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∗ Département de Recherche enÉlectromagnétisme, Laboratoire des Signaux et SystèmesUMR8506

(CNRS-SUPELEC-Univ Paris-Sud), 91192 Gif-sur-Yvette cedex, France
† Budapest University of Technology and Economics, Egry J. u.18, H-1521 Budapest, Hungary

E-mail: bilicz@evt.bme.hu

Abstract: The accurate numerical simulation of the eddy-
current testing (ECT) experiments usually requires large
computational efforts. To avoid the time-consuming com-
putations, the idea – which is new in the domain of ECT –
of using databases appeared recently. The database consists
of well-chosen pairs of input-output samples of a specified
ECT experiment. Once it is built, one just has to retrieve the
sought data from the database instead of recoursing to the
complicated and expensive-to-run simulation methods. How-
ever, the generation of such databases is not a straightfor-
ward task. This paper presents a new, kriging-based adaptive
methodology which yields to databases optimized to the given
problem.
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I. I ntroduction

The solution of theforward problemsrelated to the eddy-
current testing configurations is known to be a complicated
task. In spite of the vast of contributions and develop-
ments in numerical field computation, basically the simu-
lations still need strong computers and they are quite time
consuming. Unfortunately, this fact involves the computa-
tional difficulties in the relatedinverse problemsas well.
Moreover, it is often an end-user who aims to solve an
inverse problem (e.g. to detect or characterize a defect).
However, the end-user may not be a specialist of the un-
derlying theory, he just needs a reliable,fast andsimple
method.

Apparently, the mentioned problems can be overcome by
changing the “expensive” forward simulator to a “cheap”
surrogate model, to a so-calledemulator. The working
principle of the emulator is not (necessarily) based on the
underlying physical phenomenon – this is why they are
usually much faster and simpler than the simulators.

In this paper, the database, as a kind of emulation is
in the focus. The use of the databases in the domain of
ECT first appeared in [1]. The main idea is easy to under-
stand. First, one specifies an ECT problem (given spec-
imen, source, receiver and a set of defects that one aims
to find). Then the database is being generated: the for-
ward simulator computes the output values (the measur-
able data) at well-chosen input values (parameters of the
defect). All pairs of input-output samples are stored in the
database. Finally, when one needs to determine the out-
put at a given input value, the task is not more than to
retrieve the sought data from the database. This retrieval
can be any kind of interpolation, from the simplest “near-
est neighbour” (NN in the followings) method even to the
more sophisticated neural network interpolators – the soul
of the methods is the same: not to use the precise but ex-
pensive simulator.

The main problem of the database generation is the good
choice of input samples. One has to find a reasonable com-
promise between the number of samples in the database
and the precision provided by the emulation. So far, mainly
adaptive mesh generation methods have been applied to ex-
plore the input-output relationship and to sample sequen-
tially the input space (see, e.g. [2]). Our paper presents
a new method based on thekriging prediction. After
the problem definition, the proposed method is described
briefly, along with some hints to the basics of kriging. Fi-
nally, an illustrative example is presented.

II. Problem definition

Let us assume that in a well-defined ECT configuration,
p parameters characterize the defect. These parameters are
included in theinput vectorx, taking place in the input
spaceX. The so-calledforward operator(F ) mapsX to
the output spaceY, by defining the outputy of the ECT
experiment:

y = F {x}.

Usually, the outputy is a vector of coil impedances or
magnetic flux densities measured at well-defined receiver
locations (e.g. on a surface scan).F hides all underly-
ing physical phenomena, it makes the ECT experiment a
“black-box” – which also means that the presented method
is general, no theoretical limitation hampers its application
for other kind of problems.

As already mentioned, the basic aim is to replaceF by a
cheap emulator. Formally, an approximate forward opera-
tor – denoted byG – is to be found. The database-concept
offers a convenient way: let us store pre-calculatedsamples
(corresponding input-output values) in a database and use
an interpolation method based on these samples to approx-
imateF . The goodness of approximation is formalized via
theerror of approximation:

h(x) = ||F (x) − Gn(x)||y

where ||·||y stands for an appropriate norm on the output
space. The index ofGn refers to the fact that the approx-
imate operator is based on then samples stored in the
database: (x1, y1), (x2, y2), . . . , (xn, yn). The overall accu-
racy of a database can be characterized by the maximal
(overX) approximation error.

The aimed problem in this paper is the method ofgen-
eration of optimized databases. Optimization means that
the method takes into account the interpolator (used after
the database is built up) and it tries to explore the input-
output relationship in thespecificECT problem – in order
to achieve high accuracy whereas the number of samples
is acceptably low.



III. S equential database building

According to the proposed method, the database gener-
ation is an incremental procedure, samples are added one
by one. After an initialization, the algorithm is fully au-
tomatic. The basic idea is to insert the new sample to the
input pointxn+1 where the approximation error (at the cur-
rent stage, withn samples in the database) is the highest:

xn+1 = arg max
x∈X
{h(x)}. (1)

This method is obviously reduces the approximation error
and seems to be quite simple. However, in spite of its el-
egance, (1) is extremely expensive to evaluate since each
call of h(x) needs the solution of a forward problem. In
the followings, we describe how our idea overcomes this
difficulty.

The main novelty of our work is that we found a conve-
nient way to predicth(x), in the case when NN interpola-
tion is used. For the sake of completeness, the NN inter-
polation method is a 0th-order interpolation ofF {x}, based
on the stored samples. Formally,

Gn(x) = F (xk) = yk,

where ||x − xk||x ≤ ||x − xl ||x ∀l = 1, 2, . . . , n.

The symbol||·||x stands for an appropriate norm onX.
The method is based on the concept of the so-calleddis-

tance functions, defined as

Qk(x) = ||F (x) − yk||y , wherek = 1, 2, . . . , n.

Obviously, for a givenx input, theh(x) approximation er-
ror (using NN interpolation) is equal toQNN(x), the dis-
tance function related to the nearest neighbour ofx. How-
ever, the distance functions are expensive-to-evaluate since
they need the solution of a forward problem. Thus, they
cannot be used directly to expressh(x). The key point of
our method is here: we build akriging model(based on the
n samples already added to the database) for their predic-
tion, instead of the precise evaluation.

Kriging provides an elegant prediction for all then dis-
tance functions all overX, thus, the approximation error
can be predicted as well, making (1) easy to evaluate ap-
proximately.

Kriging is a stochastic tool for predicting unknown func-
tions, based on some observations (by now, kriging is a
well-known and widely used method in several domains,
see e.g. [3]). Its main idea is to model the function by a
Gaussian process. Based on the observations, the mean
of the process is predicted, which passes through all ob-
servation points, thus it is an interpolation method. The
predicted mean is expressed as a linear combination of the
observations.

By repeating these approximation error prediction –
sample insertion cycles till a stopping criterion is passed,
one gets the algorithm for building optimized databases.
The stopping criterion can be related for instance to the
predicted maximalh(x) and/or to the predicted uncertainty
of the kriging interpolation.

IV. I llustrative example

A simple example with a 2 dimensional input space is
presented here. A thin OD type, cuboid-shaped defect is
characterized by its length and depth. In Fig. 1 a com-
parison is shown between the performances of a “classi-
cal” database (regular sampling inX) and an optimized
one (made by using the presented kriging-based method).
The approximation error is normalized by the norm of the
impedance signal of the largest possible defect (3.5 mm,
90 %) and given in % by the color map. Both databases
consists of 25 samples. One can see that the optimized
database outperforms the classical one in accuracy.
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(a) Regularly sampled input space.
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(b) Optimized database.

Figure 1. Normalized approximation error (color map, %) andinput
samples (red markers).

V. Conclusions and further development

A new, kriging-based method for optimized database
generation is presented. In the light of the preliminary
results, the methodology seems to be promising. Theo-
retically, there is no limitation for the number of defect
parameters.

In this abstract, only the simplest approach has been
presented yet, in the authors’ opinion, kriging offers fur-
ther possibilities to develop more sophisticated methods
for database generation. Note that also the uncertainty of
the prediction can be expressed in a closed form – this un-
certainty might be useful to improve the performance of
the algorithm.
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