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The technique of relaxed power series expansion provides an efficient way to solve
equations of the form F =Φ(F ), where the unknown F is a vector of power series, and
where the solution can be obtained as the limit of the sequence 0, Φ(0), Φ(Φ(0)),	 .
With respect to other techniques, such as Newton’s method, two major advantages
are its generality and the fact that it takes advantage of possible sparseness of Φ.
In this paper, we extend the relaxed expansion mechanism to more general implicit
equations of the form Φ(F ) =0.
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1. Introduction

Let K be an effective field of constants of characteristic zero. Let F = (F [1], 	 , F [r]) be
a column vector of r indeterminate series in K[[z]]. We may also consider F as a power

series F0 + F1 z + 
 ∈ Kr[[z]]. Let Φ(F ) = (Φ(F )[1], 	 , Φ(F )[r]) be a column vector of
expressions built up from F , z and constants in K using ring operations, differentiation
and integration (with constant term zero). Finally, let C0,	 ,Ck−1∈Kr be a finite number
of initial conditions. Assume that the system















Φ(F ) = 0
F0 = C0�

Fk−1 = Ck−1

(1)

admits a unique solution f ∈ K[[z]]r. In this paper, we are interested in the efficient
computation of this solution up to a given order n.

In the most favourable case, the equation Φ(F )= 0 is of the form

F −Ψ(F ) = 0, (2)

where the coefficient Ψ(F )n of zn in Ψ(F ) only depends on earlier coefficients F0,	 , Fn−1

of F , for each n∈N. In that case,

Fn = Ψ(F )n
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actually provides us with a recurrence relation for the computation of the solution. Using
the technique of relaxed power series expansions [vdH02a, vdH07], which will briefly be
recalled in section 2, it is then possible to compute the expansion F;n=F0+
 +Fn−1z

n−1

up till order n in time

T(n) = sR(n) +O(t n), (3)

where s is the number of multiplications occurring in Ψ, where is t the total size of Ψ as
an expression, and R(n) denotes the complexity of relaxed multiplication of two power
series up till order n. Here we assume that Ψ is represented by a directed acyclic graph,
with possible common subexpressions. For large n, we have R(n) =O(M(n) log n), where
M(n) = O(n log n log log n) denotes the complexity [CT65, SS71, CK91] of multiplying
two polynomials of degrees < n. If K admits sufficiently many 2p-th roots of unity, then

we even have R(n) = O(M(n) e2 log2log logn
√

) and M(n) = O(n log n). For moderate n,
when polynomial multiplication is done naively or using Karatsuba’s method, relaxed
multiplication is as efficient as the truncated multiplication of polynomials at order n.

One particularly important example of an equation of the above type is the integration
of a dynamical system

F = F0 +
∫

Ψ(F ), (4)

where Ψ is algebraic (i.e. does not involve differentiation or integration). In that case, given
the solution f up till order n, we may consider the linearized system

E ′ = Ψ(f) + JΨ(f)E+O(z2n)

up till order 2n, where JΨ(f) stands for the Jacobian matrix associated to Ψ at f . If we
also have a fundamental system of solutions of E ′=JΨ(f)E up till order n, then one step
of Newton’s method allows us to find the solution of (4) and a new fundamental system of
solutions of the linearized equation up till order 2n [BK78, BCO+06]. A careful analysis
shows that this leads to an algorithm of time complexity

T(n) = M(n) (2 s r+2 s+ 13/6 r2 +4/3 r+ o(1)) +O(t r n). (5)

In [vdH06], this bound has been further improved to

T(n) = M(n) (2 s+4/3 r+ o(1)) +O(t n), (6)

under the assumptions that K admits sufficiently many 2p-th roots of unity and that
r=O(logn).

Although the complexity (5) is asymptotically better than (3) for very large n, the
relaxed approach often turns out to be more efficient in practice. Indeed, Newton’s method
both suffers from a larger constant factor and the fact that we profit less from the potential
sparsity of the system. Moreover, as long as multiplications are done in the naive or
Karatsuba model, the relaxed approach is optimal in the sense that the computation of the
solution takes roughly the same time as its verification. Another advantage of the relaxed
approach is that it generalizes to more general functional equations and partial differential
equations.

Let us now return to our original implicit system (1). A first approach for its resolution
is to keep differentiating the system with respect to F until it becomes equivalent to a
system of the form (2). For instance, if Φ is algebraic, then differentiation of (1) yields

JΦ(F )F ′+
∂Φ
∂z

(F ) = 0.

2 Relaxed resolution of implicit equations



Consequently, if JΦ(f)0 is invertible, then

F = F0−
∫

JΦ(F )−1 ∂Φ
∂z

(F )

provides us with an equivalent system which can be solved by one of the previous methods.
Unfortunately, this method requires the computation of the Jacobian, so we do not longer
exploit the potential sparsity of the original system.

If Φ is a system of differentially algebraic equations, then we may also seek to apply
Newton’s method. For non degenerate systems and assuming that we have computed
the solution f and a fundamental system of solutions for the linearized equation up till
order n, one step of Newton’s method yields an extension of the solutions up till order
2n− i, for a fixed constant i∈N. From an asymptotic point of view, this means that the
complexities (5) and (6) remain valid.

It is natural to ask for a relaxed algorithm for the resolution of (1), with a similar
complexity as (3). We will restrict our attention to so-called “quasi-linear equations”, for
which the linearized system is “non degenerate”. This concept will be introduced formally
in section 3 and studied in more detail in section 6. In section 4, we present the main
algorithm of this paper for the relaxed resolution of (1).

The idea behind the algorithm is simple: considering not yet computed coefficients
of F as formal unknowns, we solve the system of equations Φ(F )0 = 
 = Φ(F )n = 0 for
increasing values of n. In particular, the coefficients of the power series involved in the
resolution process are no longer in K, but rather polynomials in F0, F1, 	 . For each
subexpression Ψ(F ) of Φ(F ) and modulo adequate substitution of known coefficients Fn

by their values fn, it turns out that there exist constants s∈Z and i∈N, such that Ψ(F )n

is a constant plus a linear combination of Fn−s−i+1,	 , Fn−s, for large n. Moreover, each
relaxed multiplication with symbolic coefficients can be reduced to a relaxed multiplication
with constant coefficients and a finite number of scalar multiplications with symbolic
coefficients. The main result is stated in theorem 5 and generalizes the previous complexity
bound (3).

In section 6, we provide a more detailed study of the linearized system associated to (1).
This will allow us to make the dependency of Ψ(F )n on Fn−s−i+1,	 , Fn−s more explicit.
On the one hand, given a quasi-linear system on input, this will enable us to provide
a certificate that the system is indeed quasi-linear. On the other hand, the asymptotic
complexity bounds can be further sharpened in lucky situations (see theorem 11). Finally,
in the last section 7, we outline how to generalize our approach to more general functional
equations and partial differential equations.

2. Relaxed power series

Throughout this article, K will denote an effective field of characteristic zero. This means
that elements in K can be encoded by data structures on a computer and that we have
algorithms for performing the field operations in K.

Let us briefly recall the technique of relaxed power series computations, which is
explained in more detail in [vdH02a]. In this computational model, a power series
f ∈K[[z]] is regarded as a stream of coefficients f0, f1,	 . When performing an operation
g= Φ(f1,	 , fk) on power series it is required that the coefficient gn of the result is output
as soon as sufficiently many coefficients of the inputs are known, so that the computation
of gn does not depend on the further coefficients. For instance, in the case of a mul-
tiplication h= fg, we require that hn is output as soon as f0,	 , fn and g0,	 , gn are known.
In particular, we may use the naive formula hn =

∑

i=0
n

fi gn−i for the computation of hn.
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The additional constraint on the time when coefficients should be output admits the
important advantage that the inputs may depend on the output, provided that we add
a small delay. For instance, the exponential g = exp f of a power series f ∈ zK[[z]] may
be computed in a relaxed way using the formula

g =

∫

f ′ g.

Indeed, when using the naive formula for products, the coefficient gn is given by

gn =
1

n
(f1 gn−1 +2 f2 gn−2 +
 +n fn

′ g0),

and the right-hand side only depends on the previously computed coefficients g0,	 , gn−1.
The main drawback of the relaxed approach is that we cannot directly use fast algo-

rithms on polynomials for computations with power series. For instance, assuming that K
has sufficiently many 2p-th roots of unity and that field operations in K can be done in
time O(1), two polynomials of degrees < n can be multiplied in time M(n) =O(n log n),
using FFT multiplication [CT65]. Given the truncations f;n = f0 + 
 + fn−1 z

n−1 and
g;n = g0 +
 + gn−1 z

n−1 at order n of power series f , g∈K[[z]], we may thus compute the
truncated product (f g);n in time M(n) as well. This is much faster than the naive O(n2)
relaxed multiplication algorithm for the computation of (f g);n. However, the formula for
(f g)0 when using FFT multiplication depends on all input coefficients f0, 	 , fn−1 and
g0,	 , gn−1, so the fast algorithm is not relaxed. Fortunately, efficient relaxed multiplication
algorithms do exist:

Theorem 1. [vdH97, vdH02a] Let M(n) be the time complexity for the multiplication

of polynomials of degrees <n in K[z]. Then there exists a relaxed multiplication algorithm

for series in K[[z]] of time complexity R(n) =O(M(n) logn).

Theorem 2. [vdH07] If K admits a primitive 2p-th root of unity for all p, then there

exists a relaxed multiplication algorithm of time complexity R(n)=O(n logne2 log2log logn
√

).
In practice, the existence of a 2p+1-th root of unity with 2p > n suffices for multiplication

up to order n.

An efficient C++ implementation of relaxed power series is available in the Math-
emagix system [vdH+02b]. Leaving low-level pointer and memory management details
apart, we will outline how the implementation works, using an informal pseudo-language.
Relaxed power series inK[[z]] are implemented as an abstract base class SeriesK which con-
tains the already computed coefficients and a protected virtual method next for computing
the next coefficient. For instance, the naive product of f , g: SeriesK can be implemented
using the following concrete derived class ProductSeriesK:

Class ProductSeriesKQ SeriesK
Fields f , g:SeriesK
Constructor product (f̃ : SeriesK, g̃ : SeriesK)

f6 f̃ , g6 g̃

Method next (n:N)
Return

∑

i=0
n

coefficient (f , i) coefficient (g, n− i)

Let us briefly explain this code. In addition to the vector with the already computed
coefficients (which is derived from SeriesK), the class ProductSeriesK contains two data
fields for the multiplicands f and g. The constructor product (f , g) returns the product
of two series f , g: SeriesK and the method next computes (f g)n using the naive relaxed
method. The method next does not take care of remembering previously computed coeffi-
cients and does not make sure that coefficients are computed in order. Therefore, a different
public function coefficient is used for the computation of the coefficients fi and gi:

4 Relaxed resolution of implicit equations



Function coefficient (f : SeriesK, n:N)
Let f0,	 , f#f denote the already computed coefficients of f
If n>#f then for i=#f +1,	 , n do fi6 f.next (i)
Return fn

In the case of implicitly defined power series f , the method next involves the series
f = this itself. For instance, exponentiation f6 exp g can be implemented as follows:

Class ExpSeriesKQSeriesK
Fields f , g:SeriesK
Constructor product (g̃ : SeriesK)

g6 g̃ , f6 integrate (product (derive (g), this))
Method next (n:N)

If n=0 then return 1
Else return coefficient (f , n)

Example 3. Let us expand the exponential of g = z + z2 + z3 + 
 using the above
algorithms. Besides f and g, three auxiliary series ϕ= g ′, ψ=ϕf and χ=

∫

ψ are created.
Now the computation of f4 gives rise to the following sequence of assignments:

f0 6 1 ϕ0 6 g0 = 1 ψ0 6 ϕ0 f0 = 1

χ0 6 0

f1 6 χ1 6 ψ0 = 1 ϕ1 6 2 g1 = 2 ψ1 6 ϕ0 f1 + ϕ1 f0 = 3

f2 6 χ2 6 ψ1

2
=

3

2
ϕ2 6 3 g2 = 3 ψ2 6 ϕ0 f2 + ϕ1 f1 + ϕ2 f0 =

13
2

f3 6 χ3 6 ψ2

3
=

13
6

ϕ3 6 4 g3 = 4 ψ3 6 ϕ0 f3 + ϕ1 f2 + ϕ2 f1 + ϕ3 f0 =
73
6

f4 6 χ4 6 ψ3

4
=

73
24



3. Implicit power series equations

Let F =(F [1],	 , F [r]) be a column vector of r indeterminate series in K[[z]]. Alternatively,
F may be considered as a series with formal coefficients

F = F0 +F1 z
1 +
 ,

Fn = (Fn
[1]
,	 , Fn

[r]
)

We will denote by E the set of expressions built up from F , z and constants in K using
ring operations, differentiation and integration (with (

∫

f)0 =0 for all f ∈K[[z]]). Setting

P = K[F0, F1,	 ]

= K[F0
[1]
,	 , F0

[r]
, F1

[1]
,	 , F1

[r]
,	 ],

any expression in E may then be regarded as an element of P[[z]].
For each Φ∈E, we define vΦ∈Z∪{∞} using the following rules:

Φ∈K[z] � vΦ = valz Φ

Φ∈{F [1],	 , F [r]} � vΦ =0

Φ∈{Ψ +Ω,Ψ−Ω} � vΦ =min {vΨ, vΩ}

Φ =ΨΩ � vΦ = vΨ + vΩ

Φ= Ψ′ � vΦ = vΨ− 1

Φ=
∫

Ψ � vΦ = vΨ +1.

Joris van der Hoeven 5



By induction, we have

valz Φ > vΦ

Φn ∈ K[F0,	 , Fn−vΦ],

for all Φ∈E and n∈N.
Let Φ=(Φ[1],	 ,Φ[r]) be a column vector of r expressions in E. We will assume that Φ

depends on each of the indeterminates F [1],	 , F [r]. Given C0,	 , Ck−1∈Kr, consider the
implicit system with initial conditions















Φ = 0
F0 = C0�

Fk−1 = Ck−1

(7)

For any n> k, this system implies the following system Σn of equations in K[F0,	 , Fn]:

Σn =



















Φn−v
Φ[1]

[1]
= 0�

Φn−v
Φ[r]

[r]
= 0

(8)

The system (7) is equivalent to the systems Σ0,Σ1,	 together with the initial conditions
F0 =C0,	 , Fk−1 =Ck−1.

In what follows, we will assume that (7) admits a unique solution f ∈K[[z]]r. Given
Ψ ∈P[[z]] and i ∈N, we will denote by σi(Ψ) the series in P[[z]] such that σi(Ψ)n is the
result of the substitution of Fj by fj in Ψn, for all n∈N and j6n+vΦ− i. If, for all i∈N,

there exists an Ni∈N such that σi(Φ
[j])n−v

Φ[j]
is linear in Fn−i+1,	 , Fn for all n>Ni and

j=1,	 , r, then we say that (7) is ultimately linear . In that case, σi(Σn) becomes a linear
system of equations in Fn−i+1,	 , Fn. More generally, the combined system

Σn,i =















σ1(Σn)
σ2(Σn+1)�
σi(Σn+i−1)

(9)

is a linear system of equations in Fn,	 , Fn+i−1 for all sufficiently large n. If Σn,i is linear
and Fn can be eliminated from Σn,i for all sufficiently large, then we say that (7) is quasi-
linear . The minimal i for which Fn can be eliminated from Σn,i for all sufficiently large n
will then be called the index of (7). The minimal m such that Fn can be eliminated from
Σn,i for all n>m will be called the offset .

Example 4. Let Φ∈K[z, F ]r, k=1 and assume that

J =











(

∂Φ[1]

∂F [1]

)

0

 (

∂Φ[1]

∂F [r]

)

0� �
(

∂Φ[r]

∂F [1]

)

0

 (

∂Φ[r]

∂F [r]

)

0











is invertible. Then for all n> 0, we have

Φn = JFn +Rn,

with Rn∈K[F0,	 , Fn−1]. Hence, fn can be computed from the previous coefficients using

fn = −J−1Rn(f0,	 , fn−1).

6 Relaxed resolution of implicit equations



The system σ1(Σn) consists of the equation

JFn +Rn(f0,	 , fn−1) = 0,

from which Fn can be eliminated. We conclude that (7) is quasi-linear, of index 1.

4. Relaxed resolution of implicit equations

Consider a quasi-linear system (7) of index i with unique solution f ∈ K[[z]]r. We want
to solve the system in a relaxed way, by computing the systems Σn,i for increasing values
n=k, k+1,	 and eliminating Fn from Σn,i using linear algebra. For each subexpression Ψ

of Φ, we need to evaluate Ψ̌ = σi(Ψ) ∈ P[[z]] in a relaxed way. The main challenge is to
take advantage of the fact that σi(Ψ)n is really a constant plus a linear combination of
Fn−vΨ−i+1, 	 , Fn−vΨ and to integrate the necessary substitutions of newly computed
coefficients by their values into the relaxed resolution process.

Denote the inner product of vectors by ·. For each v ∈Z and i∈N, let P[[z]]v,i be the
subset of Ψ∈P[[z]] such that

Ψn+v = Ψn+v
∗ + Ψn+v

(i−1)
·Fn−i+1 +
 + Ψn+v

(0)
·Fn, (10)

Ψn+v
∗ ∈ K

Ψn+v
(j)

∈ Kr (j=0,	 , i− 1),

for all n>−v. Then Pv,i is a K-vector space and

Ψ∈P[[z]]v,i � zΨ∈P[[z]]v+1,i

Ψ∈P[[z]]v,i � Ψ′∈P[[z]]v−1,i

Ψ∈P[[z]]v,i � ∫

Ψ∈P[[z]]v+1,i.

Given Ψ∈Pv,i with i > 0, we define the one-step substitution τ(Ψ)∈P[[z]]v+1,i−1 by

τ (Ψ)n+v = Ψn+v
∗ + Ψn+v

(i−1)
· fn−i+1 +Ψn+v

(i−2)
·Fn−i+2 +
 + Ψn+v

(0)
·Fn.

In particular, τ(σi(Ψ)) = σi−1(Ψ) and the the iterate τ i(Ψ) coincides with the full substi-
tution σ0(Ψ)∈K[[z]] of F by f in Ψ.

It remains to be shown how to multiply two series Ψ ∈ P[[z]]v,i and Ω ∈ P[[z]]w,i in
a suitable way, without introducing quadratic terms in F . Given t∈N, it will be convenient
to introduce shift operators

Ψ≪t = Ψ zt

Ψ≫t = Ψt +Ψt+1 z
1 +
 .

We recursively define the substitution product Ψ ∗i Ω∈P[[z]]v+w,i of Ψ and Ω by

Ψ ∗0 Ω = ΨΩ

Ψ ∗i Ω = σ0(Ψ0)σ(Ω0) + [σ0(Ψ0)Ω≫1 +Ψ≫1σ0(Ω0)]≪1 +

[τ (Ψ≫1) ∗i−1 τ (Ω≫1)]≪2 (11)

using the fact that τ (Ψ≫1), τ (Ω≫1)∈P[[z]]v+w,i−1. Unrolling (11), we have

Ψ ∗i Ω =
∑

j<i

[σ0(Ψj)σ0(Ωj)]≪2j + [σ0(Ψj) τ
j(Ω≫j+1)+ τ j(Ψ≫j+1)σ0(Ωj)]≪2j+1 +

[τ i(Ψ≫i) τ
i(Ω≫i)]≪2i. (12)

The substitution product satisfies the important property

σi(Ψ) ∗iσi(Ω) = σi(ΨΩ).

Joris van der Hoeven 7



Moreover, it respects the constraint that σi(Ψ Ω)n−vΨΩ can be computed as soon as
σi(Ψ)j−vΨ and σi(Ω)j−vΩ are known for j 6n. Recall that the computation of σi(Ψ)n−vΨ

requires the previous computation of f0,	 , fn−i.
From the implementation point of view, we proceed as follows. We introduce a new

data type D, whose instances are of the form

c = (fc, nc, ic, c
∗, c(0),	 , c(ic−1))

nc, ic ∈ N

c∗ ∈ K

c(j) ∈ Kr (j= 0,	 , i− 1),

where fc = f stands for the relaxed power series solution of (7). Such an instance c
represents

c ≡ c∗+ c(ic−1) ·Fnc−ic+1 +
 + c(0) ·Fnc
.

Denoting by Di the subtype of instances c in D with ic 6 i, we may thus view series
Ψ∈P[[z]]v,i as elements ofDi[[z]]. We have a natural inclusionK→D;a� (0,0,0,a), where
we notice that fc does not matter if ic =0, and a constructor (f , n)� (f , n,1,0,1) for the
unknown Fn. The K-vector space operations on D are implemented in a straightforward
way. The one-step substitution operator τ is implemented by

τ(c) = (fc, nc, ic− 1, c∗+ c(ic−1) · fnc−ic+1, c
(0),	 , c(ic−2))

if ic> 0 and τ(c) = c otherwise. On a fixed Di, this allows us to implement the substitu-
tion product ∗i using (11). Moreover, by casting τ i(Ψ≫i) and τ i(Ω≫i) to relaxed series
in SeriesK, we may compute the product τ i(Ψ≫i) τ

i(Ω≫i) using a fast relaxed product
in SeriesK. We are now in a position to state our relaxed algorithm for solving (7).

Class ImplicitSeriesKr Q SeriesKr

Fields ϕ:SeriesDi

r , Σ:SetDi
, p:N

Constructor implicit (Φ:Er, C0:K
r,	 , Ck−1:K

r)
F 6 UnknownSeriesDi

r(this, C0,	 , Ck−1)
ϕ6 Φ[F ]
Σ6 ∅ and p6 k

Method next (n:N)
While true

If p>n+ i then raise an error
Σ6 Σ∪{ϕp−v

Φ[j]

[j]
: j ∈ {1,	 , r}, p> vΦ[j]} and p6 p+1

Triangularize Σ by eliminating Fl with large l first
Σ6 Σ \ {0}
If Σ∩K� ∅ then raise an error
If Σ= Σ1∐Σ2 where cardΣ2 = r and Σ2 only involves Fn

[1]
,	 , Fn

[r]
then

Let c∈Kr be the unique solution to Σ2 as a system in Fn

Let Σ6 Σ1 and substitute c for Fn in Σ
Return c

The following subalgorithm is used for the symbolic construction of the unknown series
F =C0 +
 +Ck−1 z

k−1 +Fk z
k +Fk+1 z

k+1 +
 :

Class UnknownSeriesDi
r Q SeriesDi

r

Fields f : SeriesKr, C0:K
r,	 , Ck−1:K

r

Constructor implicit (f̃ : SeriesKr, C̃0:K
r,	 , C̃k−1:K

r)

f6 f̃ , C06 C̃0,	 , Ck−16 C̃k−1

8 Relaxed resolution of implicit equations



Method next (n:N)
If n<k then return Cn

Else return (f , n, 1, 0, 1)≡Fn

These algorithms require a few comments. First of all, we denoted by Φ[F ] the replace-
ment of F by C0 + 
 +Ck−1 z

k−1 + Fk z
k + Fk+1 z

k+1 +
 in the expression Φ, modulo
suitable implicit conversions SeriesDi

r ↔ SeriesDi

r . Throughout the algorithm, the set Σ
stands for the current system of “not yet solved equations”. Each equation is represented by
an instance in Di which only involves Fn+j with 06 j < i. New equations are progressively

added while keeping Σ in a triangular form. As soon as Fn
[1]
, 	 , Fn

[r] can be eliminated
from Σ, then the next coefficient fn can be computed.

Theorem 5. Let (7) be an equation of index i and offset k. Then the above algorithm

for the resolution of (7) is correct. If Φ involves s and is of size t as an expression, then

f0,	 , fn−1 are computed in time

T(n) = sR(n) +O((t+ i r2) i r n).

Proof. By construction, just after setting Σ6 Σ∪{ϕp−v
Φ[j]

[j]
: j ∈{1,	 , r}, p> vΦ[j]}, the

system Σ is equivalent to Σn,p−n from (9). If n>k and p>n+ i, we may thus eliminate Fn

from the system Σ and compute fn. This proves the correctness. As to the complexity
bound, we observe that the substitution product in SeriesDi

amounts to 2 i r + 2 scalar
products and one relaxed product in SeriesK. Similarly, each linear operation (addition,
subtraction, derivation and integration) in SeriesDi

amounts to i r + 1 similar operations
in SeriesK. If Σ is a triangular system of size i r × i r and we add r new rows, then the
triangularization of the new system can be done in time O(i2 r3). �

Remark 6. In practice, the user does not necessarily have any a priori bound for the
index of (7). Instead of assuming a fixed index i for the substitution products, it is actually
possible to automatically increase i whenever τ i(Ψ̌≪i) contains a non constant coefficient
for some subexpression Ψ of Φ.

Remark 7. A prototype of the algorithm has been implemented in the Mathemagix
system. For various systems of low index with rational coefficients, we have compared the
time Tc to compute the solution up to order n with the time Tv to verify its correctness. For
small orders n6 100, we observed ratios Tc/Tv≈ 2. For large orders n> 1000, we achieved
Tc /

4

3
Tv, in correspondence with the asymptotic complexity bound.

5. A worked example

Consider the system














Φ = F −G+ z FG = 0
Ψ = z (F ′−G′) + z FG = 0
F0 = 1
G0 = 1

It is not hard to find the unique explicit solution (f , g)∈K[[z]]2 of this system. Indeed,

zΦ′−Ψ = z2 (FG)′,

whence fg∈K. Since f0= g0=1, it follows that fg=1. Plugging this into the first equation
f − g+ z f g= 0, we get f2− 1 + z=0, whence f =(1− z)1/2 and g=(1− z)−1/2.
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During the computations below, we will see that the system is quasi-linear of index 2.
Denoting the relaxed solution by (f , g) ∈ K[[z]]2, we will have to compute f , g and the
series F̌ , Ǧ, FG ∈D2[[z]].

Initialization. At the very start, we have f0 = g0 = F̌0 = Ǧ0 =1.

Step 1. The evaluations of Φ̌1 and Ψ̌1 yield

Φ̌1 = F̌1− Ǧ1 + f0 g0

= 1 +F1−G1

Ψ̌1 = F̌1− Ǧ1 + f0 g0

= 1 +F1−G1

Σ 6 {F1−G1 + 1}

These relations do not yet enable us to determine f1 and g1.

Step 2. The evaluations of Φ̌2 and Ψ̌2 yield

Φ̌2 = F̌2− Ǧ2 + F̌1 g0 + f0 Ǧ1

= F1 +G1 +F2−G2

Ψ̌2 = 2 F̌2− 2 Ǧ2 + F̌1 g0 + f0 Ǧ1

= F1 +G1 + 2F2− 2G2

Σ 6 {F2−G2 +F1 +G1, 2F2− 2G2 +F1 +G1, F1−G1 +1}

After triangularization, we get

Σ 6 {F2−G2 +F1 +G1, F1 +G1,− 2G1 + 1}.

The two last equations imply f1 =−
1

2
and g1 =

1

2
.

Step 3. Evaluations of Φ̌3 and Ψ̌3 and triangularization of Σ yield

Φ̌3 = F̌3− Ǧ3 + F̌2 g0 + f1 g1 + f0 Ǧ2

= −
1

4
+F2 +G2 +F3−G3

Ψ̌3 = −
1

4
+F2 +G2 +3F3− 3G3

Σ 6 {F3−G3 +F2 +G2−
1

4
, 2F2 + 2G2−

1

2
, 4G2−

1

2
}

From the equations 3 Φ̌3− Ψ̌3 =0 and Ψ̌2− Φ̌2 =0, we get f2 = g2 =
1

8
.

Further steps. For n> 4, the evaluations of Φ̌n and Ψ̌n yield

Φ̌n = F̌n − Ǧn + F̌n−1 g0 +(fn−2 g1 +
 + f1 gn−2) + f0 Ǧn−1

= (fn−2 g1 +
 + f1 gn−2) +Fn−1 +Gn−1 +Fn −Gn

Ψ̌n = (fn−2 g1 +
 + f1 gn−2) +Fn−1 +Gn−1 +nFn −nGn

n Φ̌n − Ψ̌n = (n− 1)Fn−1 +(n− 1)Gn−1 +(fn−2 g1 +
 + f1 gn−2)

Ψ̌n − Φ̌n = (n− 1)Fn − (n− 1)Gn

After triangularization, we thus get

Σ 6 {Fn −Gn +Fn−1 +Gn−1 + fn−2 g1 +
 + f1 gn−2,

(n− 1)Fn−1 +(n− 1)Gn−1 + fn−2 g1 +
 + f1 gn−2

2 (n− 1)Gn−1 + fn−2 g1 +
 + f1 gn−2}.

Consequently, fn−1 = gn−1 =−
1

2 (n− 1)
(fn−2 g1 +
 + f1 gn−2).
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6. Symbolic linearization

Assume that the system (7) is quasi-linear. Given a subexpression Ψ of Φ an integer i∈N

and j ∈{1,	 , r}, we claim that the coefficient [Fn−vΨ−i
[j]

]σi+1(Ψ)n of Fn−vΨ−i
[j] in σi+1(Ψ)n

(and which corresponds to [Ψn
(i)

][j] in (10)) is a rational function in n, for sufficiently large n.
There are two ways to see this.

Let Erat denote the set of expressions Ψ, such that for all i ∈N there exist vectors of
rational functions Ψ(0),	 ,Ψ(i−1)∈K(N )r and a sequence Ψn

∗ with

σi(Ψ)n = Ψn
∗ +Ψ(i−1)(n) ·Fn−vΨ−i+1 +
 + Ψ(0)(n) ·Fn−vΨ, (13)

for all sufficiently large n. In other words,

[Ψ(i)(n)][j] = [Fn−vΨ−i
[j]

]σi+1(Ψ)n,

for j=1,	 , r and sufficiently large n. We define Ψ(i)=0 if i<0. We clearly haveK[z]⊆Erat

and F [1],	 , F [r]∈Erat. Assume that Ψ,Ω∈Erat. Then Ψ + Ω,Ψ−Ω,Ψ Ω,Ψ′,
∫

Ψ∈Erat

and we may explicitly compute the corresponding rational functions using

(Ψ +Ω)(i) = Ψ(i+vΨ+Ω−vΨ) + Ω(i+vΨ+Ω−vΨ)

(Ψ−Ω)(i) = Ψ(i+vΨ+Ω−vΨ)−Ω(i+vΨ+Ω−vΨ)

(ΨΩ)(i)(n) = ΨvΨ Ω(i)(n− vΨ) +
 +ΨvΨ+i Ω
(0)(n− vΨ− i) +

Ψ(i)(n− vΩ) ΩvΩ +
 +Ψ(0)(n− vΩ− i)ΩvΩ+i

(Ψ′)(i)(n) = (n+ 1)Ψ(i)(n+1)

(
∫

Ψ)(i)(n) =
1

n
Ψ(i)(n− 1).

If Ψ is a polynomial, then we notice that (Ψ(i))[j]∈Kr for all i and j. If Ψ is a differential
polynomial of order q, then (Ψ(i))[j] is a polynomial in K[N ] of degree 6 q. In general, the
degrees of the numerator and denominator of (Ψ(i))[j] are bounded by the maximal number
of nested differentiations resp. integrations occurring in Ψ.

An alternative way to determine the Ψ(j) is to consider F = f −E as a perturbation of
the solution and perform a Taylor series expansion

Ψ(f +E) = Ψ(f) + (DΨ)(f)(E)+
1
2

(D2 Ψ)(f)(E,E)+
 .
The coefficients Ψ(i) can then be read off from the linear term using

Ψ(i)(n)[j] = [Fn−vΨ−i
[j]

](DΨ)(f)(F − f)

= [Fn−vΨ−i
[j]

](DΨ)(f)(F ). (14)

For instance, consider the expression

Ψ =
∫

FG′+ z2F ′′

(DΨ)

(

f

g

)

=
∫

fG′+
∫

Fg ′+ z2F ′′.

Then we have

Ψ(i)(n) =

(

[Fn−i](
∫

fG′+
∫

Fg ′+ z2F ′′)n

[Gn−i](
∫

fG′+
∫

Fg ′+ z2F ′′)n

)

=

(

i

n
gi + δ0,in

2

n − i

n
fi

)

,
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with δ0,i =1 if i=0 and δ0,i =0 otherwise.
A first theoretical consequence of our ability to compute symbolic expressions for Ψ(i)

is the following:

Theorem 8. There exists an algorithm which takes a quasi-linear system (7) on input and

computes its index and its offset.

Proof. The system (9) can be rewritten as a matrix-vector equation

MnXn =Yn. (15)

Here Xn ∈ Kir is a column vector with entries Fn+i−1
[1]

, 	 , Fn+i−1
[r]

, 	 , Fn
[1]
, 	 , Fn

[r] and

Yn ∈Kir. The entries of the matrix Mn ∈Kir×ir are coefficients of the form (Φn−p
(i′)

)[j]. In
particular, we can compute a matrix M ∈K(N )ir×ir such that the matrix Mn is given by
the specialization M(n) of M at N =n for sufficiently large n.

Let T ∈ K(N)ir×ir be the symbolic triangularization of M . For sufficiently large n,
the triangularization Tn of Mn coincides with T (n) for n>n0. Now Fn may be eliminated
from the equation (15) if and only if the last r non zero rows and the last r columns of Tn

are an invertible triangular matrix. This is the case for all sufficiently large n if and only
if the last r non zero rows and the last r columns of T are an invertible triangular matrix
in K(N)r×r. We compute the index of (7) as being the smallest i for which this is the case.

As to the offset, we first observe that we may explicitly compute an n0 ∈N such that
Mn=M(n) and Tn=T (n) for all n>n0, since the values n for which these equations do not
hold are roots of a polynomial with coefficients in K. Using the algorithm from section 4,
we may compute the solution f up to any given order n. We thus compute the offset as
being the smallest k ∈N such that Fn can be eliminated from (15) for all k6n<n0. �

Example 9. For the example from section 5, the equation (15) becomes








1 −1 1 1
n −n 1 1
0 0 1 −1
0 0 n− 1 −n+ 1

















Fn

Gn

Fn−1

Gn−1









=









− (fn−2 g1 +
 + f1 gn−2)
− (fn−2 g1 +
 + f1 gn−2)

0
0









.

Remark 10. An interesting theoretical question is how to test whether a given system
is quasi-linear. The proof technique of the theorem at least gives us a partial answer: if
a system is quasi-linear, then we will be able to provide a certificate for this fact. Most
systems encountered in practice are indeed quasi-linear, provided that we have sufficiently
many initial conditions. In the contrary case, it is usually possible to find a simpler equiv-
alent quasi-linear system. It would be nice to prove a general theorem in this direction.

A second consequence of our ability to compute symbolic expressions for Ψ(i) is that

we can avoid the systematic computation of the coefficients Ψn
(i) using arithmetic in D:

we rather compute Ψn
(i) on demand, by evaluating Ψ(i) at N =n. The coefficients Ψn

(i) are
essentially needed at two places: for the computation of substitution products and for the
computation of the system Σ. Let q be the cost of an evaluation of Ψ(i): if Ψ is a polynomial,
then q=1; if Ψ is a differential polynomial, then q is its order plus one; etc..

When computing Ψn
(i) by evaluating Ψ(i) at N = n, the computation of one coefficient

of a one-step substitution τ amounts to r evaluations of rational functions of the form
(Ψ(i))[j]. Consequently, every substitution product amounts to a cost R(n) +O(i r q n) in
the final complexity.
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As to the computation of a coefficients Fn, we may compute Mn as in (15) using
(i r)2 evaluations of cost q and then solving a linear system of size i r. This gives rise
to a cost O((i r + q) (i r)2 n) in the final complexity. Alternatively, as a side effect of
the triangularization of M with the notations from (15), we may compute a symbolic
matrix S ∈K(N)r×ir such that Fn = S(n) Yn for all sufficiently large n. If the system (7)
is algebraic, then S ∈Kir×ir actually has constant coefficients, so the complexity further
reduces to O(i r2). In general, the evaluation of S will be more expensive, so it is not clear
whether this strategy pays off. Altogether, we have proved:

Theorem 11. Let (7) be an equation of index i of total size t and containing at most s

multiplications. Assume that the equations involve strictly less than q nested derivations

or integrations. Then f0,	 , fn−1 can be computed in time

T(n) = sR(n) +O((s q+ i r q+ i2 r2) i r n+ t n).

If (7) is algebraic, then the complexity further drops down to

T(n) = sR(n) +O((s+ r) i r n+ t n).

Remark 12. The algorithm from this section has not been implemented yet. The new
complexity bound constitutes an improvement mainly in the algebraic case. Since the
manipulation of non constant coefficients in D gives rise to a small but non negligible
amount of overhead for small and moderate n (see remark 7), we indeed expect further
gains in this case.

7. Generalizations

For simplicity, the presentation of this paper has been focused on ordinary differential
equations. Nevertheless, the techniques admit generalizations in several directions. We will
outline two such generalizations.

Functional equations. Let G be a set of relaxed power series g ∈ K[[z]] with g0 = 0
and replace E by the set of expressions built up from F , z and constants in K using ring
operations, differentiation, integration and right composition with series in G.

Assume first that val g = 1 for all g ∈G. In a similar way as in section 6, there exists
a symbolic expression of the form (13) for each Ψ∈E, except that we now have

Ψ(i) ∈ K(N )[(g1)1
N ,	 , (gl)1

N], (16)

where g1,	 , gl ∈G are the functions which occur as postcomposers in Ψ. In particular, if
(g1)1,	 , (gl)1∈R, then the Ψ(i) are contained in a Hardy field, and theorem 8 generalizes.

The above observation further generalizes to the case when val g > 1 for certain g ∈G.
In non degenerate cases, expressions F (i) ◦ g with val g > 1 only occur as perturbations,
and (16) still holds. In general, we also have to consider degenerate situations, such as the
case when

Ψ(i)(αN + β) ∈ K(N)[(g1)1
N ,	 , (gl)1

N]

for a certain α> 1 and all β=0,	 , α− 1.
One may even consider functional equations in which we also allow postcompositions

with general expressions g ∈E with g0 = 0. Although the theory from section 6 becomes
more and more intricate, the algorithm from section 4 generalizes in a straightforward way.
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Partial differential equations. We may also consider power series in several variables
z1,	 , zd. Given a multivariate power series f ∈K[[z]]=K[[z1,	 , zd]] and n∈Nd, we denote
by fn the coefficient of zn = z1

n1 
 zd
nd in f , and let P = K[Fn: n ∈Nd]. The expressions

in E are built up from F , z1,	 , zd and constants in K using ring operations and partial
differentiation or integration with respect to the z1, 	 , zd. The number vΦ now becomes
a vector in (Z∪{∞})d.

The simplest, blockwise generalization proceeds as follows. Indices i, j ∈Nd are com-
pared using the product ordering i6 j⇔ i1 6 j1∧
 ∧ id 6 jd. Given i∈Nd and Ψ∈E, we
let σi(Ψ) be the series in P[[z]] such that σi(Ψ)n is the result of the substitution of Fj by
fj in Ψn, for all n∈Nd and j6n+ vΦ− i. Given v ∈Zd and i∈Nd, we let P[[z]]v,i be the
subset of Ψ∈P[[z]] such that

Ψn+v = Ψn+v
∗ +

∑

06j6i−1

Ψn+v
(j)

·Fn−j , (17)

Ψn+v
∗ ∈ K

Ψn+v
(j)

∈ Kr (0 6 j6 i− 1).

For each l ∈ {1,	 , d}, let el ∈Nd be such that (el)l = 1 and (el)j = 0 for j � l. We define
the one-step partial substitution τl(Ψ)∈P[[z]]v+el,i−el

by

τ (Ψ)n+v = Ψn+v
∗ +

∑

(il−1)el6j6i−1

Ψn+v
(j)

· fn−j +
∑

06j6i−1−el

Ψn+v
(j)

·Fn−j.

The partial shifts Ψzl≪j and Ψzl≫j are defined similarly and we denote by Ψzl=0 the
substitution of 0 for zl in Ψ. The substitution product is defined recursively. If i=0, then
we set Ψ∗iΩ=ΨΩ. Otherwise, we let l∈{1,	 , r} be smallest such that il is maximal and
take

Ψ ∗i Ω = σ0(Ψzl=0)σ(Ωzl=0) + [σ0(Ψzl=0) Ωzl≫1 + Ψzl
0≫1 σ0(Ωzl=0)]zl≪1 +

[τl(Ψzl≫1) ∗i−el
τl(Ωzl≫1)]zl≪2.

Using this substitution product, the algorithm from section 4 generalizes. The theory from
section 6 can also be adapted. However, theorem 8 admits no simple analogue, due to the
fact that there is no algorithm for determining the integer roots of a system of multivariate
polynomials.

Several variants are possible depending on the application. For instance, it is sometimes

possible to consider only the Ψn+v
(j) up till a certain total degree j1 + 
 + jd 6 i in (17),

instead of a block of coefficients. For some applications, it may also be interesting to store
the Ψn+v

(j) in a sparse vector.
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