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In classical measure theory, the Radon-Nikodym theorem states in a concise condition, namely domination, how a measure can be factorized by another (bounded) measure through a density function. Several approaches have been undertaken to see under which conditions an exact factorization can be obtained with set functions that are not σ-additive (for instance finitely additive set functions or submeasures). We provide a Radon-Nikodym type theorem with respect to a measure for almost subadditive set functions of bounded sum. The necessary and sufficient condition to guarantee a one-sided Radon-Nikodym derivative remains the standard domination condition for measures.

Introduction

In classical measure theory, the Radon-Nikodym theorem states in a concise condition, namely domination, how a measure can be factorized by another (bounded) measure through a density function. Several approaches have been undertaken to see under which conditions an exact factorization can be obtained with set functions that are not σ-additive. Necessary and sufficient conditions are found in [START_REF] Bell | Separation properties and exact Radon-Nikodm derivatives for bounded finitely additive measures[END_REF] for finitely additive set functions. Another direction has been taken in [START_REF] Graf | A Radon-Nikodym theorem for capacities[END_REF][START_REF] Nguyen | On Capacity Functionals in Interval Probabilities[END_REF] where continuity is kept but subadditivity is substituted for additivity. These approaches reveal how Hahn decomposition properties play a proeminent rôle in order to exhibit exact Radon-Nikodym derivatives. Building set functions from existing ones can be naturally carried on through Choquet integrals (see [START_REF] Wang | Monotone set functions defined by Choquet integral[END_REF]), i.e. an extension of Lebesgue's integral for set functions (see [START_REF] Denneberg | Non-additive measure and integral[END_REF]). Another version for non-additive set functions without continuity is exposed in [START_REF] Harding | Local Radon-Nikodym Derivatives of Set functions[END_REF] where a local derivative can be shown to exist on every finite subalgebras. For different motivations stemming from potential theory, a concise note [START_REF] Mokobodzki | Domination d'une mesure par une capacité[END_REF] presents a Radon-Nikodym theorem for a measure with respect a σ-submeasure. Our study is devoted to the reverse direction and we exhibit a one-sided Radon-Nikodym derivatives for a set function w.r.t. a measure. Our motivation comes from decision making under uncertainty theory and how information can be handle in the expected utility framework (see [START_REF] Gilboa | The value of information -An axiomatic approach[END_REF]). We shall consider set functions of bounded sum (see [START_REF] Gilboa | Additivizations of nonadditive measures[END_REF][START_REF] Pap | Null-additive set functions[END_REF]) that are not necessarily monotone and that satisfy almost subadditivity and semicontinuity from below. These conditions are weaker than the standard properties of monotonicity, subadditivity and continuity from below. For these set functions the necessary and sufficient condition to guarantee a onesided Radon-Nikodym derivative remains the standard domination condition.

Next section introduces the class of almost subadditive semicontinuous from below set functions of bounded sum. The final section exposes some Radon-Nikodym theorems version for almost subadditive set functions. An appendix contains the technical material related to the existence of the Choquet integral for semicontinuous from below set functions of bounded sum.

Set functions of bounded sum

From now on (Ω, A) denotes a measurable space. w : A -→ IR + with w(∅) = 0 is a set function.

w is null hereditary 1 (0-H) if ∀A, B ∈ A, w(A) = 0 ⇒ w(B) = 0 whenever B ⊂ A. w is monotone if ∀A, B ∈ A, w(A) ≤ w(B) whenever A ⊂ B. A monotone set function is null hereditary. w is subadditive if ∀A, B ∈ A, w(A ∪ B) ≤ w(A) + w(B) whenever A ∩ B = ∅.
w is superadditive when the opposite inequality holds. w is of bounded sum i.e., w ∈ BS if

w BS = sup{ i w(P i ) : {P i } i ∈ P} < +∞
where P denotes the set of partitions:

{P i } i ∈ P if i P i = Ω i.e., ∪ i P i = Ω and P i ∩ P j = ∅ for i = j.
. BS is the classical norm for additive set functions ( [START_REF] Pap | Null-additive set functions[END_REF]). If w is of bounded sum then it is exhaustive. For any countable partition

{A n } n ⊂ A we have w BS ≥ n w(A n ), thus lim n w(A n ) = 0.
We can define a (extended) set function w in the following manner, ∀A ∈ A,

w(A) = sup{ i w(P i ) : i P i = A} ∈ [0, ∞],
in particular w(Ω) = w BS , w(∅) = 0. By construction w is superadditive (see Theorem 3.1 in [START_REF] Pap | Null-additive set functions[END_REF]) and w ≥ w.

Almost subadditive set functions

We introduce a class of set functions which is a kind of an intermediate between subadditive and null-additive set functions.

A set function is almost subadditive if ∀A, B ∈ A, AB = ∅, w(A ∪ B) ≤ w(A) + w(B), otherwise putted, ∀A, sup B:AB=∅ w(A ∪ B) -w(B) ≤ w(A).
Hence the marginal contribution of A to B is always smaller than the potential contribution of A standing alone. A subadditive set function is clearly almost subadditive 2 . A monotone a.-subadditive set function is null-additive 3 .

Example 1: Let Ω = {1, 2, 3, 4} be a four element set. Consider w defined by w(i) = 3, w(ij) = 4, w(ijk) = 7 and w(Ω) = 9. Then w is almost subadditive since

w(ijk) -w(jk) = 3 = w(i), w(ij) -w(j) = 1 ≤ w(i), w(Ω) -w(jkl) = 2 ≤ w(i) and w(Ω) -w(kl) = 5 ≤ 6 = w(ij), w(ijk) -w(k) = 4 ≤ w(ij), and 
w(Ω) -w(l) = 6 ≤ 9 = w(ijk) But w is not subadditive since w(ij) + w(kl) = 8 < 9 = w(Ω).
Lemma 1 and 2 are restatements of Theorem 3.1 in [START_REF] Pap | Null-additive set functions[END_REF].

Lemma 1 Let w be a set function. Then w ∈ BS if and only if there exists a superadditive set function v such that v ≥ w.

Proof:

(Only if). Take v = w. (If). Let {P i } i ∈ P and v ≥ w, then i w(P i ) ≤ i v(P i ) ≤ v(Ω) thus w BS ≤ v(Ω). ⊓ ⊔
It can be shown that w is the superadditive envelope of w.

Lemma 2 Let w be a set function, w ∈ BS. Define w SA in the following manner, for all A ∈ A, w SA (A) = inf{v(A) : v ≥ w, v superadditive} then w SA = w, and the infimum is attained.

Proof: (≤ ) By definition of w SA , since w is superadditive.

(≥ ) Let v ≥ w, v be superadditive and take i P i = A, we have i w(P i )

≤ i v(P i ) ≤ v(A) thus w(A) ≤ v(A). Hence w ≤ w SA . ⊓ ⊔
In particular if there exists an additive set function P , P ≥ w then w ∈ BS. A sufficient condition for w being additive is that w is a.-subadditive.

Lemma 3 (see Theorem 3.2 in Pap) Let w be a set function, w ∈ BS be a.-subadditive. Then w is additive and w = ∧ {P :P ≥w} P . In particular, w(Ω) = w BS if and only if w is additive.

Proof: Let us prove that w is subadditive. Take disjoint sets A 1 , A 2 ∈ A. For ǫ > 0, there exists a partition {P i } i ∈ P such that

w(A 1 ∪ A 2 ) -ǫ < i w((A 1 ∪ A 2 )P i ) ≤ i w(A 1 P i ) + i w(A 2 P i ) ≤ w(A 1 ) + i w(A 2 P i ) ≤ w(A 1 ) + w(A 2 )
since w is superadditive.

As for the infimum condition, if P ≥ w then P ≥ w and this infimum is attained for w which is additive.

(If) It is immediate. (Only if). For A ∈ A we have w(Ω) ≤ w(A) + w(A c ) ≤ w(A) + w(A c ) ≤ w(Ω) = w BS = w(Ω) thus w(A) = w(A), which is additive. ⊓ ⊔
We may state, Sandwich Theorem: Let w be an a.-subadditive set function and v a superadditive set function such that v ≥ w. Then there exists an additive set function Q such that v ≥ Q ≥ w.

Proof: Since v ≥ w and v is superadditive, w is of bounded sum. So according to Lemma 2 and 3, we can take Q = w. ⊓ ⊔

Continuity properties of set functions

We now come to continuity properties of a.-subadditive set functions. Let w be a set function.

w is order-continuous i.e., w ↓ ∅, if w(A n ) → 0 whenever A n ↓ ∅. w is semicontinuous from below i.e., w ↑ s , if lim inf n w(A n ) ≥ w(A) whenever A n ↑ A. w is continuous from below i.e., w ↑, if w(A n ) → w(A) whenever A n ↑ A. w is monotonely-continuous i.e., w ↓↑, if w(A n ) → w(A) whenever A n ↓↑ A. w is σ-continuous if w(A n ) → w(A) whenever A n → A 4 . w is σ-subadditive if ∀{A n } n ⊂ A, n A n = A ⇒ w(A) ≤ n w(A n ).
For additive set functions, order-continuity, monotone-continuity and σ-continuity are all equivalent. Order-continuous additive set functions are generally termed measures. Semicontinuity from below implies continuity from below under monotonicity. According to Proposition 2.1 in [START_REF] Pap | Null-additive set functions[END_REF], monotone continuity and σcontinuity coincide whenever w is monotone.

Proposition 1 Let w be a set function, w ∈ BS be a.-subadditive. The impli- cations (i) ⇒ (ii) ⇐⇒ (iii) hold, (i) w is monotonely-continuous, (ii) w is semicontinuous from below, (iii) w is σ-additive. Moreover, if w is monotone (iii) ⇒ (i) holds.
Proof: We shall prove (i) ⇒ (ii) ⇐⇒ (iii) ⇒ (i).

(i) ⇒ (ii). By definition.

(ii) ⇒ (iii). w being additive it suffices to prove that w is continuous at Ω. Let

A n ↑ Ω, ǫ > 0. There exist B 1 , . . . , B K ∈ A such that k w(B k ) > w BS -ǫ/2. As A n ↑ Ω we also have A n ∩ B k ↑ B k and since w ↑ s , for n large enough, it holds for all k w(A n ∩ B k ) > w(B k ) -ǫ/2K hence w(A n ) ≥ k w(A n ∩ B k ) > k w(B k ) -ǫ/2 > w BS -ǫ. (iii) ⇒ (ii). Let A n ↑ A. Since w is a.-subadditive it holds, w(A) ≤ w(A \ A n ) + w(A n ). And by σ-additivity of w, w(A) ≤ lim inf n w(A n ). (iii) ⇒ (i). Since (iii) ⇐⇒ (ii) and w is monotone, w is continuous from below.
As for continuity from above. Let A n ↓ A. By almost subadditivity and monotonicity we get,

w(A) ≤ w(A n ) ≤ w(A) + w(A n \ A). Taking the limit as n goes to ∞, w(A) ≤ lim n w(A n ) ≤ w(A). ⊓ ⊔
We may precise the Sandwich Theorem, Sandwich Theorem: Let w be an a.-subadditive semicontinuous from below set function and v a superadditive set function such that v ≥ w. Then there exists a σ-additive set function

Q such that v ≥ Q ≥ w.
Proposition 2 Let w be a set function, w ∈ BS be subadditive. The following statements are equivalent, (i) w is semicontinuous from below, (ii) w is order-continuous, (iii) w is σ-subadditive.

Proof:

(i) ⇒ (iii). Let {A n } n ⊂ A, n A n = A. By subadditivity we have, w( n k=1 A k ) ≤ n k=1 w(A k )
. Thus, by semicontinuity from below, it comes,

w( n A n ) ≤ lim inf n w( n k=1 A k ) ≤ lim inf n n k=1 w(A k ) = n w(A n ). (iii) ⇒ (ii). Let A n ↓ ∅. Put B n = A n \ A n+1 . Since w is of bounded sum, we have n w(B n ) ≤ w BS < ∞. By σ-subadditivity, w(A n ) ≤ k≥n w(B k ) ↓ 0. (ii) ⇒ (i). Let A n ↑ A. By subadditivity, w(A) ≤ w(A n ) + w(A \ A n ). Thus by order-continuity, w(A) ≤ lim inf n w(A n ). ⊓ ⊔
Remark: An alternative way to prove (i) ⇒ (ii) if w is monotone can be used. On one hand w is exhaustive since w ∈ BS. On the other hand µ is σ-subadditive since it is continuous from below and subadditive. Now from Theorem 2.8 (iii) in [START_REF] Pap | Null-additive set functions[END_REF], an exhaustive and σ-subadditive monotone set function is order-continuous

We may precise the Sandwich Theorem for subadditive set functions, Sandwich Theorem (continuation): Let w be subadditive and v be superadditive set functions such that v ≥ w. Then, there exists a σ-additive set function

Q such that v ≥ Q ≥ w if and only if is order-continuous.
In light of the previous results we obtain, Jordan decomposition Theorem: Let w be subadditive. Then, w ∈ BS if and only if there are superadditive set functions s + , s -such that w = s +s -. Where, w is order-continuous if and only if s + , s -are order-continuous. Moreover, (w, ww) is an optimal decomposition i.e. We provide simple ways to produce a.-subadditive set functions of finite sum.

w = s + -s -⇒ w ≤ s + and w -w ≤ s -. Proof: (If). Since 0 ≤ w = s + -s -≤ s + ,
Example 2: Let P 1 , P 2 be measures, define w = max{P 1 , P 2 }.

Example 3: Let P be a non-atomic probability measure on A and f : [0, 1] -→ IR + be a function with f (0) = 0 that admits limits from the left. Put w = f • P . If the derivative of f at 0 is finite i.e., f ′ (0) < ∞, and for all 0 ≤ q ≤ p ≤ 1, f (p)f (q) ≤ f ′ (0)(pq), then w is an a.-subadditive set function of finite sum and semicontinuous from below 5 . And w is 0-H whenever f (p) > 0 for p > 0.

Moreover f ′ (0)P = w.

Proof: For q = 0 we have f ′ (0)p ≥ f (p) for all p ∈ [0, 1]. We have f ′ (0)P (A) ≥ f (P (A)) = w(A) for all A ∈ A, f ′ (0)P (A) ≥ w(A) and w is of bounded sum.

For the opposite inequality. For A ∈ A and n ∈ IN, since P is non-atomic there are disjoint subsets

{A i } n i=1 such that P (A i ) = 1 n P (A) and n i=1 A i = A. So, w(A) ≥ n i=1 f (P (A i )) = n i=1 f ( 1 n P (A)) = P (A) f ( 1 n P (A)) 1 n P (A) -→ P (A)f ′ (0)(n -→ ∞) For disjoint sets A 1 , A 2 ∈ A, we have f (P (A 1 + A 2 )) -f (P (A 2 )) ≤ f ′ (0)P (A 1 ) = w(A 1 ), i.e. w is a.-subadditive.
Let us prove that w is semicontinuous from below. By assumption, f (p) ≤ f (q) + f ′ (0)(pq) for 0 ≤ q ≤ p ≤ 1. Hence for q ↑ p, it comes f (p) ≤ f (p-). Let A n ↑ A. Since P is continuous from below, P (A n ) ↑ P (A), thus lim inf n w(A n ) ≥ w(A).

⊓ ⊔

The assumption that f ′ (0) < ∞ can not be dropped if we wish that w = f • P to be of bounded sum. Otherwise w takes its value in {0, ∞} whenever P is non-atomic. For instance consider the entropy function

f : [0, 1] -→ IR + : p → -p ln(p) with f (0) = 0. Then, f ′ (0) = lim 0 ln(1/p) = ∞. Put w = f • P .
w is a subadditive continuous from below set function. However, w is not 0-H6 and w is not of bounded sum.

Example 3 provides a way to construct a.-subadditive semicontinuous from below set function of finite sum that are neither subadditive nor continuous from below. Consider the following piecewise linear probability distortion,

f (p) =          2p, if 0 ≤ p ≤ 1/8 1/4, if 1/8 ≤ p ≤ 1/2 2p -3/4, if 1/2 ≤ p < 1 1, if p = 1
Then, f • P is not subadditive since f (1/2) = 1/4 < 1/2 and f • P is not continuous from below since f (1-) = 5/4 > 1.

Super Radon-Nikodym derivatives

Let µ, w be set functions. µ dominates w i.e., µ >> w, if for all A ∈ A, µ(A) = 0 ⇒ w(A) = 0. µ strongly dominates w i.e., µ >> s w, if for all ǫ > 0 there exists η > 0 such that for all A ∈ A, w(A) < ǫ whenever µ(A) < η. 

⊓ ⊔

The classical Radon-Nikodym theorem for measures is, Theorem :(Radon-Nikodym) Let µ, ν be measures. Then, µ >> ν if and only if there exists a function f ≥ 0, A-measurable and integrable such that ν = f µ, i.e., for all A ∈ A,

ν(A) = A f dµ = f µ (A),
where f = dν dµ is the Radon-Nikodym derivative of ν w.r.t. µ. Hence, for any bounded non-negative measurable function X, X dν = Xf dµ.

Let w be a set function. For a non-negative measurable function we may define the Choquet integral ( [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Schmeidler | Integral representation without additivity[END_REF]) on A ∈ A w.r.t. w by the following quantity,

A Xdw = ∞ 0 w({X > t} ∩ A)dt = ∞ 0 w({X1 A > t})dt ∈ [0, ∞]
where the integral under consideration is the Lebesgue integral on [0, ∞). This integral is well defined as soon as w is semicontinuous from below. And is finite for all bounded X whenever w is bounded (see Appendix). Denote the space of w-integrable functions,

L + (w) = {X : X ≥ 0, A -measurable with Xdw < ∞}.
This integral coincide with Lebesgue's integral whenever w is σ-additive.

Definition 1 Let w be a set function and µ a measure. w is majorized by µ if there exists a function g ≥ 0, A-measurable and µ-integrable such that w ≤ gµ That is to say, g majorizes w.

So whenever w is majorized, w is necessarily of bounded sum, order-continuous and µ >> gµ >> w.

Definition 2 Let w be a set function and µ a measure. w admits a superior Radon-Nikodym derivative w.r.t. µ if there exists f s that majorizes w and f s is minimal i.e.

∀g, w ≤ gµ ⇒ f s ≤ g, µa.e.

We shall say that dw dµ s exists and write dw dµ s = f s where no confusion is possible.

In particular, for any bounded non-negative measurable function X, Xdw ≤ Xf s dµ Indeed, Xdw ≤ Xdf s µ and f s µ is σ-additive so Xdf s µ = Xf s dµ. So all the pertinent information contained in w can be summarized through a factorization and this is made precisely with the superior Radon-Nikodym derivative.

Proof: (If). Since w ∈ BS and w ↑ s , according to Proposition 1, w is σadditive. Moreover µ >> w thus µ >> w hence by the classical Radon-Nikodym theorem there exists f s such that w = f s µ. But w ≤ w, so w ≤ f s µ i.e. f s majorizes w. It remains to show that f s is the superior R-N derivative. Let g majorizes w.

Since gµ is a measure and w ≤ gµ, Lemma 2 gives w ≤ gµ, thus f s µ ≤ gµ hence f s ≤ g µ-a.e. (Only Let w admit superior R-N derivative f s thus w ≤ f s µ. But f s µ is σ-additive, thus w ∈ BS and w ≤ f s µ hence w ↓ ∅. And w is additive according to Lemma 3, thus w ↑ s by Proposition 1. Finally, µ >> f s µ and f s µ ≥ w thus µ >> w. (Moreover). (If). Assume w is 0-H, then by Property 2, w ≡ w. And since w = f s µ, we have w ≡ f s µ. (Only if). Since f s µ is 0-H and f s µ ≡ w, by Property 2, w is 0-H. (Hence). We have, X dw = 0 ⇐⇒ w({X > t}) = 0, λa.e. ⇐⇒ f s µ({X > t}) = 0, λa.e. ⇐⇒ X df s µ = 0 ⇐⇒ f s X dµ = 0.

⊓ ⊔

Thanks to Theorem 1 we can extend the informative part of the Radon-Nikodym derivative to couples of a.-subadditive set functions.

Theorem 2 Let w, W ∈ BS be a.-subadditive, 0-H, semicontinuous from below set functions. The following statements are equivalent.

(i) w >> W , (ii) There exists f ∈ L + (w) s.t. f w ≡ W , (iii) f s w ≡ W with f s = d W d w s .
Hence, for any bounded non-negative measurable function X, X dW = 0 if and only if Xf s dw = 0.

Proof:

(ii) ⇒ (i). Since w is 0-H, w >> f w ≡ W . (iii) ⇒ (ii). Since f s ∈ L + (w) ⊂ L + (w) we can pick f = f s . (i) ⇒ (iii). Since w ∈ BS is a.
-subadditive semicontinuous from below and w >> W , w is a measure and w >> W . So according to the "Moreover part" of Theorem 1 with W 0-H, f s w ≡ W.

It remains to check that f s w ≡ f s w. By construction, f s w >> f s w since w ≥ w.

As for the other inequality. Let

A ∈ A such that, f s w(A) = A f s dw = ∞ 0 w({f s ≥ t} ∩ A) = 0. Since w ≥ 0, we have w({f s ≥ .} ∩ A) = 0, λ a.e. But w is 0-H so by Property 2, w ≡ w. Hence w({f s ≥ .} ∩ A) = 0, λ a.e.
And w is monotone so w({f s ≥ .} ∩ A) is non-increasing on IR + thus measurable, so f s w(A) = 0. (Hence). Since f s w ≡ W we have, 

X dW = 0 ⇐⇒ W ({X > t}) = 0, λ -a.e. ⇐⇒ f s w({X > t}) = 0, λ -a.e. ⇐⇒ X df s w = 0 ⇐⇒ f s X dw = 0 ⇐⇒ f s X dw = 0. ⊓ ⊔

A Choquet integral

In order to show that the Choquet integral is well-defined we shall need some technical material related to measurability issues. A function

X : Ω -→ IR is A-measurable if ∀y ∈ IR, {X > y} ∈ A. Definition 3 Let O ⊂ IR + . O is right open if ∀x ∈ O, ∃η > 0 / [x, x + η) ⊂ O. Let f : IR + -→ IR be a function. f is right lower semicontinuous if ∀y ∈ IR, {f > y} is right open.
Right lower semicontinuity can be characterized in term of sequences.

Lemma A.1 Let f : IR + -→ IR be a function. f is right lower semicontinuous if and only if Since (x → x + κ(x)) and (x → x) are non-decreasing, κ as a difference is (of bounded variation) a Borel function. ⊓ ⊔ Proposition 3 Let w : A -→ IR + be semicontinuous from below. Then the Choquet integral X dw is well-defined for all non-negative A-measurable function X. Moreover, if w ∈ BS and X is bounded then the Choquet integral is finite.

∀t 0 ∈ IR + , ∀t n ↓ t 0 , f (t 0 ) ≤ lim inf n f (t n ). Proof: (Only if). Let t 0 ∈ IR + , t n ↓ t 0 and ǫ > 0. Since f is right lower semicontinuous, > f (t 0 ) -ǫ} is right open and t 0 ∈ {f > f (t 0 ) -ǫ}. Thus there exists η > 0 s.t. [t 0 , t 0 + η) ⊂ {f > f (t 0 ) -ǫ}. So for n large enough, f (t n ) > f (t 0 ) -ǫ. Hence, lim inf n f (t n ) ≥ f (t 0 ) -ǫ.
Proof: Define the function, w X : IR + -→ IR : t → w X ({X > t})

Let us check that w X is right lower semicontinuous. Take t n ↓ t 0 . It holds {X > t n } ↑ {X > t 0 } and since w is semicontinuous from below w X (t 0 ) = w({X > t 0 }) ≤ lim inf n w({X > t n }) = w X (t n )

Hence, according to Lemma A.1 w X is right lower semicontinuous. And by Lemma A.2 w X is measurable, thus X dw is well-defined. Assume now that w ∈ BS and X is bounded. Then w X is bounded and has a bounded support, i.e. {w X = 0} ⊂ [0, sup X). So, |w X | ≤ w ∞ .1 [0,sup X) thus w X is integrable and X dw is finite.

⊓ ⊔

To be more precise it suffices that sup{w(A) : A ∈ A} < ∞.

A more general situation where the Choquet is finite when X is bounded is where w is signed and bounded i.e.

w : A -→ IR, w ∞ = sup{|w(A)| : A ∈ A} < ∞ and A might not be a σ-algebra but simply a paving i.e. ∅, Ω ∈ A. This situation is studied extensively in [START_REF] Rébillé | Sequentially continuous non-monotonic Choquet integrals[END_REF] for signed, bounded and continuous from below set functions.

Property 2 Theorem 1

 21 Let w, W be set functions. If w is 0-H and w ≡ W then W is 0-H. Moreover, w is 0-H if and only if w ≡ w. Proof: Let A, B ∈ A, A ⊃ B where W (A) = 0. Since W >> w, we have w(A) = 0. w is 0-H thus w(B) = 0. So w >> W entails W (B) = 0. (Moreover). (If). Let A, B ∈ A, A ⊃ B where w(A) = 0. So w(A) = 0. By construction w(A) ≥ w(B) ≥ w(B) ≥ 0 thus w(B) = 0. (Only if). It suffices to prove that w >> w. Let A, A 1 , . . . , A n ∈ A with A = n i=1A i and w(A) = 0. Since w is 0-H, for all i, w(A i ) = 0. Thus n i=1 w(A i ) = 0, so w(A) = 0.⊓ ⊔ Let w be an a.-subadditive set function and µ a measure. Then, w admits a superior Radon-Nikodym derivative w.r.t. µ and only if ∈ BS, w ↑ s , µ >> w Moreover, f s µ ≡ w if and only if w is 0-H. Hence, for any bounded non-negative measurable function X, X dw = 0 if and only if Xf s dµ = 0.

κ

  : IR + -→ IR + : x → κ(x) = sup{η : η ∈ [0, 1], [x, x + η) ⊂ O} By construction, O = {κ > 0}. (⊂). Let x ∈ O. Since O is right open there exists η > 0 s.t. [x, x + η) ⊂ O so a fortiori [x, x + min{η, 1}) ⊂ O. Hence, 0 < min{η, 1} ≤ κ(x). (⊃). Let x ∈ {κ > 0}. There exists 0 < η ≤ κ(x) s.t. [x, x + η) ⊂ O thus x ∈ O.We shall prove now that (x → x + κ(x)) is non-decreasing. Let 0 ≤ x < y.1 st case. If x + κ(x) ≤ y then x + κ(x) ≤ y + κ(y) since κ(y) ≥ 0. 2 nd case. If x + κ(x) > y. There exists 0 < η ≤ 1 s.t. x + η > y and [x, x + η) ⊂ O, thus y ∈ O. And a fortiori, [y, x + η) = [y, y + (xy) + η) ⊂ O, so 0 ≤ (xy) + η ≤ η ≤ 1.Thus, (xy) + η ≤ κ(y). Since η can be arbitrary chosen close to κ(x), it comes (xy) + κ(x) ≤ κ(y).

  w is of bounded sum according to Lemma 1. It is immediate to check that w is order-continuous whenever s + , s - are order-continuous.

(Only if). Since w is subadditive, by Lemma 3, w is additive, thus superadditive and ww is superadditive. If w is order-continuous then by Proposition 1 and 2, w is order-continuous, hence ww too. (Moreover). By Lemma 2, w is minimal, thus w ≤ s + hence ww ≤ s -.

⊓ ⊔

  These notions of absolute continuity coincide whenever µ, w are measures, and more generally if w is an a.-subadditive set function,

Property 1 Let w be an a.-subadditive semicontinuous from below set function with w ∈ BS and µ a measure. Then, µ >> w if and only if µ >> s w.

Proof: (If). It is immediate. (Only if). Assume µ >> w, then µ >> w. Since w is an a.-subadditive semicontinuous from below, by Proposition 1, w is σ-additive thus µ >> s w and µ >> s w follows.

  Corollary 1 Let w be an a.-subadditive set function and µ a measure such that dw dµ s exists then w is σ-additive if and only if w = f s µ Since M is σ-additive, W ∈ BS and W is order-continuous. Assume moreover that w is subadditive. For disjoint sets A, B ∈ A, and t > 0w({X > t} ∩ (A ∪ B)) ≤ w({X > t} ∩ A) + w({X > t} ∩ B)The following example is a particular case of Corollary 3 where w i = P i , Example 2 (continuation): Let P 1 , P 2 , µ be measures with P 1 , P 2 << µ and define w = max{P 1 , P 2 }. Then On one hand P 1 , P 2 ≤ w ≤ w and w is additive, thus P 1 ∨ P 2 ≤ w holds. On the other hand P 1 , P 2 ≤ P 1 ∨ P 2 thus w ≤ P 1 ∨ P 2 and w ≤ P 1 ∨ P 2 follows. The superior Radon-Nikodym derivative can be precised.For P i ≤ w ≤ w, we have dP i dµ ≤ dw dµ , thus max{ dP 1 dµ , dP 2 dµ } ≤ dw dµ s . And since, P i = dP i dµ µ ≤ (max{ dP 1 dµ , dP 2 dµ })µ, we have w ≤ (max{ dP 1 dµ , dP 2 dµ })µ, thus dw

	Proof: (If) immediate. (Only if). We have dw dµ µ = w ≤ dw dµ Radon-Nikodym derivative, thus dw dµ = dw s µ ≤ dw dµ µ by minimality of the superior dµ s µ-a.e. s ≤ dµ ⊓ ⊔ max{ dP 1 dµ , dP 2 dµ }. We have proved that,
	Corollary 2 Let w be an a.-subadditive set function and µ such that dw dµ dw dµ s = max{ dP 1 dµ , dP 2 } dµ For X a bounded non-negative measurable function define, W (A) = A Xdw for s exists. all A ∈ A. Then W is majorized by X dw dµ s . Moreover, if w is subadditive then dW dµ s exists and Take H = { dP 1 dµ ≥ dP 2 dµ }. ⊓ ⊔
	dW dµ Example 3 (continuation): Since f ′ (0)P = w, we have dw s ≤ X dw dµ s dP	s = f ′ (0).
	and if w is 0-H then W is 0-H.				
	Proof: Since Y dw ≤ Y dw dµ function Y , it holds for Y = X1 A , thus W (A) = A Xdw ≤ A X dw s dµ for any bounded non-negative measurable s dµ = M (A) dµ i.e., W is majorized by X dw dµ s and W << µ.
	by integration it comes W (A ∪ B) ≤ W (A) + W (B). And by Proposition 2, W
	is semicontinuous from below, so according to Theorem 1, W admits a superior
	Radon-Nikodym derivative and				
						dW dµ	s	≤ X	dw dµ	s	.
	The last part is immediate.							⊓ ⊔
	dw dµ	s	=	d P 1 ∨ P 2 dµ	= max{	dP 1 dµ	,	dP 2 dµ	},
	moreover there exists a set H ∈ A such that
			dw dµ	s	=	dP 1 dµ	1 H +	dP 2 dµ	1 H c .

Proof:

  And since ǫ can be arbitrary chosen close to 0, it gives lim inf n f (t n ) ≥ f (t 0 ). (If). Assume on the contrary that there exists y s.t. {f > y} is not right open. Thus there exists t 0 ∈ {f > y} s.t. for all η > 0, ∃t η ∈ (t 0 , t 0 + η) satisfying t η / ∈ {f > y}. So we may pick a decreasing sequence t n for η n ↓ 0 such that f (t n ) ≤ y for all n. So a fortiori, lim inf n f (t n ) ≤ y < f (t 0 ). The second statement is a consequence of the first statement. Let y ∈ IR. {f > y} is right open by definition of right lower semicontinuity of f . Thus, {f > y} is a Borel set. Since it holds for all y ∈ IR, f is a Borel function.Let us prove the first statement. Let O be right open. We introduce the following "excess" function,

⊓ ⊔ Lemma A.2 Let O ⊂ IR + . If O is right open then O is a Borel set. Let f : IR + -→ IR be a function. If f is right lower semicontinuous then f is a Borel function.

Proof:

Otherwise stated, w is converse null-null additive, i.e. w(A ∪ B) = 0 ⇒ w(A) = w(B) = 0, whenever A, B are disjoint sets.

In general, subadditive monotone set functions are not necessarily of bounded sum. For instance, assume A infinite and consider the degenerate set function w defined by w(A) = 1 if A = ∅.

A non-monotone 0-H a.-subadditive is null-null-additive i.e. w(A) = w(B) = 0 ⇒ w(A ∪ B) = 0, whenever A, B are disjoint sets.

A n → A if lim inf A n = lim sup n A n = A.

For instance if f is concave or when f is derivable with f ′ ≤ f ′ (0).

Since w(Ω) = 0 and w ≥ 0, w = 0.