we set:

Wi(x) =

{

1/k if X̂i is among the k-NN of x in {X̂n+1, · · · , X̂2n};

0 elsewhere.

Observe that we have ∑
2n
i=n+1Wi(x) = 1. With this respect, the estimate r̂ of r is

then defined by:

r̂(x) =
2n

∑
i=n+1

Wi(x)Yi =
1

k

k

∑
i=1

Y(i)(x), x ∈ R
p.

From a computational point of view, the complexity of the calculation algorithm

of r̂(x) is O(n lnn) in mean, using a random Quick-Sort Algorithm.

2.2 Behavior of r̂

In the sequel, (X ,Y ) is independent of the whole sample and with the same distri-

bution as (X1,Y1). Observe that our results are distribution-free; in particular, we

do not assume that the law of (X ,Y ) has a density. The first result, whose proof is

deferred to Section 5, establishes a consistency property for the estimator r̂(Λ̂X).

Theorem 2.1. Assume that Y is bounded. If k → ∞, k/n → 0 and Λ̂
P−→ Λ, then:

r̂(Λ̂X)
L

2

−→ E[Y |X ].

Therefore, we assume in the following that k/n → 0. Recall that the consistency

assumption Λ̂
P−→ Λ holds for the standard dimension reductions methodologies,

as we shall see in Sections 3 and 4.

We now turn to the study of the rate of convergence. Recall that the function r is

lipschitz if there exists L > 0 such that for all x1,x2 ∈ R
p:

|r(x1)− r(x2)| ≤ L‖x1 − x2‖.

Because we deal with the estimation of E[Y |ΛX ], it is naturally expected that the

convergence rate in Theorem 2.1 depends on the dimension of the vector space

spanned by the matrix Λ. In the sequel, d stands for the rank of Λ, and we also

denote by d̂ an estimator such that d̂ = rank(Λ̂). Section 6 is devoted to the proof

of the following result:
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Theorem 2.2. Assume that X and Y are bounded. If r is lipschitz and d ≥ 3, there

exists a constant C > 0 such that

E
(

r̂(Λ̂X)−E[Y |X ]
)2 ≤ C

k
+C

(

k

n

)2/d

+CE‖Λ̂−Λ‖2 +P(d̂ > d).

Remark 2.3. When d ≤ 2, under the additional conditions of Problem 6.7 in

the book by Györfi et al (2002), a slight adaptation of the proof of Theorem 2.2

enables us to derive the same convergence rate.

Observe that the global error is decomposed into two terms: first, the classical

error term

C

k
+C

(

k

n

)2/d

in nonparametric regression estimation using k-NN, but when the predictor be-

longs to R
d (see Chapter 6 in the book by Györfi et al, 2002) ; seconds, the term

CE‖Λ̂−Λ‖2 +P(d̂ > d)

induced by the dimension-reduction method. We shall concentrate on this term in

the next two sections.

Note also that in this result, the best choice of k, namely k = n2/(2+d), gives the

following bound:

E
(

r̂(Λ̂X)−E[Y |X ]
)2 ≤ 2C n−2/(d+2) +CE‖Λ̂−Λ‖2 +P(d̂ > d).

Hence, up to the last two terms, our nearest neighbor estimate achieves the usual

optimal rate in regression estimation, but when the predictor belongs to R
d (see

Ibragimov and Khasminskii, 1981 or Györfi et al, 2002). With this result, one may

quantify the positive effects of the dimension reduction step, that are measured in

term of the rate of convergence.

Next section is dedicated to the construction and estimation of Λ in a general

setting.
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3 General dimension reduction methodology

3.1 Construction of Λ

Papers dealing about dimension reduction primarily focus on the determination of

a candidate matrix M ∈ Mp(R) such that the central mean subspace is spanned

by the columns of M, i.e. S(M) = SE[Y |X ]. Observe that the matrix M is symmet-

ric for the standard dimension-reduction methodologies. We shall see in the next

section an explicit description of M with the SIR method. Note that the matrix M

is in some sense minimal because it spans the smallest mean dimension-reduction

subspace.

In this section, the matrix Λ of Section 2 will be constructed from a candidate

matrix with a spectral decomposition. There are two main reasons for this: first,

it automatically gives the effective directions of the reduced space; seconds, the

thresholding procedure of the empirical eigenvalues developped below is robust

from a numerical point of view.

Here, we only have to assume that M ∈ Mp(R) is a symmetric matrix such that

S(M) is a mean dimension-reduction subspace, i.e.

E[Y |X ] = E[Y |MT X ].

We let rank(M) = d. Furthemore, we denote by λ1, · · · ,λp the eigenvalues of M

indexed as follows:

λ1 ≥ ·· · ≥ λp.

Set now v1, · · · ,vp the normalized eigenvectors associated with λ1, · · · ,λp, and

ℓ1 < · · · < ℓd the integers such that λℓ j
6= 0 for all j = 1, · · · , p. Recall that

v1, · · · ,vp are orthogonal vectors. In the particular case where M is positive defi-

nite, ℓi = i. Let O be the null-vector in R
p. The matrix Λ of Section 2 is defined

by:

ΛT =
(

vℓ1
· · · vℓd

O · · · O
)

,

so that rank(Λ) = d and E[Y |X ] = E[Y |ΛX ] because S(M) = S(ΛT ). In particular,

the basic assumption of Section 2 holds.

We also assume that we have at hand the estimator M̂ ∈Mp(R) of M, constructed

with the n first data (X1,Y1), · · · ,(Xn,Yn). We suppose that M̂ is a symmetric
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matrix with real coefficients, and we denote by λ̂1, · · · , λ̂p the eigenvalues indexed

as follows:

λ̂1 ≥ ·· · ≥ λ̂p,

and by v̂1, · · · , v̂p the corresponding normalized eigenvectors. A natural -and nu-

merically robust- estimator d̂ of d is then obtained by thresholding the eigenval-

ues:

d̂ =
p

∑
j=1

1{|λ̂ j| ≥ τ},

where the threshold τ is some positive real number with τ ≤ 1, to be specified

latter. Let ℓ̂1 < · · · < ℓ̂
d̂

be the integers such that |λ̂ℓ̂ j
| ≥ r for all j = 1, · · · , d̂.

Then, we put:

Λ̂T =
(

v̂ℓ̂1
· · · v̂ℓ̂

d̂
O · · · O

)

,

and we observe that rank(Λ̂) = d̂.

3.2 Rate of convergence

It is an easy task to prove that if M̂
P−→ M, then Λ̂

P−→ Λ. Hence by Theorem 2.1,

if Y is bounded, we have:

r̂(Λ̂X)
L

2

−→ E[Y |X ],

provided k → ∞ and k/n → 0. This subsection is dedicated to the rate of conver-

gence in the above convergence result.

As seen in Theorem 2.2, we need to give bounds for both terms P(d̂ > d) and

E‖Λ̂−Λ‖2. The bounds are given in Lemmas 7.1 and 7.2 in Section 7. As an

application of Corollary 2.2, we immediately deduce the following result:

Corollary 3.1. Assume that X and Y are bounded, d ≥ 3 and r is lipschitz. If the

non-null eigenvalues of M have multiplicity 1, then there exists a constant C > 0

such that

E
(

r̂(Λ̂X)−E[Y |X ]
)2 ≤ C

k
+C

(

k

n

)2/d

+
C

τ2
E‖M̂−M‖2.

Next section is dedicated to the case where M is constructed with the SIR method.

In this context, we can give a bound for E‖M̂ −M‖2, hence an explicit rate of

convergence of r̂(Λ̂X) to E[Y |X ].
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4 Application with the SIR method

The goal of this section is to apply Corollary 3.1 when the candidate matrix M

is constructed with some dimension-reduction method. It appears that for each

dimension-reduction method (SIR, ADE, MAVE, ...), the estimator M̂ of M is

such that
√

n(M̂ −M) converges in distribution. However, in view of an appli-

cation of Corollary 3.1, we need a bound for the quantity E‖M̂ − M‖2. Each

dimension-reduction method need a specific process, and an exhaustive study of

all processes is beyond the scope of the paper.

Hence, we have chosen to study the case where M is constructed with SIR, since

it is one of the most popular and powerfull dimension-reduction method, and

because it is the subject of many recent papers (see for instance the papers by

Saracco, 2005, and Zhu et al, 2006, and the references therein).

In this section, we assume that X and Y are bounded. For simplicity, we also

assume that X is standard, i.e. X has mean 0 and variance matrix Id. With the

SIR method, the candidate matrix M of Section 3, further denoted MSIR, is the

symmetric matrix defined by:

MSIR = cov(E[X |Y ]) = E
(

E[X |Y ]E[X |Y ]T
)

.

In view of an application of Corollary 3.1, we assume throughout that

S(MSIR) = SY |X ,

where SY |X stands for the central subspace of Y given X (e.g. see Li, 1991).

We refer to the papers by Li (1991) and Hall and Li (1993) for discussions on

this assumption, as well as sufficient conditions on the model that ensures this

property. In particular,

E[Y |X ] = E[Y |MT
SIRX ],

hence we are in position to apply the results of Section 3.

Let us introduce the partition {I(h), h = 1, · · · ,H} of the support of Y , such that

each slice I(h) (shorten as h) is an interval with length κ/H for some κ > 0, and

moreover:

ph = P(Y ∈ I(h)) > 0.
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With this respect, a natural estimator for the SIR matrix MSIR is

M̂SIR =
H

∑
h=1

p̂h m̂h m̂T
h ,

where for any slice h:

p̂h =
1

n

n

∑
i=1

1{Yi ∈ I(h)} and m̂h =
1

np̂h

n

∑
i=1

Xi1{Yi ∈ I(h)}.

We now denote by mh the theoretical counterpart of m̂h, i.e. mh = E[X |Y ∈ I(h)],
and by M′

SIR the matrix:

M′
SIR =

H

∑
h=1

ph mh mT
h .

It is an easy exercise to prove that

E‖M̂SIR −M′
SIR‖2 ≤C

H

n
, (4.1)

for some constant C > 0 that does not depend on n and H. Hence in the estimation

of MSIR by M̂SIR, the bound on the variance term does not need additional assump-

tions. The biais term ‖M′
SIR−MSIR‖, however, has to be handled with care. In the

sequel, rinv stands for the inverse regression function, that is:

rinv(y) = E[X |Y = y].

We observe that for each slice h:

mh =
1

ph

EX1{Y ∈ I(h)} =
1

ph

Erinv(Y )1{Y ∈ I(h)}.

Hence, provided rinv is Lipschitz, one obtains:

‖M′
SIR −

H

∑
h=1

phrinv(ch)rinv(ch)
T‖ ≤ C

H
, (4.2)

for some constant C > 0, and where the ch’s are contained in the I(h)’s. Moreover,

we observe that MSIR can be written as

MSIR =
H

∑
h=1

E1{Y ∈ I(h)}rinv(Y )rinv(Y )T .
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Therefore,

‖MSIR −
H

∑
h=1

phrinv(ch)rinv(ch)
T‖ ≤ C

H
, (4.3)

for some constant C > 0. Under the Lipschitz assumption on rinv, we thus get

from (4.1), (4.2) and (4.3):

‖M̂SIR −MSIR‖2 ≤C

(

H

n
+

1

H2

)

,

for some constant C > 0.

In the sequel, ΛSIR (resp. Λ̂SIR) is constructed with the matrix M = MSIR (resp.

M̂ = M̂SIR) as in Section 3.1 and d is the rank of MSIR. For the construction of the

estimate, one has to choose the values of the parameters H (the number of slices),

τ (the thresholding parameter of the eigenvalues) and k (the number of NN). With

the above choices:

H = n1/3, τ = n1/6 and k = n2/(2+d),

we immediatly deduce from Corollary 3.1 our last result.

Corollary 4.1. Assume that d ≥ 3. If r and rinv are Lipschitz, and if the non-null

eigenvalues of MSIR have multiplicity 1, then there exists a constant C > 0 such

that

E
(

r̂(Λ̂SIRX)−E[Y |X ]
)2 ≤Cn−2/(2+d).

Hence, we recover the usual optimal rate when the predictor vector belongs to a

d-dimensional vector space.

5 Proof of Theorem 2.1

5.1 Preliminaries

For simplicity, we assume that |Y | ≤ 1. We let X̂ = Λ̂X , X̃ = ΛX and, for all

i = n+1, · · · ,2n:

X̃i = ΛXi.

Lemma 5.1. If k/n → 0 and Λ̂
P−→ Λ, then

X̂(k)(X̂)− X̂
P−→ 0.
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Proof In the proof, µ stands for the distribution of X . Let ε > 0. Since X is in-

dependent from the sample and distributed according to µ, we have the following

equality:

P(‖X̂(k)(X̂)− X̂‖ > ε) =
∫

Rp
P(‖X̂(k)(Λ̂x)− Λ̂x‖ > ε)µ(dx).

Then, according to the Lebesgue domination Theorem, one only needs to prove

that for all x in the support of µ:

P(‖X̂(k)(Λ̂x)− Λ̂x‖ > ε) −→ 0.

Observe now that for all x:

P(‖X̂(k)(Λ̂x)− Λ̂x‖ > ε) = P

(

2n

∑
i=n+1

1{‖X̂i − Λ̂x‖ ≤ ε} < k

)

.

Let a > ‖Λ‖. If ‖Λ̂−Λ‖ ≤ a and ‖X̂i − Λ̂x‖ ≤ ε, we then have:

‖X̃i −Λx‖ ≤ ‖(Λ− Λ̂)Xi‖+‖X̂i − Λ̂x‖+‖(Λ̂−Λ)x‖
≤ a(‖Xi‖+‖x‖)+ ε.

Therefore,

P(‖X̂(k)(Λ̂x)− Λ̂x‖ > ε) (5.1)

≤ P

(

2n

∑
i=n+1

1{‖X̃i −Λx‖ ≤ a(‖Xi‖+‖x‖)+ ε} < k

)

+P(‖Λ̂−Λ‖ > a).

According to the strong law of large numbers:

1

n

2n

∑
i=n+1

1{‖X̃i−Λx‖≤ a(‖Xi‖+‖x‖)+ε} a.s−→P
(

‖X̃ −Λx‖ ≤ a(‖X‖+‖x‖)+ ε
)

.

Assume that the latter quantity equals 0. Then, we have a.s.

‖X̃ −Λx‖ > a(‖X‖+‖x‖)+ ε.

But this is impossible since ‖X̃ −Λx‖ ≤ ‖Λ‖(‖X‖+ ‖x‖) and a > ‖Λ‖. As a

consequence,

P
(

‖X̃ −Λx‖ ≤ a(‖X‖+‖x‖)+ ε
)

6= 0,
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and, since k/n → 0, we obtain

P

(

2n

∑
i=n+1

1{‖X̃i −Λx‖ ≤ a(‖Xi‖+‖x‖)+ ε} < k

)

−→ 0.

By assumption, P(‖Λ̂−Λ‖ > a) → 0 so that by (5.1),

P(‖X̂(k)(Λ̂x)− Λ̂x‖ > ε) −→ 0,

hence the lemma. �

Lemma 5.2. Let ϕ : R
p → R be a uniformly continuous function such that 0 ≤

ϕ≤ 1. If k/n → 0 and Λ̂
P−→ Λ, we have:

E

2n

∑
i=n+1

Wi(X̂)
(

ϕ(X̃)−ϕ(X̃i)
)2 −→ 0.

Proof For all K > 0, we let XK = X1{‖X‖ ≤ K}. Then, we note X̂K = Λ̂XK ,

X̃K = ΛXK and similarly for X̂i,K and X̃i,K . Moreover, Wi,K is defined as Wi, but

with the X̂i,K’s instead of the X̂i’s (see Section 2.1). A moment’s thought reveals

that, since ∑
2n
i=n+1Wi,K(X̂K) = 1:

E

2n

∑
i=n+1

Wi(X̂)
(

ϕ(X̃)−ϕ(X̃i)
)2

= P(‖X‖ < K)n
E

2n

∑
i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)−ϕ(X̃i,K)
)2

+RK,

where RK is a positive real number that satisfies supn RK → 0 as K →∞. Therefore,

one only needs to prove that for all K > 0, one has :

E

2n

∑
i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)−ϕ(X̃i,K)
)2 −→ 0. (5.2)

We now proceed to prove this property.

Fix K > 0 and ε > 0. There exists r > 0 such that |ϕ(x1)−ϕ(x2)| ≤ ε provided

x1,x2 ∈ R
p satisfy ‖x1−x2‖ ≤ r. Since ϕ is bounded by 1 and ∑

2n
i=n+1Wi,K(X̂K) =

13



1, we have:

E

2n

∑
i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)−ϕ(X̃i,K)
)2

≤ ε2 +E

2n

∑
i=n+1

Wi,K(X̂K)1{‖X̃K − X̃i,K‖ > r}. (5.3)

Hence, one only needs to prove that the rightmost term tends to 0. If ‖Λ̂−Λ‖ ≤
r/(4K) and ‖X̃i,K − X̃K‖ > r, then:

‖X̂K − X̂i,K‖ ≥ ‖X̃K − X̃i,K‖−‖Λ̂−Λ‖(‖XK‖+‖Xi,K‖) ≥
r

2
,

because ‖XK‖ ≤ K and ‖Xi,K‖ ≤ K. Consequently,

E

2n

∑
i=n+1

Wi,K(X̂K)1{‖X̃K − X̃i,K‖ > r}

≤ E

2n

∑
i=n+1

Wi,K(X̂K)1
{

‖X̃K − X̃i,K‖ > r,‖Λ̂−Λ‖ ≤ r

4K

}

+P

(

‖Λ̂−Λ‖ >
r

4K

)

≤ E

2n

∑
i=n+1

Wi,K(X̂)1
{

‖X̂K − X̂i,K‖ >
r

2

}

+P

(

‖Λ̂−Λ‖ >
r

4K

)

. (5.4)

Now denote by X̂(i),K(x) the i-th NN of x ∈ R
p among {X̂n+1,K, · · · , X̂2n,K}. Then,

since

2n

∑
i=n+1

Wi,K(X̂K)1
{

‖X̂K − X̂i,K‖ >
r

2

}

=
1

k

k

∑
i=1

1
{

‖X̂(i),K(X̂K)− X̂K‖ >
r

2

}

≤ 1
{

‖X̂(k),K(X̂K)− X̂K‖ >
r

2

}

,

we can deduce from (5.4), Lemma 5.1 and the fact that Λ̂ converges to Λ in prob-

ability that

E

2n

∑
i=n+1

Wi,K(X̂K)1{‖X̃K − X̃i,K‖ > r} −→ 0.

Using (5.3), we get that for all ε> 0:

limsup
n

E

2n

∑
i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)−ϕ(X̃i,K)
)2 ≤ ε2,

hence (5.2) holds. �
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Lemma 5.3. Let ψ : R
p → R+ be a borel function which is bounded by 1. Then,

there exists a constant C > 0 that only depends on p and such that

E

2n

∑
i=n+1

Wi(X̂)ψ(X̃i) ≤CEψ(X̃).

Proof By Doob’s factorisation Lemma, there exists a borel function ξ : R
p → R+

such that for all i = n+1, · · · ,2n: E[ψ(X̃i)|X̂i] = ξ(X̂i). Note that such a function

does not depends on i, because the law of the pair (X̃i, X̂i) is independent on i. We

let S = {(X1,Y1), · · · ,(Xn,Yn)} and E = {X̂n+1, · · · , X̂2n}. Then,

E

[

2n

∑
i=n+1

Wi(X̂)ψ(X̃i)
∣

∣

∣
S

]

= E

[

E

[

2n

∑
i=n+1

Wi(X̂)ψ(X̃i)
∣

∣

∣
S ,E , X̂

]

∣

∣

∣
S

]

= E

[

2n

∑
i=n+1

Wi(X̂)E
[

ψ(X̃i)
∣

∣

∣
X̂i

]∣

∣

∣
S

]

= E

[

2n

∑
i=n+1

Wi(X̂)ξ(X̂i)
∣

∣

∣
S

]

.

By Stone’s Lemma (e.g. Lemma 6.3 in Györfi et al, 2002), there exists a constant

C > 0 only depending on p, and such that:

E

[

2n

∑
i=n+1

Wi(X̂)ξ(X̂i)
∣

∣

∣
S

]

≤CE

[

ξ(X̂)
∣

∣

∣
S

]

.

This leads to:

E

2n

∑
i=n+1

Wi(X̂)ψ(X̃i) = EE

[

2n

∑
i=n+1

Wi(X̂)ψ(X̃i)
∣

∣

∣
S

]

≤ CEξ(X̂) = CEψ(X̃),

by definition of ξ, hence the lemma. �

5.2 Proof of Theorem 2.1

In the sequel, r̃ stands for the function defined for all x ∈ R
p by:

r̃(x) =
2n

∑
i=n+1

Wi(x)r(X̃i).
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Fix ε> 0. There exists a continuous function r′ : R
p →R with a bounded support

such that

E
(

r(X̃)− r′(X̃)
)2 ≤ ε.

One may also choose r′ so that 0 ≤ r′ ≤ 1. Since ∑
2n
i=n+1Wi(X̂) = 1, we have by

Jensen’s inequality:

E
(

r(X̃)− r̃(X̂)
)2

= E

(

2n

∑
i=n+1

Wi(X̂)
(

r(X̃)− r(X̃i)
)

)2

≤ E

2n

∑
i=n+1

Wi(X̂)
(

r(X̃)− r(X̃i)
)2

.

Introducing the continuous function r′, we obtain:

E
(

r(X̃)− r̃(X̂)
)2 ≤ 3E

(

r(X̃)− r′(X̃)
)2

+3E

2n

∑
i=n+1

Wi(X̂)
(

r′(X̃)− r′(X̃i)
)2

+3E

2n

∑
i=n+1

Wi(X̂)
(

r′(X̃i)− r(X̃i)
)2

.

According to Lemma 5.3 and by definition of r′, we then get:

E
(

r(X̃)− r̃(X̂)
)2 ≤ 3ε(1+C)+3E

2n

∑
i=n+1

Wi(X̂)
(

r′(X̃)− r′(X̃i)
)2

,

for some constant C > 0. Therefore, by Lemma 5.2, we have for all ε> 0:

limsup E
(

r(X̃)− r̃(X̂)
)2 ≤ 3ε(1+C),

and hence

E
(

r(X̃)− r̃(X̂)
)2 −→ 0. (5.5)

The task is now to prove the following property:

E
(

r̃(X̂)− r̂(X̂)
)2 −→ 0.

First observe that

E
(

r̃(X̂)− r̂(X̂)
)2

= E

(

2n

∑
i=n+1

Wi(X̂)
(

r(X̃i)−Yi

)

)2

.
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But, if i, j = n+1, · · · ,2n are different,

E

[

Wi(X̂)(r(X̃i)−Yi)Wj(X̂)(r(X̃ j)−Yj)
∣

∣

∣
X ,X1, · · · ,X2n,Y1, · · · ,Yn

]

= Wi(X̂)Wj(X̂)
(

r(X̃i)−E[Yi|Xi]
)(

r(X̃ j)−E[Yj|X j]
)

= 0,

since, by the basic assumption, E[Yi|Xi] = E[Yi|X̃i] = r(X̃i). Consequently,

EWi(X̂)(r(X̃i)−Yi)Wj(X̂)(r(X̃ j)−Yj) = 0,

which implies that

E
(

r̃(X̂)− r̂(X̂)
)2

= E

2n

∑
i=n+1

Wi(X̂)2
(

r(X̃i)−Yi

)2 ≤ 1

k
,

because ∑
2n
i=n+1Wi(X̂) = 1, Wi(X̂)≤ 1/k and |Y | ≤ 1 by assumption. The theorem

is now a straightforward consequence of (5.5). �

6 Proof of Theorem 2.2

Recall that we assume here that k/n → 0. We shall make use of the notations

of Section 5.1: X̂ = Λ̂X , X̃ = ΛX and, for all i = n + 1, · · · ,2n: X̃i = ΛXi. For

simplicity, we assume throughout the proof that ‖X‖ ≤ 1 and |Y | ≤ 1. Finally, we

denote by S the sub-sample S = {(X1,Y1), · · · ,(Xn,Yn)}.

The above proof will borrow and adapt some elements from the proof of Theorem

6.2 in Györfi et al (2002). We first need a lemma.

Lemma 6.1. If d ≥ 3, then there exists a constant C > 0 such that:

E
[

‖X̂(1)(X̂)− X̂‖2|S
]

≤ C

n2/d
,

on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖.

Proof We assume throughout the proof that the sub-sample S is fixed, with d̂ ≤ d

and ‖Λ̂‖ ≤ 2‖Λ‖, and we denote by µ̂ the law of X̂ (given S ). Since d̂ ≤ d, the

support of µ̂ is contained in some vector space of dimension d. For simplicity, we
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shall consider that µ̂ is a probability measure on R
d .

We first fix ε> 0. Then,

P(‖X̂(1)(X̂)− X̂‖ > ε|S ) = E
[

P(‖X̂(1)(X̂)− X̂‖ > ε|S ,X)|S
]

= E
[

P
(

‖X̂n+1 − X̂‖ > ε|S ,X
)n |S

]

= E
[(

1− µ̂(B(X̂ ,ε))
)n |S

]

=
∫

Rd
(1− µ̂(B(x,ε)))n µ̂(dx),

where B(x,r) stands for the Euclidean closed ball in R
d , with center at x and radius

r. Since ‖X‖ ≤ 1, the support supp(µ̂) of µ̂ is contained in the ball B(0,‖Λ̂‖).
Thus, one can find N(ε) Euclidean balls in R

d with radius ε, say B1, · · · ,BN(ε),

such that

supp(µ̂) ⊂
N(ε)
⋃

j=1

B j and N(ε) ≤ 2
‖Λ̂‖
εd

. (6.1)

Observe that if x ∈ B j, then B j ⊂ B(x,ε). Consequently,

P(‖X̂(1)(X̂)− X̂‖ > ε|S ) ≤
N(ε)

∑
j=1

∫

B j

(1− µ̂(B(x,ε)))n µ̂(dx)

≤
N(ε)

∑
j=1

∫

B j

(

1− µ̂(B j)
)n
µ̂(dx)

≤
N(ε)

∑
j=1

µ̂(B j)
(

1− µ̂(B j)
)n

≤ N(ε)

n
, (6.2)

since t(1− t)n ≤ 1/n when t ∈ [0,1].

Recall now that ‖X‖ ≤ 1 and hence ‖X̂‖ ≤ ‖Λ̂‖. Therefore:

E
[

‖X̂(1)(X̂)− X̂‖2|S
]

=
∫ ∞

0
P(‖X̂(1)(X̂)− X̂‖2 > ε|S )dε

=
∫ ‖Λ̂‖2

0
P(‖X̂(1)(X̂)− X̂‖ >

√
ε|S )dε.
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Using (6.2) and (6.1) lead to the following bound:

E
[

‖X̂(1)(X̂)− X̂‖2|S
]

≤
∫ ‖Λ̂‖2

0
min

(

1,
N(

√
ε)

n

)

dε

≤
∫ ‖Λ̂‖2

0
min

(

1,
2‖Λ̂‖
nεd/2

)

dε.

Since ‖Λ̂‖ ≤ 2‖Λ‖, it is now an easy task to prove that, provided d ≥ 3,

E
[

‖X̂(1)(X̂)− X̂‖2|S
]

≤ C

n2/d
,

for some constant C > 0, hence the lemma. �

We are now in position to prove Theorem 2.2.

Proof of Theorem 2.2 We shall use the bias-variance decomposition of the fol-

lowing form:

E

[

(

r̂(X̂)− r(X̂)
)2 |S ,X

]

= I1 + I2, (6.3)

where we put, with the notation S W = S ∪{Xn+1, · · · ,X2n}:

I1 = E

[

(

r̂(X̂)−E
[

r̂(X̂)|S W ,X
])2
∣

∣

∣
S ,X

]

and I2 = E

[

(

E
[

r̂(X̂)|S W ,X
]

− r(X̂)
)2
∣

∣

∣
S ,X

]

.

We first proceed to bound I1. Let us remark that since, by assumption, r(X̃i) =
E[Yi|ΛXi] = E[Yi|Xi], we have:

E
[

r̂(X̂)|S W ,X
]

= E

[

2n

∑
i=n+1

Wi(X̂)Yi

∣

∣

∣
S

W ,X

]

=
2n

∑
i=n+1

Wi(X̂)E[Yi|Xi]

=
2n

∑
i=n+1

Wi(X̂)r(X̃i). (6.4)

Consequently,

I1 = E





(

2n

∑
i=n+1

Wi(X̂)
(

Yi − r(X̃i)
)

)2
∣

∣

∣
S ,X





= E

[

2n

∑
i=n+1

Wi(X̂)2
(

Yi − r(X̃i)
)2
∣

∣

∣
S ,X

]

,
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since, as seen in a similar context in the proof of Theorem 2.1,

E
[

Wi(X̂)(Yi − r(X̃i))Wj(X̂)(Yj − r(X̃ j))|S ,X
]

= 0,

provided i, j = n+1, · · · ,2n are different. Using the properties ∑
2n
i=n+1Wi(X̂) = 1,

Wi(X̂) ≤ 1/k and |Y | ≤ 1, we conclude that:

I1 ≤
1

k
(6.5)

We now proceed to bound I2. Since r is a Lipschitz function, there exists a constant

L > 0 such that |r(x1)− r(x2)| ≤ L‖x1 − x2‖ for all x1,x2 ∈ R
p. Then, according

to (6.4):

I2 ≤ 2E





(

2n

∑
i=n+1

Wi(X̂)
(

r(X̃i)− r(X̂i)
)

)2
∣

∣

∣
S ,X





+2E





(

2n

∑
i=n+1

Wi(X̂)
(

r(X̂i)− r(X̂)
)

)2
∣

∣

∣
S ,X





≤ 2L2‖Λ̂−Λ‖2 +2E





(

1

k

k

∑
i=1

(

r(X̂(i)(X̂))− r(X̂)
)

)2
∣

∣

∣
S ,X





≤ 2L2‖Λ̂−Λ‖2|+2L2
E





(

1

k

k

∑
i=1

‖X̂(i)(X̂)− X̂‖
)2
∣

∣

∣
S ,X



 , (6.6)

where we used the facts that ‖X‖≤ 1 and ∑
2n
i=n+1Wi(X̂) = 1. We now let ñ = [n/k],

and we split the sub-sample {X̃1, · · · , X̃kñ} into k sub-samples Z1, · · · ,Zk of size ñ,

with:

Zi = {X̃iñ+1, · · · X̃(i+1)ñ}, i = 1, · · · ,k.

For each sample Zi, we denote by Z
(1)
i the closest element of Zi from X̂ (ties being

considered as usual). Then,

k

∑
i=1

‖X̂(i)(X̂)− X̂‖ ≤
k

∑
i=1

‖Z
(1)
i − X̂‖.

Jensen’s Inequality and (6.6) then give

E [I2|S ] ≤ 2L2‖Λ̂−Λ‖2 +
2L2

k

k

∑
i=1

E

[

‖Z
(1)
i − X̂‖2

∣

∣

∣
S

]

.
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Therefore, on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖, we have by Lemma 6.1:

E[I2|S ] ≤ 2L2‖Λ̂−Λ‖2 +
2L2C

ñ2/d
,

for some constant C > 0. Since k/n → 0, there exists a constant κ > 0 such that

ñ ≥ κn/k. Hence, on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖,

E[I2|S ] ≤ 2L2‖Λ̂−Λ‖2 +2κ−2/dL2C

(

k

n

)2/d

.

By (6.5) and (6.3), we then deduce that for some constant C′ > 0:

E

[

(

r̂(X̂)− r(X̂)
)2
∣

∣

∣
S

]

≤ 1

k
+C′‖Λ̂−Λ‖2 +C′

(

k

n

)2/d

,

on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖. Noticing that ‖Λ̂−Λ‖ > ‖Λ‖ when

‖Λ̂‖ > 2‖Λ‖, and since |r̂(X̂)| ≤ 1, |r(X̂)| ≤ 1, we obtain:

E
(

r̂(X̂)− r(X̂)
)2

= EE

[

(

r̂(X̂)− r(X̂)
)2
∣

∣

∣
S

]

≤ 1

k
+C′

E‖Λ̂−Λ‖2 +C′
(

k

n

)2/d

+P(‖Λ̂−Λ‖ > ‖Λ‖)

+P(d̂ > d)

≤ 1

k
+

(

C′ +
1

‖Λ‖2

)

E‖Λ̂−Λ‖2 +C′
(

k

n

)2/d

+P(d̂ > d),

using the Markov Inequality. Finally, by the Lipschitz property of r,

E
(

r(X̂)− r(X̃)
)2 ≤ L2

E‖Λ̂−Λ‖2.

The last 2 inequalities give the result since, by the basic assumption, r(X̃) =
E[Y |X ]. �

7 Proof of Corollary 3.1

The proof of Corollary 3.1 is straightforward from Corollary 2.2 and Lemmas 7.1

and 7.2 below.
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Lemma 7.1. We have:

P(d̂ > d) ≤ p

τ2
E‖M̂−M‖2.

Proof Let N = { j = 1, · · · , p : λ j 6= 0}, and recall that card(N ) = d. If d̂ > d,

we then have

1 ≤ ∑
j∈N

(

1{|λ̂ j| ≥ τ}−1
)

+ ∑
j/∈N

1{|λ̂ j| ≥ τ} ≤ ∑
j/∈N

1{|λ̂ j| ≥ τ}.

Thus, we deduce the inequality:

P(d̂ > d) ≤ p max
j/∈N

P(|λ̂ j| ≥ τ). (7.1)

Fix j /∈ N . Since M̂ and M are symmetric, the indexation of the eigenvalues

implies that ‖M̂ −M‖ ≥ |λ̂ j −λ j| = |λ̂ j|. Consequently, when |λ̂ j| ≥ τ , we have

‖M̂−M‖ ≥ τ . Therefore:

P(|λ̂ j| ≥ τ) ≤ P(‖M̂−M‖ ≥ τ) ≤ 1

τ2
E‖M̂−M‖2.

The lemma is now a straightforward consequence of (7.1). �

Our next task is to bound the quantity E‖Λ− Λ̂‖2. For this purpose, we recall

the following classical fact (e.g. see Kato, 1966): for any symmetric matrix A ∈
Mp(R), let vi(A) be the normalized eigenvector associated with the i-th largest

eigenvalue. If it is a simple eigenvalue, then there exists δA > 0 such that for any

symmetric matrix A′ ∈ Mp(R) with ‖A−A′‖ ≤ δA:

‖vi(A)− vi(A
′)‖ ≤C0‖A−A′‖, (7.2)

for some constant C0 > 0 that only depends on A.

Lemma 7.2. Assume that the non-null eigenvalues of M have multiplicity 1. Then,

there exists a constant C > 0 such that:

E‖Λ̂−Λ‖2 ≤ C

τ2
E‖M̂−M‖2.
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Proof We let

N = { j = 1, · · · , p : λ j 6= 0} and ˆN = { j = 1, · · · , p : |λ̂ j| ≥ τ}.

Writting M̂ = M +(M̂−M), we deduce from (7.2) that, provided ‖M̂−M‖ ≤ δM:

max
j∈N

‖v̂ j − v j‖ ≤C‖M̂−M‖, (7.3)

Here, and in the following, C is a positive constant whose value may change from

line to line. Since ‖v j‖ = ‖v̂ j‖ = 1 for all j = 1, · · · , p, we have:

E‖Λ̂−Λ‖21{‖M̂−M‖ ≤ δM}
= E ∑

j∈N ∪ ˆN

‖v̂ j − v j‖21{‖M̂−M‖ ≤ δM}

≤ ∑
j∈N

E‖v̂ j − v j‖21{‖M̂−M‖ ≤ δM}+
p

∑
j=1

E‖v̂ j − v j‖21{N ∪ ˆN 6= N }

≤CE‖M̂−M‖2 +CP(N ∪ ˆN 6= N ),

according to (7.3). Moreover, since ‖M̂−M‖ ≥ |λ̂ j −λ j| for all j because M and

M̂ are symmetric matrices, we have:

P(N ∪ ˆN 6= N ) = P
(

∃ j = 1, · · · , p : |λ̂ j| ≥ τ and λ j = 0
)

≤ P(‖M̂−M‖ ≥ τ) ≤ 1

τ2
E‖M̂−M‖2.

Combining the next two inequalities gives:

E‖Λ̂−Λ‖21{‖M̂−M‖ ≤ δM} ≤CE‖M̂−M‖2 +
C

τ2
E‖M̂−M‖2.

Since ‖Λ̂−Λ‖ ≤ 2p, we also have:

E‖Λ̂−Λ‖21{‖M̂−M‖ > δM} ≤ CP(‖M̂−M‖ > δM)

≤ CE‖M̂−M‖2.

Therefore, since τ ≤ 1:

E‖Λ̂−Λ‖2 ≤ C

τ2
E‖M̂−M‖2,
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for some constant C > 0, that only depends on M and p. �
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